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A B S T R A C T
The study proposes a novel method for modeling traffic volumes at the road segment level of large-scale urban

road networks. This study has been placed in a milieu where existing methods on modeling vehicular traffic
volume are hampered by data and cost constraints, especially in developing countries. Emerging traffic modeling
methods, based on centrality and space syntax provides a technically-efficient approach to overcome the above-
mentioned constraints. Nevertheless, those methods are yet to be popular among practitioners due to limited
accuracy and validity. This study modifies the existing methods and validates in five case cities to make them
practice-ready. Findings of this study indicated that the proposed method is competent enough to estimate traffic
volume of road segments on a par with the internationally accepted standards.

� The proposed method combines two network centrality measures abstracting the traffic volume on a road
segment as the sum of origin-destination trips (i.e., Closeness-Centrality) and pass-by trips (i.e., Betweenness-
Centrality).

� The study modifies the ‘distance’ variable in the existing formula as 'path-distance' which captures topological
and mobility characteristics of roads.

� The method does not require extensive data and can be implemented by utilizing publicly available open-
source network analysis software, hence, ideal for resource-scarce situations.
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The rapid urbanization in developing countries has led to a marked leap in traffic volumes and
caused several problems such as traffic congestion, road accidents, and air pollution [1,2]. Solving
those problems has become a strong challenge due to high investment costs as well as the limited
availability of accurate [3–5] and up-to-date data on traffic volume. This demands a strategic, quick
and cost-effective solution to identify the existing traffic volumes and to model the trajectories of
future scenarios in developing countries (Hassan & Hoque, 2008), (Walker et al., 2010), (Fujiwara &
Zhang, 2013).

A continuous record of the traffic volume data collected throughout the year is the most reliable
input for obtaining traffic volume. However, it is not economically feasible to fully install Automatic
Traffic Recorders (ATRs) for extensive road networks in developing countries. As an alternative,
coverage count method (also called as the traditional factor approach) is widely utilized in estimating
traffic [6]. However, it is still not economical enough for all road segments in a macro network (i.e.
region, metropolitan area) [6,7]. Further, coverage count is only suitable to estimate existing traffic
volume and not able to model future scenarios. Therefore, many researchers have attempted to
develop alternative methods to model traffic volume without using extensive traffic count data, and
those methods predominately belong to ‘direct demand modeling’ and ‘multi-step travel demand
modeling’ [7,8].

Direct demand models (also called as the regression modeling) estimate traffic volume based on a
set of explanatory variables including roadway characteristics, land use characteristics and
socioeconomic factors. Research works of, Mohamad et al.,’s [9], Zhao and Chung [6], Lowry [10]
Doustmohammadi et al.,’s [11] developed series of regression models with a satisfactory estimation of
traffic volume. However, applicability of the above-mentioned methods were questioned in the
context of developing countries as well as small and medium-size cities due to the unavailability of
continuous, short-interval, micro-data for significant predictors such as long-term socio-economic
conditions [12,13]. Further, direct demand models have mostly considered the localized character-
istics of roadways (i.e. functional category, roadway surface, access locations to highways) and unable
to conceptualize road network as a system [14]; and ignore the mutual interactions between land use
and transport system.

Methods that have been developed based on the multi-step travel demand modeling approach
are considered as the most advanced application in traffic volume estimation and travel demand
modeling. The very first version of multi-step travel demand modeling is ‘four-step land use
transport model.' Next generation of this modeling approach is ‘integrated urban land use transport
models. Conventional four-step models and integrated urban land use transport models are
considered as an aggregated trip-based models because, it accounts travel as a function of the size of
a zone and travel demand as a function of trips than of activities. Recently, multi-step travel demand
modeling has been shifting towards disaggregated trip-based models, tour-based models, and
activity-based models. As a result, activity-based models have become a popular application in
transport engineering and planning, [15]. Many researchers and policymakers have highlighted that
adopting multi-step modeling in the context of developing countries is constrained due to
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inadequate, up-to-date land-use and O-D trip data; lack of financial resources and inadequate
technical expertise [16–19,15,20].

Other methods utilize to estimate traffic volume are; image-based data such as high-
resolution satellite images and aerial photographs [21], machine learning algorithms such as
Artificial Neural Network (ANN) and location-based social network data such as social media,
GPS, Bluetooth data. Nevertheless application of those methods are also limited due to cost
constraints on purchasing and processing image data [22,12]; the requirement of an extensive
baseline data and more complex statistical procedures that demand high technical competence
for the calibration of machine learning algorithms [12,23]; and lack of big data and limited online
users that makes the sample size too small for application of location-based social network
data [21,24,25].

There is a need for an alternative method to identify the existing traffic situation and the model
future scenarios that can efficiently work under the above-mentioned data, cost and technical know-
how constraint situations. In catering to the above need, this study focused on a set of research
literature related to network centrality measures. Centrality measures, which have been evolved from
graph theory, were initially a popular concept, in the fields of social network analysis and computer
engineering, that applied to explain matters related to accessibility [26], (Chen et al., 2014), [27,28].
The results of previous works have repeatedly claimed that the centrality is capable to explain
pedestrian and vehicular flows [29,30], [31,32], [33,34,7,35].

Even though the results of the previous studies have provided a green light, many challenges
are yet to overcome when employing centrality measures to model vehicular traffic volume at the
road segment level. Previously conducted space syntax-based researches have revealed a
significant correlation with vehicular traffic (R2>0.6) and a moderate correlation with pedestrian
traffic (R2<0.6) [36]. In those studies, the link cost of explanatory variables was primarily referred
to the cognitive behavior of human movements (i.e., topological shortest path, the least angular
turns) and the influence of the roadway characteristics such as mobility, traffic congestion, and
network uniqueness have not been considered much [36]. Previously conducted studies related to
vehicular traffic volume and centrality have well considered the flow of pass-by trip distribution
yet have not exploded land use generated trips in relation to centrality [36–38]. Lowry’s [29]
works on AADT estimation by employing ‘origin-destination centrality’ also could not solely rely
on centrality measures as relative ‘trip production/attraction potential’ values were derived from
land use data. Utilizing land use data in developing countries is difficult due to the lack of
availability of updated land use maps and the resource consuming nature of the data collection.
Jiang et al.’s (2008) [32] works found a significant correlation between traffic flow and name
streets centrality whereas less correlation with road segment-based centrality. “Previous studies
have indicated that topological measures (e.g. centrality) can be used to predict traffic flow at the
aggregate level but mainly focus on correlation analysis based on traffic data such as AADT data”
[39]. Pun et al. [39], has attempted to estimate traffic volume through integrating topological and
geometrical properties using AI-based multiple regression models. Results have revealed that a
combination of topological and geometrical measures results in higher R values (R = 0.66) but still
lacks the accuracy to model traffic flow. Therefore, there is a need to further look at the
applicability of network centrality to model traffic volume on road segments at macro level road
networks.

With due consideration, the objective of this study is to develop a network centrality-based
method to model the vehicular traffic volume of road segments at macro level road networks. Pun
et al., [39] have generated a statistically best-fit multiple regression model by combining five
centrality measures. The integrated centrality measure proves better predictability (R2 = 0.6)
compared to sole centrality measures. However, this does not provide any theoretical underpinnings
on the properties of each measure and its reflections over the integration. The proposed method
attempts to overcome the above-mentioned challenges by incorporating two novel features. The
approach of this study was to theoretically explain the traffic flow by integrating two centrality
measures at first and then to statistically validate that based on the empirical data. Traffic volume at
a given location of a road is the total number of vehicles (or persons) that move through the given
location at a specific time. In other words, the traffic volume of a given location is the sum of vehicles
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pass-by, starting a trip and ending a trip at the given location. The method proposed to compute the
traffic volume has utilized betweenness centrality (BC) and closeness centrality (CC) to capture
‘pass-by’ and ‘O-D’ trips respectively. Secondly, the study introduced ‘path-distance’ (PD) variable to
capture the mobility characteristics and the roadway characteristics of the road network when
computing the distance. The method has been validated in five different case cities from developing
countries. Unlike existing traffic volume estimation and travel demand modeling methods, the
proposed method requires neither huge database (i.e. land uses, O-D trip and extensive AADT
counts) nor an expensive software, hence, ideal for the resource-scarce situations, particularly, in
developing countries.

The paper is organized into four sections. The introduction section summarizes the literature
survey on the applicability of existing traffic volume estimation and travel demand modeling methods
in the context of developing countries. The second section provides a description of the method. That
section includes a brief description of five case studies and the concepts of the proposed method.
Results of the study explain the relationship between traffic volume and centrality measures
computed by the proposed method. Thirdly, the study validates the proposed method’s capability to
estimate traffic volume. The fourth section notes the conclusion with recommendations on applying
the proposed method.

The method

The study proposes a network centrality-based method to model the vehicular traffic volume of
road segments at macro level road networks. The study suggests that the traffic volume of a road
segment be equal to the sum of the volume of the trips originated from and ended at a road segment
(i.e., O-D trips); and the pass-by trips within the given road segment (refer Eq. (1)). Accordingly, the
study utilizes closeness centrality (CC) to capture the volume of O-D trips of a road segment (refer
Eq. (2)) and betweenness centrality (BC) to capture the volume of pass-by trips of the given road
segment (refer Eq. (3)).

Traffic volume of road segment (i) = Volume of O-D trips of road segment (i) + Volume of pass-by trips
of road segment (i) (1)

Volume of 'O-D trips' of road segment (i)= f[CC(i)] (2)

Volume of 'pass-by trips' of road segment (i)= f[BC(i)] (3)

Closeness centrality explains, “the notion of accessibility of a location [road segment] and
measures how close the location [road segment] to all others along the shortest path” [40]. Previously
conducted space syntax-based researches have already revealed a direct relationship between
accessibility [closeness] and the volume of land use generated trips [O-D trips] [29,41]. BC captures “a
special property in a particular location [road segment] that does not act as either origin or destination
but as a pass-by location” [40]. The CC of a node is the inverse of the average distance from this node to
all other nodes whereas BC of a node is the number of shortest paths between two nodes that contain
the given node [40]. Classically, the centrality of road networks is modeled with two methods as
primal graph and dual graph, wherein primal graph nodes illustrate junctions, and in the dual graph,
nodes illustrate roads as a means of giving importance to roads’ segments [42]. As the focus of this
method is road segments, not the junctions, the dual graph method was employed. In duel graph
method, CC of a road segment as the inverse of the total distance from this segment to all other road
segments in the entire planar graph network; and BC of a road segment as the sum of geodesics that
pass through a given road segment in the entire planar graph network [32,43,39]. Centrality measures
are computed as normalized values as well as non-normalized values depend on the purpose of the
study. In previous studies, two methods were adopted to normalize; based on the total number of
links/nodes in the network (Refer Eqs. (4a) & (5a)) [40] and the radius of the considered node to the
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network influence area (Refer Eqs. (4b) & (5b)) [44]. Normalized equations are utilized for comparing
nodes or road segments with the other networks volume-based ranking [45]; and for temporal
analysis of the same network such as volume change forecasts ([46,47];) see Ahmadzai, Rao and Ulfat
(2018) for further details with regards to the normalized centrality. The study utilized Chiaradia et al’s
(2013) [43] formula to compute CC and BC of road segments (refer Eqs. (4) and (5) respectively).
CC ðiÞ ¼ 1P
j6¼i dij

ð4Þ
CCnormðiÞ ¼ ðN � 1ÞP
j 6¼i dij

ð4aÞ
CCr
normðiÞ ¼ 1P

j6¼i dij
ð4bÞ
BC ðiÞ ¼
X

j6¼i6¼k

pjk ið Þ=pjk ð5Þ
BCnormðiÞ ¼ 2
ðN � 1ÞðN � 2Þ

X

j6¼i 6¼k

pjk ið Þ=pjk ð5aÞ
BCr
normðiÞ ¼

X

j6¼i6¼k

pjk ið Þ=pjk ð5bÞ
TV ðiÞ ¼ a þ b�½CC ðiÞ� þ c�½BC ið Þ� ð6Þ

Where,

CC ðiÞ = Closeness centrality of road segment ‘i’,
CCnormðiÞ = Normalized closeness centrality of road segment ‘i’ for undirected graph,
CCr

normðiÞ = Normalized closeness centrality of road segment ‘i’ within the search radius r,
BC ðiÞ = Betweenness centrality of road segment ‘i’,
BCnormðiÞ = Normalized betweenness centrality of road segment ‘i’ for undirected graph,
BCr

normðiÞ = Normalized betweenness centrality of road segment ‘i’ within the search radius r,
N = Total number of road segments [i.e. nodes in dual graph] in the network,
dij = Distance between road segments ‘i’ and ‘j’ along the shortest path,
pjkðiÞ = Number of geodesics [shortest paths] between road segments ‘j’ and ‘k’ that passing through

road segment ‘i’,
pjk = Number of geodesics [shortest paths] between segments ‘j’ and ‘k’,
TV (i)= Traffic volume of road segment ‘i’,
a, b & c are constants.
Accordingly, the traffic volume of road segment i can be expressed as follows (refer Eq. (6)). In the

proposed model, betweenness and closeness centrality are the explanatory variables of the traffic
volume that simulates O-D trips and pass-by trips respectively. Thus, it replaces all four stages of the
traditional transport model. Theoretically, BC performs a key role in explaining traffic volumes in
locations where there are more pass-by trips such as regional roads that connect residential townships
to a major city. Nevertheless, the model is incomplete without CC because CC is the key to explain the
variations in traffic volumes at trip-generation locations such as shopping districts.
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As indicated in Eqs. (4) and (5), the type of distance utilized to identify the ‘shortest path’ and the
unit of distance between road segments are crucial factors in computing BC and CC. Some of previous
studies utilized unit distance and angular changes as the distance when computing centrality [34,48–
50]. In contrast, Paul [36] and Lowry [7] have highlighted the importance of an impedance factor to
account not only topological distance but also mobility characteristics of roadway units and roadway
characteristics such as network uniqueness, land use access opportunities, and traffic congestion.
Hillier, [29], Hillier and Iida (2005) [31], Dabaghian et al. [51] and Javadi et al. [52] have argued that the
behavioral implications of the travelers’ knowledge on road network are more related to visual and
topological properties of the network than mere travel time. Further, in the fields of traffic and
transport planning and engineering, link cost in route choice modeling is often expressed by travel
time [53,54]. Primarily, three kinds of methods are employed in estimating travel time for route choice
modeling, i.e., free flow travel time, congested travel time and time-dependent travel time. However,
studies on route choice behavioral mechanisms have suggested incorporating the traveler’s
perception of travel time instead of purely depending on real travel time (Sumalee et al., 2009),
(Parthasarathi et al., 2013), [55,56].

While taking into account the above-mentioned research findings and arguments, when
computing the distance factor in CC and BC, this study utilizes the angular change-adjusted metric
distance (MD). Most of the previous studies did not take the geometric weights of node and
segment or both into consideration, nevertheless, in recent studies, it has been popular as an
attempt for further accuracy [42]. Though there are no segment-based weight (such as road class,
road speed, road volume, and road width) adopted in relation to traffic volume studies so far [42],
it has been proved to produce better results in previous works on the impact of street centrality
over land use [44]. This method proposes a segment-based weight that can take travel time into
account in calculating the distance. Hence, MD between two road segments was proposed to be
normalized by the average speed. As speed data is difficult to be obtained at the road segment
level, the average speed of road segment was assigned based on the road type (Ty). Accordingly,
this study proposes ‘path distance’ (i.e. PD), which is a function of the average speed by road type
(Ty) and the angular change-adjusted metric distance (MD) (refer Eq. (7)) in computing BC and CC.
MD measures the length of the road segment in kilometer. Table 1 introduces the assigned Ty
values by road types along with the average speed. The combined effect of MD and Ty can account
mobility characteristics as well as roadway characteristics (i.e. Expressways, Arteries, Sub-
Arteries, Collectors, and Local roads).
PD ¼ Ty�MD ð7Þ

The study utilized the Spatial Design Network Analysis (sDNA) tool [43] in Geography Information

System (GIS) environment to compute BC and CC. The tool requires a ‘network graph’ file as the input
and ‘analysis option’ to compute BC and CC. This study utilizes ‘road-segments’ graph method [30] to
convert the real road network into the network graph. In road-segments graph method, the road
segments are termed as ‘links’ and the road intersections are termed as ‘nodes’. For preparing the
graph, the study utilized ‘road centerlines,' i.e., vector line data that represent the geographic center of
the rights-of-way on the given road segment. In the graph, segments represent physical locations of
trip origins and destinations.

The ‘analysis option’ is the method of calculating the shortest-path. The study utilized the ‘custom
distance’ as the analysis option and entered PD as the custom distance input. Accordingly, the study
prepared an attribute to represent the custom distance by multiplying the metric distance of road
segment by the assigned utility value as per the road type (i.e., Eq-7; PD = MD * Ty). The considered
radius of a node to the network influence area is 20 km (i.e. r = 20 km). Accordingly, the traffic volumes
at the road segment level were estimated by the proposed model (Eq. (6)). In order to validate the
model, empirical data on AADT values (i.e., real-world traffic volumes) of over 7000 road segments
were obtained from the JICA database. The comparison of empirical traffic volume data and modeled
traffic volume data are discussed in the validation sections.



Table 1
Suggested Ty values by road hierarchy.

Road type Characteristics Average Speed
(km/h)

Ty

Expressways Toll roads and controlled-access highways. Number of lanes
is less than 6 with a central median

70–100 1/80

Major arteries Connects two or more provincial/state capital cities.
Number of lanes is 4 to 6 with a central median

50–70 1/60

Minor arteries Connects the medium and small towns within a province/
state. The number of lanes are 2 to 4 without a central
median.

30–50 1/40

Collectors Connects local areas to a medium or small town. The
Number of lanes is 2 without a central median.

20–30 1/25

Local roads Connects neighborhood residential areas to collectors.
Single lane without a central median.

<20 1/15
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Validation

The proposed method was tested in five case study areas, namely Colombo, Phnom Penh, Hanoi,
Karachi and Dares Salaam (Table 2). All case study areas are fast growing capital cities which are
located in five developing countries in Asia and Africa. Five case study areas manifest unique road
patterns, which enables to investigate the applicability of the proposed method in any given
geographical area. Table 2 gives a brief description of the case study areas.

These case study areas were chosen by considering the available data on traffic volume. Traffic
volume is the response variable in the proposed model. The study obtained traffic volume data from
secondary sources. Traffic volume has been reported as Annual Average Daily Traffic (AADT),
converted to Passenger Car Unit (PCU) per day using the recommended AASHTO (American
Association of State Highway and Transportation Official) PCU factors. AADT values and road network
for Colombo were collected from ‘CoMTrans Urban Transport Master Plan-JICA database’ and for other
four areas from ‘Person Trip Survey – JICA database.' The above-mentioned databases consist of traffic
volume data collected by sample surveys over 7000 road segments within 5 case study areas (i.e.,
1927 road segments in Colombo, 1279 road segments in Phnom Penh, 2397 road segments in Hanoi,
1128 road segments in Karachi and 679 road segments in Dares Salaam). For model formulation
purpose, the study employed regression analysis and utilized Ordinary Least Squares Regression (OLS),
Robust Regression (RR) and Poisson Regression (PR) statistical techniques. After checking the
multicollinearity among explanatory variables, the study utilized R2 and Median Absolute Percent
Error (i.e., MdAPE) to test the goodness-of-fit when selecting the most suitable model. R2 and MdAPE
together provide a sound understanding of the predictability of the model [7]. The study has initially
utilized randomly selected 80% of the data for calibration (i.e., a random subset of calibration data) and
20% to validation.
Table 2
Case study areas.

Case Study Area Colombo Phnom Penh Hanoi Karachi Dares Salaam

Country Sri Lanka Cambodia Vietnam Pakistan Tanzania
Area (sqkm) 995.54 678 921 3,700 1,590
Population 5.8 million 1.7 million 3.2 million 18 million 4.3 million
Network length (km) 2,075 820 950 1,150 785
Trip rate per person 1.87 2.51 2.66 1.36 –

GDP (2017) $48 billion $24 billion $40 billion $113 billion –

Year 2013 2012 2007 2010 2008
Road pattern Radial Grid-Radial-Ring Grid-Radial Radial-Ring Radial-Ring



Table 3
Statistics and specifications of the best model for each case study areas.

Specifications Case study area

Colombo Phnom Penh Hanoi Karachi Dares Salaam

Coefficient value
a (Constant) 3.437

(p < .0001)
3.906
(p < .0001)

3.420
(p < .0001)

3.924
(p < .0001)

3.212
(p < .0001)

b (for BCPD) 0.594
(p < .0001)

0.561
(p < .0001)

0.543
(p < .0001)

0.574
(p < .0001)

0.678
(p < .0001)

c (for CCPD) 2.002
(p < .0001)

1.853
(p < .0001)

1.532
(p < .0001)

1.761
(p < .0001)

1.574
(p < .0001)

Presence of multicollinearity
Tolerance 0.770 0.940 0.235 0.570 0.987
VIF 1.299 1.063 4.253 1.754 1.013
Goodness-of-fit
Calibration* N 1542 1009 1918 902 543

R2 0.928 0.936 0.916 0.977 0.967
Adjusted R2 0.908 0.931 0.915 0.944 0.953
MdAPE 17.99% 16.58% 13.8% 12.6% 18.4%

Validation** N 385 270 479 226 136
R2 0.935 0.942 0.923 0.951 0.959
MdAPE 17.15% 15.94% 12.8% 10.5% 17.3%

Correlations – AADT and Explanatory Variables in the
Model
Partial BC 0.77 0.78 0.76 0.79 0.78

CC 0.57 0.58 0.57 0.59 0.59
Part BC 0.7 0.71 0.71 0.71 0.71

CC 0.51 0.52 0.51 0.52 0.52
(Partial^2)% BC 59% 61% 58% 62% 61%

CC 32% 34% 32% 35% 35%
(Part^2)% BC 49% 50% 50% 50% 50%

CC 26% 27% 26% 27% 27%

Note: Response variable AADT, a, b and c are constant values (refer Eq. (6)).
* Random 80% of the sample.
** Random 20% of the sample.
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The regression analysis indicated that the proposed model comprised of BC and CC as explanatory
variables produces a higher goodness of fit values (R2 > 0.9) and lesser Percent Root Mean Squared
Error (RMSE < 20%) compared to the model comprised of BC as the explanatory variable (R2 < 0.8,
RMSE > 40%). As per the international AADT modeling standards, (i.e., [57]) R2 value should be greater
than 0.85 and the RMSE should be less than 30%. Hence, the model comprised with BC and CC both as
explanatory variables were considered as the best regardless the strong similarity of the BC and AADT
as well as the lower weight in the regression coefficient the intercept obtained by CC (b*BC >> c*CC).
Table 3 illustrates the statistics and specifications of the best model to estimate AADT for each case
study area. The recorded R2 values of each case study area were more than 0.90 for calibration and
validation, and there was no significant multicollinearity among explanatory variables. Further,
MdAPE values of the models were less than 20% for calibration and validation respectively.

This R2 and MdAPE values are on a par with the results of previous works on modeling AADT
[6,7,23], by other standard methods. Further, the study computed the RMSE for each case study area
and compared with the international standards (i.e. [57]) (refer Table 4). Results indicated that the
recorded RMSE values by AADT categories for all five case study areas were in line with the
international standards. Hence, these results are versatile enough to recommend the developed
models based on network centrality in estimating AADT in any AADT category.

One notable fact was that the coefficient values for BC and CC are much similar in all five case study
areas. It further strengthens the reliability of the proposed centrality-based method to model traffic
volume in any geographical area rather being specific to the tested case studies. Spatial distribution
maps of centrality values and AADT estimates from the developed models for five case study areas are



Table 4
Recorded RMSE by AADT categories for each case study areas.

AADT categories RMSE as
per FHWA*

Colombo Phnom Penh Hanoi Karachi Dares Salaam

RMSE N RMSE N RMSE N RMSE N RMSE N

> 50,000 10 9.3% 105 7.1% 138 9.6% 251 9.4% 290 7.4% 57
25,000 – 50,000 15 13.0% 241 16.9% 338 13.5% 515 15.0% 273 13.8% 39
10,000 – 25,000 20 24.9% 538 19.0% 223 20.1% 1368 21.0% 403 19.4% 105
5,000 – 10,000 25 16.4% 311 27.7% 438 25.8% 258 24.8% 162 22.4% 177
2,500 – 5,000 50 22.6% 202 39.0% 115 48.3% 5 – – 37.3% 297
1,000 – 2,500 100 27.7% 274 – – – – – 78.5% 4
< 1,000 200 193.1% 256 412.5% 27 – – – –

Average 30 19.1% 1927 18.0% 1279 16.1% 2397 14.2% 1128 18.4% 679

Source: * [57].
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shown in Figs.1–5. In those figures, red color indicates high-centrality values and high-traffic volumes,
and green color indicates the roads with low centrality values and low traffic volumes. Those maps
representing the overall picture of traffic flow rather than traffic volumes of few locations are very
useful for traffic and transport engineers, and urban planners.

Conceptually, BC represents the effect of pass-by trips whereas CC represents the effect of O-D
trips. Part and Partial correlation statistics were utilized in verifying the practical relevance of
predictors; BC and CC. As depicted in the comparative maps, traffic volume flow pattern of BC
(Figs. 1a–5 a) is much similar to the overall empirical traffic flow patterns (Figs. 1c–5 c). This
indicates that the effect of pass-by trips is dominant over total traffic volume in comparison to the O-
D trips. As per the partial correlation values also BC can capture about 60% of the total variability of
the predictor variable (i.e., empirical data of AADT values). However, the dominance of BC does not
undermine the relevance of CC because CC also solely captures the 32%–35% of the variability of the
predictor variable.

The models shown in Table 3 were developed based on actual AADT values obtained from a large
number of observation locations (N > 500). However, it is not practical to obtain such traffic volume
counts from many observation locations to calibrate the model, particularly within the data scarce
situations in developing countries. Accordingly, the study performed a ‘repeated random sub-
Table 5
Minimum number of observations required for calibrations of the model.

Number of Observations for calibration
(Training set)

Colombo Phnom Penh Hanoi Karachi Dares Salaam

RMSE RMSE RMSE RMSE RMSE

10 83% 88% 72% 129% 87%
20 54% 46% 50% 91% 34%
30 41% 30% 30% 19% 26%
40 29% 23% 22% 17% 18%
50 23% 22% 20% 15% 18%
60 21% 21% 18% 14% 18%
75 19% 21% 16% 14% 18%
100 19% 18% 16% 14% 18%
500 19% 18% 16% 14% 18%
750 19% 18% 16% 14% –

1000 19% 18% 16% 14% –

1500 19% – 16% 14% –



Fig. 1. Colombo case study area: Spatial distribution of (a) BC(PD) and (b) CC(PD) and (c) estimated AADT.
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sampling validation’, [7] to identify the minimum number of observations that required in calibrating
the model (refer Table 5). Trained data sets of increasing class sizes were randomly selected for
calibrating the model and the accuracy was assessed using the rest of the validation data.

The results suggest that (refer Table 4), after about 40 observations, RMSE achieves the acceptable
level (RMSE < 30%). Fig. 6 graphically illustrates how sensitive the model is to fluctuations in the



Fig. 2. Phnom Penh case study area: Spatial distribution of (a) BC(PD) and (b) CC(PD) and (c) estimated AADT.
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number of traffic volume observation points (i.e., the size of the training set) on which it is calibrated.
As depicted in Fig. 6, Karachi reported an absurd error with the first two subsets of training data but
provided an acceptable result after increasing the observations points up to 25. In other case cities also
a training set of 25 observations points dramatically reduced the error. The results revealed that the
model provides a reasonable accuracy after about 40 observations. This is a far less data requirement
compares to the other AADT estimation methods in practice.

Further, this analysis provided an additional check on the uncertainty of the model and how the
number of actual observation values may impact on the estimation of AADT values. It indicates that
the model could be calibrated by using a little number of observation points resolving time-
consuming and expensive data collection constraints.

Conclusion and recommendation

The key contribution of this study is a developed methodology to model vehicular traffic volume
by road segments based on the notion of network centrality. The model composed of two centrality



Fig. 3. Hanoi case study area: Spatial distribution of (a) BC(PD) and (b) CC(PD) and (c) estimated AADT.
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measures which are able to capture both pass-by-trips and O-D trips. Further, the study introduced
‘path distance’, a measure of distance which was derived from the road type and metric distance, to
compute centrality values. The combined effect of the hierarchy of the road type and metric distance
can well account the mobility characteristics and the roadway characteristics of the road network in
measuring the distance. The proposed method does not demand extensive land use, O-D trip data,
and traffic count data. It requires only a map of the road network along with a minimal set of actual
AADT observations. It also can be implemented by utilizing publicly available network analysis
software. Further, the proposed method replaces all four stages of the traditional transport model
with accuracy on a par with the international standards. Hence, the proposed method can be
considered as a speedy, technically feasible and financially affordable tool to practice. The model is



Fig. 4. Dares Salaam case study area: Spatial distribution of (a) BC(PD) and (b) CC(PD) and (c) estimated AADT.

A. Jayasinghe et al. / MethodsX 6 (2019) 1147–1163 1159
sensitive to the changes of the road network structure and roadway characteristics; and able to be
utilized for scenario analysis. The next novel feature is that the proposed method can model
vehicular traffic volume in a macro scale road network with a high level of detail up to the road
segment level.

The proposed method is tested and validated in four Asian cities and one African city. Five case
study areas manifest a unique road pattern which enables to investigate the applicability of the
proposed method in diverse geographical areas. The study developed centrality-based models to
estimate road segment level AADT with an acceptable level of accuracy (R2> 0.90, MAPE < 20% and
RMSE < 30%) for all five case study areas. The proposed formula is practice-ready for five case study
areas and can easily be employed to estimate AADT of all road segments. Further, the study found that
the centrality based AADT estimation model can be calibrated by using a little number of observation
points (N < 40) with an acceptable level of accuracy. Hence, the study strongly recommends the
proposed network centrality-based traffic volume modeling approach to be applied in modeling traffic
volumes in any geographical area. However, when applying this model elsewhere, it is recommended
to recalibrate the parameters, without modifying the model structure and the generic method of
computing centrality. This study has validated the model utilizing the empirical data on Annual
Average Daily Traffic (AADT). Hence, the validation does not explicitly account the seasonal variations



Fig. 5. Karachi case study area: Spatial distribution of (a) BC(PD) and (b) CC(PD) and (c) estimated AADT.
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of traffic volumes and the daily peaks flow. Further studies are required to test the sensitivity of this
model to such fluctuations and congestions propagation. Centrality-based measures in the domain of
transport planning still urge for dynamic models. The key constraint in developing dynamic models in
developing countries is the lack of real-time traffic flow data for validation. Until such time as the data
constraints are overcome and the methods are developed, the proposed method can still be employed
in designing hourly volumes based on the peak hour factor as per the highway capacity manual
(FHWA). Though there were several attempts on estimating traffic volume based on centrality, most of
the practitioners hesitated to employ them due to the inadequacy of accuracy. The proposed method
has developed a centrality-based traffic volume estimation model on a par with the international
AADT modeling standards. Hence, transport planners and engineers can employ this new method to
estimate AADT values in applications such as maintenance, network improvements and traffic
management; and model traffic volume in different road network scenarios. Further, this can be
utilized as a strategic planning and investment tool for scenario building, and impact analysis of traffic
volume and land uses. This method is highly recommended for assignments carry out in developing
countries as well as areas where sophisticated multi-step travel demand model is not affordable to
implement due to data and cost constraints.



Fig. 6. Variation of RMSE values according to the number of observations of the calibration sample.
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