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ABSTRACT DC microgrids present an effective power system solution for increased integration of 

renewable sources while providing clear benefits, such as high efficiency and simpler control. However, the 

protection of DC networks still remains a challenge due to strict time limits for fault interruption imposed 

by fast rising fault currents in DC systems, and absence of frequency and phasor information. This paper 

introduces a technique for fast detection and isolation of the faults in the DC microgrids without de-

energizing the whole network. In the proposed algorithm, branch current measurements are sampled and 

Wavelet transform is applied to capture the characteristic changes in the current signals caused by network 

faults. The temporal variations in the relative wavelet energy within the frequency bands are acquired to 

construct the feature vector for classification. Artificial neural networks are used as the classifier as it 

provides a soft criterion for fault detection, featuring smart fault detection capability. The relatively fast 

calculation time of artificial neural networks makes it a good candidate for this application, due to the strict 

time restrictions inherited in DC fault isolation. To evaluate the performance, a comprehensive study on the 

proposed scheme is presented. The results demonstrate the effectiveness of the proposed scheme in terms of 

fast and reliable fault detection and inbuilt accurate fault localization capability. 

INDEX TERMS Artificial Neural Networks, DC microgrid protection, Fault detection, Fault localization, 

Wavelet transform

I. INTRODUCTION 

DC microgrids (DCMGs) have the potential to offer 

more efficient integration of distributed generators (DGs) 

such as solar PVs and battery energy storages, and 

electronic loads, due to the reduced power conversion 

stages. With the new developments in the power sector, 

smart homes/ buildings, vehicle to grid technology, hybrid 

energy storages, and renewable energy parks, DCMGs have 

immerged as an interesting option for future power systems. 

However, the absence of effective solutions for fault 

detection in DC distribution systems represents a significant 

barrier for widespread adoption of DCMGs [1, 2]. 

The inherent absence of frequency and phasor 

information in DC systems prevents the direct adoption of 

line impedance based methods, as in AC systems. Hence, 

overcurrent, rate of current rise and differential elements 

are commonly used for DC network protection [3-5]. 

However, due to the intermittent nature of DGs connected 

to the DCMGs, different operational modes and high 

sensitivity of the network response to the fault impedance, 

protection of DCMGs is challenging [4-7]. Furthermore, 

changing fault level, changing power flow direction and 

complex network architectures may lead to suboptimal fault 

discrimination; hence, poses a challenge in relay 

coordination [3, 4]. 

Fault localizing is a crucial requirement as quick 

isolation of the faulty section of the network is essential to 

enable fast recovery of the network [5-7]. To achieve a 

greater level of selectivity and fault localizing capability, 

implementations of communication-based unit protection 

schemes are discussed in the literature [3-6]. However, the 

scope for the implementation of such schemes is typically 

limited due to the additional cost of the necessary 

communication. Furthermore, dependency on multi-
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terminal measurements, accuracy affected by 

communication delays and sensor errors, and the 

requirement for synchronized measurements prevent the 

widespread adoption of communication-based schemes. 

DC microgrids mostly comprise of power electronic 

converters for interfacing DGs and loads to the DC bus. 

Power electronic components have limited overcurrent 

withstand capability, typically in the range of 2-3 times 

nominal load current for a few tens of milliseconds [8]. In 

addition, DC networks have very short time constants, 

resulting in a rapid rise in fault current during a fault, 

particularly due to the DC bus capacitor discharge [7, 8]. 

Consequently, a fault in a DC network should be detected 

and isolated before reaching critical fault current levels [3, 

7, 8]. 

While there are solid-state circuit breaker and hybrid 

circuit breaker technologies, which can meet the strict time 

limits for fault interruption in DC networks, a reliable 

technique for fast detection and isolation of DC network 

faults without de-energizing the whole network, is a crucial 

requirement [8-10]. 

Recently, a growing body of research adopts digital 

signal processing and data-driven techniques for power 

system event recognition [11-13]. Digital signal processing 

based techniques such as short-time Fourier transform and 

wavelet transform (WT) are among widely adopted 

methods used for frequency and time-domain analysis. 

Short-time Fourier transform based fault detection scheme 

for a VSC interfaced DC distribution network is presented 

in [14]. Short-time Fourier transform has its drawbacks 

such as limited time-frequency resolution. Low frequencies 

can be hardly depicted with short windows, whereas high 

frequencies can only be poorly localized in time with a long 

data window [11]. Conversely, WT has the ability to 

decompose a signal into specific time-frequency 

resolutions. Hence, it can better capture the abrupt changes 

of a signal caused by a fault in a power network. Wavelet 

transform based techniques have been proposed extensively 

for several power system applications, including fault 

classification and network event recognition [11-13]. In 

[15] percentage change in decomposition level energy is 

compared for fault detection in DCMGs. Wavelet transform 

is applied to decompose common mode current measured at 

different network points, to detect and locate ground faults 

in DCMGs in [16]. 

Digital signal processing techniques such as WT is prone to 

noise and network disturbances. Machine learning models 

using a soft criterion for fault detection as opposed to hard 

thresholds endows robustness against measurement 

uncertainty to the fault detection scheme. Models such as 

decision trees, artificial neural networks (ANNs), support 

vector machines, deep neural networks, and K-nearest 

neighbor has been employed in power system fault 

detection in literature [17-22]. Good generalization 

capability along with the high computational speed of 

machine learning algorithms offer intelligent and fast fault 

detection capability, unaffected by noise and disturbances 

in the network. An investigation into the use of machine 

learning models including ANNs, decision trees and 

support vector machines for fault detection in DC shipboard 

networks is presented in [23]. Application of ANNs for 

detection of classification of faults according to fault type 

and location in DCMG networks are presented in [24, 25]. 

These proposed schemes directly use sampled current 

measurements for training and classifying fault events, 

leading to complex ANN structures, and longer detection 

times.  

However, there remains a research gap for the formulation 

of accurate fault detection and localization scheme for 

DCMGs. Most of the existing techniques utilizing signal 

processing and data-driven technique for fault detection and 

localization focuses on AC distribution networks [19-21]. 

Currently, most of the DCMG protection techniques rely on 

communication between devices, which results in several 

practical issues in implementation. Moreover, the existing 

signal processing and data-driven techniques for DCMG 

protection require further improvements to address issues; 

absence of fault localization and selective isolation 

capability, vulnerability to noise, and complex algorithms 

leading to longer fault detection time. 

To address the research gap of fault detection and 

localization in DCMGs, in this paper, an intelligent scheme 

based on WT and ANN is proposed. Compared to existing 

DCMG fault detection schemes, the proposed scheme is 

capable of providing fast and accurate fault detection results, 

facilitating quick isolation of the faulted segment of the 

network. The proposed method does not require 

communication infrastructure and eliminates the requirement 

for synchronized measurements. Furthermore, it offers 

intelligent fault detection capability under different operating 

modes, loading conditions, and has the capability to 

differentiate non-fault power dynamics from fault conditions. 

The rest of the paper is organized as follows: Section II 

describes the notional DCMG model used to analyze the 

proposed scheme. Fault detection and localization 

requirements are identified, and relay coordination strategy is 

proposed in section III. The general structure of the proposed 

fault detection and localization algorithm is introduced in 

section IV. Section V presents the wavelet theory, fault 

feature extraction and variations in selected feature vector 

with different network events. Structure of the adopted 

ANNs is discussed in Section VI. Section VII summarizes 

the test results and analyzes the performance of the proposed 

fault detection scheme. Finally, section VIII draws the 

conclusions. 

II. THE DC MICROGRID 

To verify the fault detection and localization scheme 

proposed in this paper, notional DCMG modeled in 

PSCAD/EMTDC is employed. Simplified schematic of the 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2945397, IEEE Access

 

VOLUME XX, 2017  

model is shown in Fig. 1. The DCMG operates in either grid-

connected or islanded mode. Battery storage system and a 

photovoltaic power source are interfaced to the DC bus 

through Power electronic converters [26]. 

Digital protective relays along with fast-acting DC circuit 

breakers are deployed in the network on selected strategic 

locations to implement a coordinated fault detection and 

interruption scheme. These relays sample branch current 

measurements at 50 kHz rate and are then pre-processed for 

fault detection and localization. 

III. PROTECTION COORDINATION REQUIREMENTS 

An effective protection coordination strategy minimizes 

the critical fault clearing time, enables quick system 

restoration and fault ride-through capability, and minimizes 

outages; thereby, it ensures the reliability and safety of the 

network [27]. Protection coordination issues bring many 

challenges; selection of protection equipment to optimize the 

fault clearing with minimum outages, and miscoordination 

between devices are among these [4, 27]. 

This Section presents a protection coordination strategy to 

be deployed with the proposed fault detection and 

localization scheme. As shown in Fig. 1, the network is 

segmented into several zones by selective positioning of DC 

circuit breakers, and these breakers in conjunction with 

digital relays operate to isolate the fault zone, in the event of 

a fault. Backup protection is also implemented for the 

relevant relays and circuit breaker failures to improve system 

reliability. 

The proposed fault detection algorithm can be 

implemented and executed by digital relays monitoring the 

branch current signals at each branch node, as in Fig. 1. 

Table I presents the proposed coordination strategy between 

relays, to provide primary and backup protection to different 

components of the network from pole-ground and pole-pole 

faults, occurring at different locations of the network. For the 

faults occurring at load feeders, it is important to isolate the 

faulted load feeder to protect the other components in the 

network. Relays R4, R5, R6 and R7 provide primary protection 

against faults occurring in each load feeders (zones 2, 3, 4 

and 5). The primary protection zones of the DCMG model 

are shown in Fig. 1. For the faults occurring at the zone 1 

(see Fig. 1), relays R1, R2, and R3 picks up the fault (primary 

protection), and fault current contribution from the utility 

grid, solar PV and battery storage is cutoff by DC circuit 

breakers. Relays R1, R2, and R3 provide backup protection 

against faults occurring in the zones 2, 3, 4 and 5, in case of 

breaker or relay failures at the load feeders, and is shown in 

Fig. 1. 

The proposed protection coordination strategy is 

implemented using two types of time graded relays, 

rendering selectivity in fault interruption, and is discussed in 

later Sections. 

IV. PROPOSED FAULT DETECTION AND 
LOCALIZATION SCHEME 

The flowchart of the proposing fault detection algorithm 

is shown in Fig. 2. Sampled current measurements at digital 

relays are pre-processed by discrete wavelet transform 

(DWT) to extract the “fault features” in both time and 

frequency domain. The extracted feature vector is fed into 

the ANN for fault detection and classification. Time series 

variation of relative wavelet energy (RWE) in each DWT 

decomposition level is acquired embedding time-series data 

to construct the feature vector, and is discussed below. 

DWT based signal decomposition and the use of ANN for 

fault detection and event classification will be further 

discussed in sections V and VI. 

 

  

FIGURE 1: Schematic of the notional DC microgrid model and the protection zones 
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TABLE I 
DCMG FAULT LOCATIONS AND CORRESPONDING PROTECTION DEVICES SELECTED FOR THE PROTECTION OF DCMG COMPONENTS. 

 

 

DCMG Component  

Primary protection Backup protection 

Dc bus faults Lateral feeder fault DC bus fault Lateral feeder fault 

Power converter protection 

 

DC circuit breakers and 

Relays R1, R2 and R3 

DC circuit breakers, and relays 

R4, R5, R6 and R7 

None DC circuit breakers and 

relays R1, R2 and R3 

Battery protection DC circuit breakers and 

relay R3 

DC circuit breakers and relays 

at R4, R5, R6 and R7 

 

None 
 

DC circuit breakers and 

relay R3 

Solar PV protection DC circuit breakers and 

relay R2 

DC circuit breakers and relays 

R4, R5, R6 and R7 

 

None 

 

DC circuit breakers and 

relay R2 

 

Load Feeder protection None DC circuit breaker and relays 

R4,R5, R6 and R7 

 

None DC circuit breakers and 

relays R1,R2 and R3 

 
 

 

 
FIGURE 2: Flowchart of the proposed fault detection algorithm 

A. EMBEDDING TEMPORAL DATA TO CONSTRUCT 

THE FEATURE VECTOR 

Most of the classifier models including ANN overlook 

the temporal dependencies of the input data. The data 

correlation in the time domain is crucial in identifying the 

network events, as most of them are dynamic in nature [28].  

In the proposed scheme, a shift register of delays are 

employed, where successive data of the time series can be 

retained. This allows the time-series data to be used as a 

spatial vector, to input into a classifier, enabling accurate 

classification, as the ANN can capture the temporal 

dependencies within the data window considered. Implicit 

transformation of time series data into a spatial vector is 

called embedding, and is a widely recognized technique 

used to classify and predict events using temporal data [29, 

30]. 

As shown in Fig. 3, at each instant t, we can truncate the 

time series data to only the previous d number of samples to 

formulate the feature vector for the classifier. Here, d is 

called embedding dimension [30, 31]. 

B. SELECTION OF RELAYS FOR PROPER 

COORDINATION 

This paper proposes a relay coordination scheme for fault 

localization and isolation, implemented by time grading of 

the relays. To maintain proper coordination, load feeder 

primary protection relays R4, R5, R6 and R7 are required to 

operate prior to relays R1, R2 and R3. Hence, the relays are 

time graded such that relays R4, R5, R6 and R7 operates 

prior to the relays R1, R2 and R3. This time grading also 

allows the relays R1, R2 and R3 to back up the relays R4, R5, 

R6 and R7. Accordingly, two types (type I and type II) of 

time graded relays are employed. Two different d values 

are used in embedding time-series data into two spatial 

vectors of different dimensions. To fulfill the protection 

coordination requirements discussed in Section III, the 

relays are selected as given in Table II.  

Embedding dimension, d was selected on the basis of 

fault detection accuracy and ability to maintain proper 

coordination between two types of relays. The initial 

studies showed that the classification accuracies improve 

with increasing values of d. However, increasing values of 

d mean longer embedding time delay, resulting in longer 

fault detection time. This tradeoff between classification 

accuracy and speed of detection must be considered in 

selection of d. In this study we employ d= 2 for type I 

relays. In order to allow proper time discrimination between 

upstream and downstream relays, d= 4 is selected for type II 

relays. This allows type II relays to identify fault 

interruption operations by primary protection relays (type I 

relays) of zones 2, 3, 4 and 5 (lateral load feeders). 
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TABLE II 
RELAY TYPE SELECTION AND PROTECTED ZONES OF THE 

DCMG NETWORK 

Relay Relay type Protected zone of the DCMG 

R1 Type II Primary protection – zone 1 
Backup for- zones 2,3,4 and 5 

R2  Type II Primary protection – zone 1 

Backup for- zones 2,3,4 and 5 

R3 Type II Primary protection – zone 1 

Backup for- zones 2,3,4 and 5 

R4 Type I Primary protection – zone 2 

R5 Type I Primary protection – zone 3 

R6 Type I Primary protection – zone 4 

R7 Type I Primary protection – zone 5 

V. WAVELET ANALYSIS AND FEATURE EXTRACTION 

Wavelet Transform (WT) is a signal processing 

technique frequently used for applications in power system 

studies [11-13, 32, 33]. The WT decompose wideband and 

non-stationary signals into specific time-frequency 

resolutions. The ability of the WT to localize a signal in 

both time and frequency domains makes it possible to 

capture the abrupt changes of signals and localize their 

occurrence [32-35]. 

In the proposed fault detection and classification scheme, a 

variant of WT, discrete wavelet transform (DWT) serves an 

important element in extracting the fault features. A brief 

introduction into the wavelet theory, and DWT based multi-

resolution analysis is given in the appendix.  

 

FIGURE 3: Technique for embedding temporal data to construct a 

spatial vector 

 

A. MOTHER WAVELET AND DECOMPOSITION LEVEL 

SELECTION 

In WT analysis there are many wavelet families (eg: -

Daubechies family (dbN), Symlets family (symN) and 

Coiflets family (coifN)), which can be used as mother 

wavelet. Where, N is the order of the wavelet function. 

Generally, mother wavelets are characterized by properties 

such as orthogonality, compact support, symmetry and 

vanishing moments. These properties are considered in 

selecting a mother wavelet [36]. In general, db wavelets 

compared to other wavelets provide good signal recognition 

and noise removal capabilities. When analyzing power 

network signals which usually contains large amount of 

transient components, db wavelets are deemed suitable as 

the mother wavelet [16]. Hence, db wavelet family is 

chosen for analysis, in this study. 

With db as the base function, db1-db10 are the most 

commonly used among dbN series wavelet. In this study, 

the selection of dbN series wavelet is based on accuracy of 

the classifier scheme resulting from each series wavelet 

concerned. The initial studies with wavelets db1-db10 using 

a trial and error approach showed that db5 wavelet renders 

the best classification accuracies for this application. 

Accordingly, db5 mother wavelet was selected as it will 

provide optimal fault detection and localization 

performance. 

Decomposition level is another parameter that affects the 

signal feature extraction process. Decomposition level is 

selected to capture all the high-frequency content contained 

in the signal that is necessary for feature comparison. 

However, higher decomposition level will result in longer 

temporal window for RWE calculation, which in turn 

results in longer classification time [34]. Consequently, the 

current signal is decomposed into 6 levels of decomposition 

for feature extraction. With the sampling frequency of 50 

kHz, frequency bands of the high-frequency components 

captured by each decomposition level are shown in Table 

III. 

TABLE III 
FREQUENCY BANDS OF DWT DECOMPOSITION LEVELS, AND 

MINIMUM WINDOW SIZE FOR RWE CALCULATION IN EACH 

DECOMPOSITION LEVEL 

DWT 

decomposition 

level 

Frequency bands 

(Hz) 

Minimum window 

size for RWE 

calculation 

1 25 k - 12.5 k 0.04 ms 

2 12.5 k - 6.25 k 0.08 ms 

3 6.25 k - 3.125 k 0.16 ms 

4 3.125 k -1.5625 k 0.32 ms 

5 1565.5 - 781.25 0.64 ms 

6 781.25 - 390.62 1.28 ms 
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B.  FAULT FEATURE EXTRACTION 

The wavelet detail coefficients provide a portrayal of the 

energy distribution of the monitored current signal, in 

different frequency bands. Using these coefficients directly, 

as a learning parameter of a classifier requires large 

memory space and processing time. Furthermore, 

classification accuracy resulting from using the detail 

coefficients is very poor. Hence, the selection of an 

information tool with reduced quantities, but without losing 

the properties of the original signal is a crucial requirement 

for the performance of the classifier [12, 13]. In the 

proposed scheme RWE of the detail coefficients is selected 

as a tool to construct the input feature vector for ANN. 

1)  RELATIVE WAVELET ENERGY 

The concept of wavelet energy is linked to the usual 

notions derived from Fourier theory [37, 38]. The energy 

content of the detail coefficients of a decomposition level 

can be defined for a selected temporal window as in (1), 

𝑬𝒋 = ∑ |𝒅𝒋(𝑲)|
𝟐

𝑲   (1) 

Where, j is the decomposition level, K  is the discrete time 

location,  dj is the wavelet coefficients and Ej wavelet 

energy of the jth decomposition level. Hence, a sliding 

window can capture the trend of variation of wavelet 

energy of a signal at each decomposition level [37]. 

The total wavelet energy, ETot of all the decomposition 

levels can be obtained using (2), 

𝑬𝑻𝒐𝒕 = ∑ ∑ |𝒅𝒋(𝑲)|
𝟐

𝑲𝒋      (2)  

The RWE, given by (3) yields the probability distribution 

for the wavelet energy at different decomposition levels 

j=1,2,….n. 

𝑹𝑾𝑬𝒋 =
𝑬𝒋

𝑬𝑻𝒐𝒕
⁄    (3) 

Variation of RWEj in time can be considered a time scale 

probability density function. The RWE has demonstrated its 

effectiveness in the previous studies for detecting and 

classifying specific events in both time and frequency 

scales [20, 38, 39]. 

In this study, in order to follow the temporal variations of 

RWE, wavelet coefficient series {dj,k}, is divided into non-

overlapping temporal windows of equal length.  

2)  FEATURE EXTRACTION RESULTS 

To verify the proposed approach, using DWT based 

Multi-resolution analysis, and RWE as the information tool, 

feature vectors under different faults and non-fault events 

are extracted. Signals under analysis are decomposed into 

six detail levels and RWE of each level is calculated.  

To improve the time resolution of the proposed scheme, 

it is important that we select the smallest possible time 

window for RWE calculation. There is a limit to the time 

resolution we can get, due to the frequency resolution we 

are trying to achieve by selection of decomposition level. 

Consequently, the number of decomposition levels 

determine the smallest possible temporal window, in order 

to follow the temporal variations of RWE. In Table III, the 

minimum window sizes that can capture high-frequency 

components of each decomposition level are given. As the 

current signal is decomposed into 6 decomposition levels 

(as explained in Section V.A) in the proposed scheme, the 

minimum window size is selected as 1.28 ms. 

The feature vectors are formulated by applying the time 

delays according to the selected embedding dimensions, as 

explained in Section IV.B. The extracted feature vector is 

then fed into ANN for fault classification.  As discussed in 

Section IV, there are 2 feature vectors used for ANN 

training and fault classification in two relay types. The 

feature vectors XI and XII defined for two relays: type I (d = 

2) and type II (d = 4) are represented by (4) and (5) 

respectively. 
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Where, E1,t , E2,t …. E6,t are the RWE in the six 

decomposition levels of the tth data window.  

For clarity, only the feature vector XII, i.e. RWE 

variation in the six decomposition levels within four 

temporal windows, under different fault and non-fault 

events are compared and discussed in this Section. 

Different fault and non-fault cases were simulated under 

different configurations, and will be further discussed under 

Section VI.B. To identify a general trend, RWE variation 

for 25 randomly selected events (using PSCD/EMTDC 

simulated data) under different fault/ non-fault cases are 

shown in Fig. 4 and explained below: 

a) DC side pole-ground fault- RWE distribution of 

extracted feature vectors at the time of occurrence of 

pole-ground faults (set of 25 pole-ground fault events 

simulated under different fault configurations, such as 

with different fault resistances, locations, incident 
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times, etc.) is shown in Fig. 4(a). A general trend 

immerged shows that there is a sudden increase of 

RWE in decomposition level 2 in all the time steps, 

compared with the feature vectors during other non-

fault events and pole-pole fault events. Since the set 

of 25 fault events under consideration in this figure 

represents a wide range of fault resistances and fault 

locations, it is clear that the trend of RWE distribution 

is typical to the pole-ground faults in DCMGs. 

b) DC side pole–pole fault- RWE distribution of feature 

vectors extracted at the time of occurrence of DC side 

pole-pole faults (set of 25 pole-pole fault events 

simulated under different fault configurations, such as 

with different fault resistances, locations, incident 

times, etc.) is shown in Fig. 4(b). The results clearly 

show an increase of RWE in decomposition levels 3 

and 4 compared to pole-ground fault and other non-

fault events. These characteristic variations are visible 

in all 25 pole-pole fault events considered in Fig. 4(b); 

hence, are typical to the pole-pole faults in DCMGs   

c) Normal operation- As can be seen from Fig. 4(c), the 

energy activity of a healthy network under normal 

operation (simulated for different modes of operation 

under different loading conditions) is different from 

that of a faulty network. Therefore, by comparison of 

feature vectors fault events can be differentiated from 

normal operation of the DCMG.   

d) Load switching-During the load switching operation 

of a healthy network ( step changes of load by ±5%, 

±10%, ±15%, ±20%, ±30%, ±40%) , there is an 

increase in energy levels in decomposition levels 5 

and 6 (see Fig. 4(d)), compared with other fault and 

non-fault events. This characteristic RWE variation 

allows load switching operations to be distinguished 

from that of fault events.  

e) Fault interruption in lateral feeders- Upon detection 

of a fault in a lateral feeder by primary protection 

relay of a lateral load feeder (relays R4, R5, R6 and 

R7), the fault zone of the network is isolated by the 

DC circuit breakers positioned at zones 2, 3, 4 and 5. 

The feature vectors are extracted from the current 

signal at the instance of pole-ground faults occurrence 

and immediate interruption (see Fig. 4(e)). The trend 

of RWE variation indicates the occurrence of pole-

ground faults in first two data windows (t-3 and t-2) 

as the RWE in decomposition level 2 is more 

dominant, similar to that of pole- ground faults (see 

Fig. 4(a)). However, the energy variation in the 

decomposition levels of the next two data windows (t-

1 and t) indicates that the fault is interrupted, and the 

RWE distribution differs from that of pole-ground 

fault. This characteristic temporal variation of RWE 

within 4 time windows indicates that a pole-ground 

fault has occurred and have been isolated. Hence, the 

event is classified as a fault event in the network, but 

does not require the relays R1, R2 and R3 to operate as 

the faulted zone is already isolated. 
Through the above analysis, it is clear that the capability 

of the proposed scheme to identify fault events can be 

realized by comparing the extracted feature vector. The 

extracted feature vector is then used as input of a feed-

forward ANN for event classification, and is discussed 

under the next Section.  

Intermediate stages of signal processing (at relay R1) 

from simulated current waveforms up to ANN for fault 

detection and classification are presented in Fig. 5 for a 

fault (DC bus pole- ground fault) and non-fault (load 

switching operation) event. The comparison shows how 

each signal processing stage contributes in constructing the 

feature vector, which is then fed into the ANN model for 

classification. 

VI. ARTIFICIAL NEURAL NETWORKS FOR FAULT 
DETECTION AND CLASSIFICATION 

The proposed fault detection algorithm (see Fig.2) 

employs ANN to classify fault and non-fault events. ANN 

uses a soft criterion for feature comparison, and has the 

ability to infer the underlying nonlinear and complex 

relationships between input and output data [28, 39, 40]. In 

the process of training the ANN, the training algorithm is 

presented with sets of input data and output labels. Through 

iterative training procedure, the ANN weights and biases 

are adjusted by error signal in a way that the network output 

tries to follow the desired output [40-42]. 

A. NEURAL NETWORK STRUCTURE 

The training parameters and structure of the two ANNs 

used in this study are shown in Table IV. They were 

selected to obtain the best classification performance, using 

a trial and error approach with different input feature 

vectors, the number of hidden layers, learning rates and 

activation functions. The selected structures of the two 

ANNs manifest the best classification accuracy. The ANN 

structure used for fault detection and classification in a type 

II relay is shown in Fig. 6. As discussed earlier, in a type II 

relay feature vector of 24 elements is employed to feed the 

ANN for event classification. Four output classes are 

defined for the four cases, i.e. normal operation, pole-

ground fault, pole-pole fault and fault interruption operation 

in lateral feeders. 

B. TRAINING/ TIME SERIES SIMULATION 

The learning parameters of the ANN needs to be trained 

offline. To train the ANN with supervised learning 

algorithm, sufficient previous knowledge that represents 

fault and non-fault events under different operating 

conditions is a necessity. Furthermore, the training data 

should include adequate information to lead the tuning of 

the ANN parameters, approximating the system behavior 

[43, 44]. 
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FIGURE 4: RWE distribution diagram of the feature vector extracted from a) current signals during 25 pole- ground faults b) current signals during 25 

pole-pole faults c) current signals during 25 normal operation conditions d) current signals during 25 load switch in-out operations e) current signals 

during 25 fault interruption operations by the primary protection relay of a lateral feeder. 
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FIGURE 5: Intermediate stages of signal processing for current signals with pole-ground fault (at t=2s), and load switching operation (at t=2s) 

 

 

The training data composed of both fault and non-fault 

current measurements can be either obtained from historical 

data or time-series simulations. In this study, training data 

is generated using the DCMG model (see Fig. 1) discussed 

in Section II, using PSCAD/EMTDC time-series 

simulations. Fault simulations with different fault types, 

fault resistances, fault locations under different loading 

levels and operating modes were carried out. In addition, 

non-fault cases including dynamic events such as load 

switching, operating mode changes were simulated under 

different conditions and are presented in Table V. In total, 

1800 fault events and 3400 non-fault events are simulated 

for ANN training and testing.  

The simulated data is divided into two, for training and 

testing by the ratio 3:1. The training data set is employed to 

train the learning parameters of the ANN, and testing data 

set to assess the classification accuracy of the developed 

machine learning model. Furthermore, by employing test 

data for validation, over-fitting problem (ANN model 

learning from noise and random variations in the training 

data, resulting in poor generalization performance over new 

data) can be avoided. 

TABLE IV 

ANN ARCHITECTURE AND LEARNING PARAMETERS FOR 

RELAY TYPE I AND II 

ANN architecture 

and learning 

parameter 

Relay type  I Relay type II 

Number of layers 3 3 

Number of Neurons  Input layer:24 
Hidden layer:20 

Output layer:4 

Input layer:12 
Hidden layer:10 

Output layer:3 

Activation function Tangent sigmoid Tangent sigmoid 

Learning rule Levenberg–

Marquardt Back-

Propagation 

Levenberg–

Marquardt Back-

Propagation 

Mean squared error 1x 10-5 1x 10-5  
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TABLE V 
CONFIGURATIONS FOR FAULT AND NON FAULT SIMULATION 

IN PSCAD/EMTDC 

Variable parameter Configurations 

Fault type 
DC Pole- ground, DC Pole-pole 
(includes DC arc faults) 

Fault resistance  0.01Ω- 300Ω 

Fault location DC bus, load feeders 1, 2, 3 and 4 

Operating mode Grid-connected, Islanded 

Load feeders (zone 2, 

3, 4 and 5) –loading 

level 

Load feeder of zone 2: 20kW – 0kW 

Load feeder of zone 3: 20kW- 0kW 

Load feeder of zone 4: 20kW-0kW 

Load feeder of zone 5: 20kW- 0kW 

Load switching Load feeder step changes by ±5%, 
±10%, ±15%, ±20%, ±30%, ±40% 

Fault interruption 

operation in lateral 
feeders 

Faults isolated by the lateral feeder 

primary protection relays R4, R5, R6 

and R7 due to; pole- ground faults 

and pole-pole faults. 

 

 

VII. PERFORMANCE TESTING AND DISCUSSION 

To evaluate the fault detection and localization 

performance of the proposed scheme, the classification 

accuracies are calculated for each relay R1-R7, using the test 

data extracted from simulations. Table VI presents the 

sensitivity (how good at detecting the event) and precision 

(how many classified events are correctly classified) of 

each relay in detecting the network events, and overall 

classification accuracy. From Table VI, each relay has 

achieved more than 98% overall classification accuracy. 

The test results show that the developed protection scheme 

performs successfully in most test cases.  

To provide better visualization of the performance of the 

developed scheme, the confusion matrix of the relay R1 for 

test cases is shown in Fig. 7. In the figure, the output 

classes 1, 2, 3 and 4 represent the cases: normal operation, 

pole-ground fault, pole-pole fault and fault interruption 

operation in lateral feeders, respectively. The diagonal cells 

show the events that were correctly classified, while off-

diagonal cells show the misclassified events. Target class 

represents the true event while the output class represents 

the predicted event from the classifier. We can see that 

pole-ground fault is misclassified as a normal operational 

event, while fault interruption operation is classified as a 

ground fault in zone 1 of the network (zone of the network 

protected by relay R1). 

The proposed scheme is capable of producing fault 

information in a very short duration as: 

• Relays: type I- in less than 3 ms [Embedding time 

delay (=2.56 ms) + computational time (<100 µs)] 

• Relays: type II- in less than 5.5 ms [Embedding time 

delay (=5.12 ms) + computational time (<100 µs)] 

Temporal data embedding time delay constitutes a major 

part of fault detection time. For type I relay, embedding 

time delay can be calculated as; (d=2)  (temporal window 

size= 1.28 ms) = 2.56 ms. Similarly, for a type II relay, 

embedding time delay is calculated as; (d=4)  (temporal 

window size= 1.28 ms) = 5.12 ms.  Considering the 

relatively low computational complexity of DWT Mallat 

algorithm [34] and ANN structure, computational time of 

the proposed algorithm was calculated to be less than 100 

µs, assuming all calculations to be sequential. Hence, it can 

be concluded that the proposed scheme is very fast in terms 

of computational time, and thus supports online 

implementation.  

 

 

FIGURE 6: ANN structure for fault detection and classification in a type II relay. 
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TABLE VI 
CLASSIFICATION ACCURACIES OF THE DEVELOPED FAULT DETECTION SCHEME 

Relay (type) No of 

test 

data 

sets 

Sensitivity Precision Overall 

classification 

accuracy 
Normal 

operation 

Pole-

Ground 

fault 

Pole-

pole 

fault 

Fault 

interruption 

operation 

Normal 

operation 

Pole-

Ground 

fault 

Pole-

pole 

fault 

Fault 

interruption 

operation 

R1 (type II) 200 100% 96.2% 100% 97.7% 99.0% 96.2% 100% 100% 99.0% 

R2 (type II) 180 98.8% 100% 96.8% 97.6% 98.8% 100% 93.8% 100% 98.3% 

R3 (type II) 200 99.0% 100% 100% 97.7% 99% 96.3% 100% 100% 99.0% 

R4 (type I) 180 99.1% 100% 97.4% - 99.1% 100% 97.4% - 98.9% 

R5 (type I) 180 100% 97.3% 100% - 99.1% 100% 100% - 99.4% 

R6 (type I) 180 99.1% 97.3% 100% - 99.1% 100% 97.4% - 98.9% 

R7 (type I) 180 99.1% 100% 94.7% - 98.2% 100% 97.3% - 98.3% 

 

DC breakers technologies capable of meeting strict time 

and current limits imposed on DC networks is a vital 

requirement for DC network protection. There are several 

solid-state circuit breakers models and hybrid circuit 

breakers models for DC fault current interruption. Solid-

state circuit breakers have typical breaker operating times 

of less than 100 µs, while hybrid circuit breakers are 

capable of operating in less than 1 ms [8-10]. These fast-

acting DC circuit breaker models can be incorporated at 

each relay locations (at R1 – R7 in Fig. 1). Thus, it allows 

faults to be interrupted quickly once they are detected by 

the proposed scheme. 

A. ROBUSTNESS OF THE PROPOSED SCHEME 

To investigate the robustness of the proposed schemes to 

the impact of noisy branch current measurements, current 

time-series signals are added with white Gaussian noise. 

The feature vectors are extracted from these signals to 

formulate the test data set. Typical signal to noise ratio 

(SNR) values of 40 dB, 30 dB and 20 dB are used, and 

performance of the relay R1 with test cases are summarized 

in Table VII. 

TABLE VII 
COMPARISON OF THE CLASSIFICATION ACCURACY OF RELAY 

I WITH ADDED NOISE TO THE CURRENT MEASUREMENTS 

SNR Overall 

classification 

accuracy 

Without 

noise 

99.0% 

40 dB  98.5% 

30 dB 98.0% 

20 dB 97.0% 

From the results, it can be seen that the noise in 

measurements only has an insignificant impact on the 

overall classification accuracy of the proposed scheme. In 

the considered worst case, SNR of 20 dB, overall 

classification accuracy decrease by only 2% compared to 

the results with current measurements without noise. 

Hence, it can be concluded that the signal noise only has a 

trivial impact on the performance of the proposed scheme. 

B. COMPARISON WITH OTHER DCMG FAULT 

DETECTION SCHEMES. 

Summary of comparison of the performance of the 

proposed scheme with the other DCMG fault detection 

schemes is provided in Table VIII. It can be concluded that 

the proposed technique is more effective in terms of 

detection accuracy, robustness to noise and smart fault 

detection capability. 

Furthermore, the proposed scheme can successfully 

localize the fault to isolate the faulted zone quickly, without 

relying on communication and multi-terminal 

measurements, which was unavailable in the compared 

schemes. 

 
FIGURE 7: Confusion matrix for event classification of relay R1 with test 

data 
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TABLE VIII 
FAULT DETECTION SCHEMES FOR DC MICROGRIDS 

Scheme 

 

Fault 

localization and 

isolation 

capability 

Communication 

requirements 

Robustness to 

measurement 

uncertainty 

Other remarks 

Proposed scheme Yes No Yes  Overall fault classification accuracy of 98%-99%. 

 Intelligent fault detection capability with no 
communication. 

 Very fast selective fault isolation capability 

Overcurrent+ Rate of 

current rise+ change of 

voltage [4] 

No No No  Less sensitivity to high impedance ground faults 

 Issues may arise in protection coordination 

Overcurrent magnitude 

+ direction of current 

[45] 

Yes Yes Not mentioned  Use communication between digital relays to locate the 

fault and isolate the faulted zone of the network 

Overcurrent+ 

differential [5] 

Yes Yes Not mentioned  Use communication between digital relays to locate the 

fault and isolate the faulted zone of the network 

Differential [3] Yes Yes Not mentioned  Rely on communication between protective relays on 

both sides of the protected zone for fault detection. 

 Drawbacks such as inability to provide backup 

protection. 

Wavelet transform [16] Yes Yes Not mentioned  WT is applied to decompose common mode current at 
different network points to detect and locate ground 

faults 

ANN [24, 25] Yes No Not mentioned  Directly use sampled current measurements for 

classification 

 Uses two neural networks for detection and location. 

 Fault location can be detected with a 1% error  

 Complex classifier structure, hence leading to long 

training and detection times. 

 

VIII. CONCLUSION 

This paper proposes a novel intelligent fault detection 

and localization scheme for DC microgrids, based on 

wavelet-multi resolution analysis and machine learning-

based approach. The post-fault behavior of the network 

immediately indicates the occurrence of a fault. Current 

measurements can be used to extract features indicative of a 

fault event, using the wavelet transform as the signal 

processing tool. Different from previous work, use of ANN 

for classification of network events endows smartness to 

the scheme. It enables accurate fault detection unaffected 

by network operation mode, loading conditions, fault 

resistance, fault location, and other network events while 

being reliable even under noise in the measurements. 

Furthermore, this scheme can ensure quick identification of 

the fault location and isolation of the fault; hence, prevent 

damages to the network components caused by high fault 

currents and improves the network reliability. The 

proposing algorithm has very low computational burden 

due to fewer input data and computationally efficient nature 

of wavelet transform and ANNs, thus supports online 

implementation. 

To ascertain the applicability of the proposed scheme 

with different DC network architectures requires further 

investigation. The analysis presented herein shows that the 

proposed scheme features reliable fault identification 

capability under various system changes. Hence, it stands to 

reason that the proposed fault detection and localization 

scheme can be generalized and applied to DC networks of 

different sizes and architectures. 

APPENDIX 

This Section briefly describes wavelet theory and its 

properties. Then we discuss the DWT based multi-

resolution analysis, which serves the important task of 

feature extraction in the proposed scheme. 

A.  WAVELET THEORY 

A family of wavelet, (a,b) (t) is a set of elemental 

functions generated by scaling and translation of a unique 

admissible mother wavelet  (t), and is given by (6), 

(𝒂,𝒃)
(𝒕) =



√𝒂
(

𝒕−𝒃

𝒂
)   (6) 

Where, a and b are scaling and translation parameters, 

respectively. 
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Continuous wavelet transform (CWT) is defined as the 

correlation between the signal f(t), with the family wavelet 

Ψ*
(a,b)(t) for each a and b, and defined as in (7) [10]. 

𝑾(𝒂,𝒃)(𝒕) = ∫ 𝒇(𝒕)
−∞

∞
(𝒂,𝒃)

 ∗ (𝒕)𝒅𝒕  (7) 

Here, a, b  ℝ, a ≠ 0 and * denotes the complex 

conjugate. 

In principle, CWT provides a redundant representation of 

the signal under analysis. To overcome data redundancy 

and reduce calculation time, DWT has been introduced, 

where wavelets are scaled and translated into discrete steps 

[27, 28]. DWT is performed by discretizing a and b. 

Typically, these parameters are set to powers of 2, so that 

sampling of the frequency axis corresponds to dyadic 

sampling and (𝒋,𝒌)
(𝒕) is then given by (8), 

(𝒋,𝒌)
(𝒕) =



√𝟐𝒋
(

𝒕

𝟐𝒋 − 𝒌)   (8) 

and DWT is derived by (9), 

𝒅𝒋,𝒌 = ∫ 𝒇(𝒕)
−∞

∞
(𝒋,𝒌)

 ∗ (𝒕)𝒅𝒕  (9) 

Where 𝒅𝒋,𝒌 are the wavelet detail coefficients at 

decomposition level j and location k. 

 

 

B.  MULTI RESOLUTION ANALYSIS 

For most functions, f(t), wavelet transforms do not have 

an analytical solution, and they can only be solved by 

numerical approaches. Multi-resolution analysis framework 

for the representation of a signal at different scales is 

introduced in [27, 28]. Given a signal f(t), its multi-

resolution decomposition at level M is defined by (10), 

𝒇(𝒕) =  ∑ 𝒂𝑴,𝒌
𝒌



√𝟐𝑴
(

𝒕

𝟐𝑴 − 𝒌) + ∑ ∑ 𝒅𝒋,𝒌
𝒌



√𝟐𝒋
(

𝒕

𝟐𝒋 − 𝒌)
𝑴

𝒌
 

≜ 𝑨𝑴(𝒕) + ∑ 𝑫𝒋(𝒕)𝒋    (10) 

Where, 𝒂𝑴,𝒌 are the approximation coefficients at level M, 

and (t) is the scaling function.  This transformation 

decompose the function f(t) into approximation 

coefficients, AM(t) and a series of detail coefficients,    Dj (t) 

[27, 28]. 

The DWT can be considered as a filter bank as shown in 

Fig. 8 where DWT is performed by passing the sampled 

signal x(n) through high pass filter, h(n) and a low pass 

filter, g(n) and output is decimated by 2 to compute both 

approximation coefficients, AM(t) and detail coefficients, 

Dj(t). Here, AM(t) represents low-frequency components, 

while Dj(t) represents high-frequency components. 

Assuming the signal sampling frequency to be f, the c 

frequency bands corresponding to different decomposition 

levels are shown in Fig. 8. 

 

 

FIGURE 8: DWT decomposition of signal with iterated filter banks, and frequency bands of different decomposition levels 
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