EFFECT OF RECTIFICATION MEASURES IN KAHAGOLLA LANDSIDE –COMPARISON OF MONITORING AND ANALYTICAL DATA

Pattiye Arachchillaye Dayana Thushari Thilakarathna

168988D

Degree of Master of Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2022

LB /TH /10 /2022 DCE 27/46 EFFECT OF RECTIFICATION MEASURES IN KAHAGOLLA LANDSIDE -COMPARISON OF MONITORING AND ANALYTICAL DATA

P.A.D.T. Thilakarathna

168988D

Thesis/Dissertation submitted in protecting in Geotechnical Engineering - foundation

Engineering & Earth Relaining Systems.

Department of Civil Engineering

624-15(043)

University of Moratuwa

Sri Lanka

TH 4710 + CD ROM

4710

DECLARATION OF THE CANDIDATES AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate:. UOM Verified Signature

Date: 14.02.2022

Thilakarathna P.A.D.T.

"I have supervised and accepted this dissertation for the submission of the degree"

Signature UOM Verified Signature Date: 14 - 2 - 20 22.

Prof. Kulathilake S.A.S.

B.Sc. Eng. Hons (Moratuwa), Ph.D. (Monash), C.Eng. MIE (SL),

Department of Civil Engineering,

University of Moratuwa,

Sri Lanka

ABSTRACT

This research paper focuses on creep movements of rainfall-induced landslides with their groundwater level fluctuation, to understand the pore water pressure development in saturated/ unsaturated soil layers in relation to the mechanism of failure. A case study was selected at Kahagolla Sri Lanka, which is a massive creep landslide initiated around 1957 and triggering by prolonged rainfall events. The stabilization of the Kahagolla landslide was carried out under the "Landslide Disaster Protection Project" implemented by the Government of Sri Lanka with the support of Japan.

Detailed geotechnical investigation along with real-time monitoring data showed mainly four slip surfaces along the landslide axis. The main reason for movement is discovered as the rising of groundwater table and subsequent loss in the slip surface strength.

Two-dimensional analyses were carried out with several back analyses and adjusted parameters according to real-time monitoring data. Limit equilibrium analysis coupled with a seepage model was performed to confirm the actual conditions of the landslide occurrence. Thereafter, effects of rectifications were also modeled to access the stability status of the rectified landslide. The performance of the rectification measures was further examined with critical design rainfalls and a threshold for the rectified landslide. The results show an acceptable stabilization of terrain after the construction of counter measures. It can be concluded that the final combination of rectifications has been succeeded in the stabilization of this landslide and the above-mentioned approach is appropriate for use in the simulation of deep-seated landslides.

Keywords: Kahagolla Landslide, Deep seated failure, Drainage wells, Back analysis,

Rectification measures

DEDICATION

This thesis is dedicated to my loving parents Mr. P.A. Thilakarathna and Mrs.B.V.R. Chandrakanthi For their endless love, support and encouragement

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to Prof. S.A.S. Kulathilaka, Senior Professor of the Department of Civil Engineering for his enormous support, valuable suggestions, diligent efforts and strong encouragement given to me throughout the thesis work. His deep insight and vast experience in the field of Geotechnical Engineering, contributed greatly to the success of this work.

It is a great privilege to thank Dr. L.I.N. de Silva, Senior Lecturer of the Department of Civil Engineering for providing all the necessary guidelines and direction as the Course coordinator of M.Eng program.

I should really pay my sincere gratitude to Eng. (Dr) Asiri Karunawardena, Director General of National Building Research Organization (NBRO), for his guidance and continuous support throughout the masters. I appreciate the enormous support given by Mr. R.M.S. Bandara, Head, Landslide Research and Risk Management Division of National Building Research Organization. I also owe many thanks to Mr. Yashiro, Senior Design Engineer of LDPP, for his valuable contribution in the research work, giving valuable ideas and encouragement throughout the project. Furthermore, 1 owe many thanks to Mr.K.N. Bandara, the Head of Geotechnical Engineering Division and Mr. U.K.N.P. Dharmasena, the senior project Engineer for their valuable support and encouragement during this period. Special thanks are due to all staff members at NBRO.

TABLE OF CONTENTS

DEC	LARATION OF THE CANDIDATES AND SUPERVISORSi
ABS	TRACTiii
DED	ICATIONiv
ACK	NOWLEDGEMENTv
TABLE	COF CONTENTSvi
LIST O	F FIGURESix
LIST O	F TABLES
LIST O	F ABBREVIATIONS
LIST	OF APPENDICES
1. CH	APTER 1: INTRODUCTION
1.1	Background 1
1.2	Problem Identification
1.3	Objectives
1.4	Methodology Applied
1.5	Thesis Outline
2. CH	APTER 2: LITERATURE REVIEW
2.1	Introduction to Rainfall Induced, Deep-seated Landslides
2.2	Rainfall Pattern of the Terrain of Case Study
2.3	Mechanism of the Failure and Its Triggering Factors
2.4	Ground Water Recharging by Rainwater Infiltration
2.5	Landslide Rectification Measures
2.5.1	Landslide Control Works
2.5.2	Landslide Resistant Works

	2.6	Effects of Drainage Control and Other Measures in Stabilizing Landslid	des
	2.7	Landslides Modelling with Seepage Models	17
	2.8	Material and hydraulic properties applying to the seepage models	18
	2.9	Boundary Conditions applying to the seepage models	19
3.	CH.	APTER 3: HISTORY AND DETAILS OF INVESTIGATIONS	21
	3.1.	History of the Landslide and Introduction to the Landslide Mitigation Proj 21	ect
	3.2.	General Details and Morphology of the Landslide	22
	3.3.	Geology of the Area	23
	3.4.	Deilling Investigations	26
	3.5.	Geophysical Exploration	27
	3.6.	Laboratory Testing	27
	3.7.	Landslide Monitoring	30
	3.8.	Results of Investigations and Monitoring Data	31
	3.9.	Conclusions of the Detail Investigation and Monitoring	37
4.	CH. 38	APTER 4: DESIGN AND CONSTRUCTION OF COUNTERMEASUR	ES
	4.1	Introduction to design Procedure adopted by JICA	38
	4.2	The Relationship in Between the Groundwater Level Fluctuation and T	Гhe
	Move	ment of Landslide	.38
	4.3	Selection of Counter Measures	.40
	4.4	Selection of Shear Strength Parameters	.40
	4.5	Construction of Countermeasures	.45
	4.5.1	Surface Drainages	45
	4.5.2	Earth Removal Works	46

	4.5.3	Counterweight Embankment Works	47
	4.5.4	Ground Water Drainage Work: Horizontal Drains	. 48
	4.5.5	Ground Water Drainage Work: Drainage Wells	.49
	4.5.6	Ground Anchor Works	. 51
	4.6	Conclusion About the Design and Construction Sequence	. 52
5.	CH.	APTER 5: BACK ANALYSIS OF THE LANDSLIDE	. 55
	5.1	Introduction to Back Analysis	. 55
	5.2	Procedure of Back Analysis of Failure Situation	. 55
	5.3	Initial Boundary Conditions	. 57
	5.4	Hydraulic Parameters of Soil Layers	. 61
	5.5	Shear Strength Parameters of Soil Layers	.65
	5.6	Verification of Seepage Model before installation of rectifications	.66
	5.7	Results of Back Analysis before construction of counter measures	. 69
6.	CH	APTER 6: ANALYSIS OF RECTIFICATION MEASURES	.74
	6.1	Modelling of Rectification Measures	.74
	6.2	Boundary Conditions for the Model with Rectification Measures	. 77
	6.3	Hydraulic and Material Parameters of Soil	. 79
7.	CH	APTER 7: RESPONSE OF THE RECTIFIED SLOPE TO SEVER	AL
D	ESIGN	RAINFALLS	. 85
8.	CH	APTER 8: CONCLUSION	. 90
	8.1	Case Study with Back Analysis	. 90
	8.2	Effects on Rectifications in Stabilization of the Landslide	. 91
9.	REF	FERENCE	. 93
10). API	PENDICES	. 96

LIST OF FIGURES

Figure 2.1: Sketch of the cross section and the area affected by the Kahagolla landslide
Figure 2.2: A Multi tank system modelled for Nawalapitiya Landslide
Figure 2.3: Longitudinal cross section of Watawala landslide with subsurface soil/rock
profile and borehole locations
Figure 2.4: Plan View of Rectification Measures in Watawala Landslide 14
Figure 2.5 :Typical underdrain profile
Figure 2.6: Typical Drawdown pattern of Water Table after Construction of
Rectification Works
Figure 2.7: Plan view of Subsurface drainage system at Li-Shan Landslide at Taiwan
Figure 2.8 : Boundary Conditions Applied to Model to Represent the Rectification
Measures
Figure 3.1: Unstable Features of Old Landslide
Figure 3.2: Road trace shifted towards the mountain after few decades
Figure 3.3: Landslide features and locations of monitoring instruments
Figure 3.4: Subsurface profile along the main axis interpreted from Borehole Data 25
Figure 3.5: Minor Foldings in the core samples collected from bore hole no.5 26
Figure 3.6: the borehole profiles obtained through the drilling investigations at
Kahagolla Landslide
Figure 3.7:Resistivity Cross-Section at section 1-1 A016-010, Kahagolla
Figure 3.8 : Displacements recorded in Extensometers (Planview in figure 3.3) 32
Figure 3.9 :Displacement recorded in Pipe strain gauge at B2 (Planveiwin figure 3.3)
Figure 3.10: Identified main blocks and the longitudinal axis of the landslide
Figure 3.11: Subsoil profile with identified slip surfaces along CS1
Figure 4.1: Changes of the ground water level affect the movements of mass and
change the factor of safety

Figure 4.2: Factor of safety values obtained for each stage, each slip surface for block
sampling
Figure 4.3: Back calculation for stability analysis (slip surface J1)
Figure 4.4: Optimum combination of countermeasures applied to the landslide 44
Figure 4.5: Types of drain sections constructed along the landslide
Figure 4.6: Outlet of Surface drainage system (A2 in figure 4.3)
Figure 4.7: Earth removal and slope protection at the Landslide upper area
(D4, D5, E4, E5 in figure 4.3)
Figure 4.8:Typical cross section of Earth removal
Figure 4.9: Counterweight embankment work at the landslide toe area
(B1, B2 in figure 4.3)
Figure 4.10: Typical cross section of Counterweight Embankment works
Figure 4.11: Plan view of the ground water control works
Figure 4.12: Horizontal drain outlets at toe area (B1, B2 in figure 4.9)
Figure 4.13 : Typical cross section of the drainage well
Figure 4.14 : Inside a drainage well (B2, C2, C3, D3, D4 in figure 4.9)
Figure 4.15 : Ground anchor beside the road (C2, B2, B3 in figure 4.8)
Figure 4.16 : Plan view and cross section of ground anchor arrangement
Figure 4.17:Typical Longitudinal cross section along the landslide with applied
countermeasures
Figure 5.1: Procedure for back analysis of the failure situation
Figure 5.2: Boundary conditions applied to the profile along CS1
Figure 5.3: Rainfall selected for analysis before construction of rectification measures
(from figure 3.9)
Figure 5.4: Selected layers for soil profile along CS1
Figure 5.5: volumetric water content curves for Soil layers
Figure 5.6: Soil water characteristic curve for Soil layers
Figure 5.7:Critical Water level occurred after 30.5 days of prolonged rainfall event65
Figure 5.8:Comparison of ground water table between simulation and observed data
Figure 5.9: Ground water table comparison at Borehole no.9
Figure 5.10:Ground water table comparison at Borehole no.7

M.Eng. in Foundation and Earth retaining Systems

Figure 5.11 :Ground water table comparison at Borehole no.6
Figure 5.12 ;Factor of safety values for each slip surface at the critical water level
(obtained through Geoslope SLOPE/W 2012 software)
Figure 5.13: Factor of safety values for each slip surface at the high-water level
(abtained through Geoslone SLOPE/W 2012 software) 73
Eigene 6.1. Applying Procedure of the effect rectification measures for the
Figure 6.1: Analysing Procedure of the effect rectification measures for the
stabilization of Kahgolla Landslide
Figure 6.2: Boundary conditions applied to the profile with rectification measures . 78
Figure 6.3: Rainfall hyetograph used after the construction of rectification measures
Figure 6.4: Part of the Soil profile along CS 01 used for analysis of rectification
measures (Layers were according to table 6.2 and 6.3.)
Figure 6.5: Ground water table comparison at Borehole no.7 (Model 2)
Figure 6.6:Ground water table comparison at Check boring no. 6 near the drainage
well 2 (Model 2)
Figure 6.7: Ground water table comparison at Check boring no.3 near the drainage well
4 (Model 2)
Figure 6.8:Factor of safety values after construction of countermeasures
Figure 7.1:Several rainfalls selected for analysis after the construction of rectification
measures
Figure 7.2: Factor of safety values after construction of countermeasures for highest
rainfall record

LIST OF TABLES

Table 2.1: Expected Drawdown of Water Table for Control Works	16
Source: (Oriantal Consultants, 2016)	16
Table 3.1: Lithology at the Kahagolla Site	25
Table 3.2: Installed Monitoring Equipment at Kahagolla Landslide (in figure 3.3)	.31
Table 3.3: Estimation of Slip surface by monitoring instruments	34
Table 3.4: Critical water level obtained through monitoring data	35
Table 3.5: Landslide Block Division based on field reconnaissance survey	35
Table 3.6: Details of Sub Soil Profile	37
Table 4.1: Specific Groundwater levels used for Analysis	39
Table 4.2: Comparison chart for selection of Counter Measures	40
Table 4.3: Relationship with inclined slip surface and angle of friction	41
Table 4.4: Shear strength parameters used for each slip surface (Results of E	Back
analysis)	43
Table 4.5: Obtained factor of safety values	43
Table 4.6: Design conditions of anchors	52
Table 5.1: Detail of Boundary Conditions	60
Table 5.2: Hydraulic properties of layers	61
Table 5.3: Shear strength parameters of soils obtained from back analysis	65
Table 5.4: Factor of safety values for critical water level	69
Table 5.5: Factor of safety values for high water level	71
Table 6.1: Detail of Boundary Conditions	79
Table 6.2: Hydraulic properties used for subsurface drainage system	8 0
Table 6.3: Shear strength parameters of soils and other layers	80
Table 6.4: Factor of safety values for high water level after the construction of cou	inter
measures	82
Table 7.1. Easter of active subsector bick under land of a second dation of the	87

LIST OF ABBREVIATIONS

Abbreviation Description

CH - Chainage

NBRO - National Building Research Organization

SM - Silty Sand

SWCC - Soil Water Characteristic Curve

LDPP - Landslide Disaster Protection Programme

LIST OF APPENDICES

Appendix 1: Site Plan View and Investigation Points

Appendix 2: Laboratory Test Results

Appendix 3: Plainview and Longitudinal View with Rectification Measures