
Vol.:(0123456789)1 3

Data Science and Engineering
https://doi.org/10.1007/s41019-019-00100-5

Latency‑Aware Secure Elastic Stream Processing with Homomorphic
Encryption

Arosha Rodrigo1 · Miyuru Dayarathna2 · Sanath Jayasena1

Received: 18 May 2019 / Revised: 20 August 2019 / Accepted: 22 August 2019
© The Author(s) 2019

Abstract
Increasingly organizations are elastically scaling their stream processing applications into the infrastructure as a service
clouds. However, state-of-the-art approaches for elastic stream processing do not consider the potential threats of expos-
ing their data to third parties in cloud environments. We present the design and implementation of an Elastic Switching
Mechanism for data stream processing which is based on homomorphic encryption (HomoESM). The HomoESM not only
elastically scales data stream processing applications into public clouds but also preserves the privacy of such applications.
Using a real-world test setup, which includes an E-mail Filter benchmark and a Web server access log processor benchmark
(EDGAR), we demonstrate the effectiveness of our approach. Experiments on Amazon EC2 indicate that the proposed
approach for homomorphic encryption provides a significant result which is 10–17% improvement in average latency in the
case of E-mail Filter benchmark and EDGAR benchmark, respectively. Furthermore, EDGAR add/subtract operations, mul-
tiplication, and comparison operations showed up to 6.13%, 7.81%, and 26.17% average latency improvements, respectively.
Finally, we evaluate the potential of scaling the homomorphic stream processor in the public cloud. These results indicate
the potential for real-world deployments of secure elastic data stream processing applications.

Keywords Cloud computing · Elastic data stream processing · Compressed event processing · Data compression · IaaS ·
System sizing and capacity planning

1 Introduction

Data stream processing has become one of the main para-
digms for data analytics in recent times [6, 7]. Various differ-
ent applications of stream processing can be found in differ-
ent domains such as transportation [20], telecommunications
[8, 29], disaster management [10], and environmental moni-
toring [16]. The economies of scale introduced by cloud
computing platforms consistently indicate the importance
of migrating stream processing applications to cloud. This

has resulted in data stream processors which run as man-
aged cloud services (e.g., [13, 18]) as well as hybrid cloud
services (e.g., Striim [28]).

It is a common observation that data stream processors
face resource limitations during their operation due to unex-
pected loads [3, 9]. There are multiple possible solutions for
these issues. Elastically scaling into an external cluster [19,
25], load shedding, approximate query processing [24], etc.,
are some examples. Out of these, elastic scaling has become
a key choice because approaches such as load shedding and
approximate computing have to compromise accuracy which
is not accepted by certain categories of applications. The
previous work has been there which used data compression
techniques to optimize the network connection between pri-
vate and public clouds [25]. However, current elastic scal-
ing mechanisms for stream processing do not consider the
problem of preserving the privacy of the data sent to the
public cloud.

Preserving the privacy of stream processing becomes
a key question to be answered when scaling into a public
cloud. Sending the data unencrypted to the server definitely

 * Miyuru Dayarathna
 miyurud@wso2.com

 Arosha Rodrigo
 uom.arosha@gmail.com

 Sanath Jayasena
 sanath@cse.mrt.ac.lk

1 Department of Computer Science and Engineering,
University of Moratuwa, Moratuwa, Sri Lanka

2 WSO2, Inc., 787 Castro Street, Mountain View, CA 94041,
USA

http://orcid.org/0000-0002-6884-7967
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-00100-5&domain=pdf

 A. Rodrigo et al.

1 3

exposes them to prying eyes of the eavesdroppers. Send-
ing data encrypted over the network and decrypting them
to get original values at the server may also expose sensi-
tive information. Multiple works have recently been con-
ducted on privacy-preserving data stream mining. Privacy of
patient health information has been a serious issue in recent
times [23]. Fully homomorphic encryption (FHE) has been
introduced as a solution [12]. FHE is an advanced encryp-
tion technique that allows data to be stored and processed
in encrypted form. This gives cloud service providers the
opportunity for hosting and processing data without even
knowing what the data are handling. However, current FHE
techniques are computationally expensive needing exces-
sive space for keys and ciphertexts. However, it has been
shown with some experiments done with HElib [15] (an
FHE library) that it is practical to implement some basic
applications such as streaming sensor data to the cloud and
comparing the values to a threshold.

In our previous work, we present elastic scaling in a pri-
vate/public cloud (i.e., hybrid cloud) scenario with privacy-
preserving data stream processing [26]. We design and
implement a privacy-preserving Elastic Switching Mecha-
nism (HomoESM) over private/public cloud system. Homo-
morphic encryption scheme of HElib has been used on top
of this switching mechanism for compressing the data sent
from private cloud to public cloud. Application logic at the
private cloud is implemented with Siddhi event processing
engine [20]. We designed and developed two real-world
data stream processing benchmarks called E-mail Proces-
sor and HTTP Log Processor (EDGAR benchmark) during
the evaluation of the proposed approach.

In this paper, we extend our privacy-preserving data
stream processing mechanism (HomoESM) with significant
additional features such as the support for homomorphic
multiplication operations [26]. Furthermore, we extend our
HomoESM mechanism to elastic scaling with multiple VMs
running in public cloud and report results. Moreover, we
demonstrate that latency improvement is consistent across
multiple different experiment rounds.

Using multiple experiments on real-world system setup
with the stream processing benchmarks, we demonstrate the
effectiveness of our approach for elastic switching-based pri-
vacy-preserving stream processing. We observe that homo-
morphic encryption provides significant results. It provides
10–17% of improvement in average latency in the case of
E-mail Filter benchmark. EDGAR add/subtract, multipli-
cation, and comparison operations showed 6.13%, 7.81%,
and 26.17% of average latency improvements, respectively.
HomoESM is the first known data stream processor which
does privacy-preserving data stream processing in hybrid
cloud scenarios effectively. We have released HomoESM

and the benchmark codes as open source software.1 , 2 , 3
Specifically, the contributions of our work can be listed as
follows.

• Enhanced privacy-preserving Elastic Switching Mecha-
nism (HomoESM) We design and develop a mechanism
for conducting elastic scaling of stream processing que-
ries over private/public cloud in a privacy-preserving
manner. We enhance this to operate in public cloud with
multiple virtual machine (VM) instances.

• Homomorphic multiplication operation We improved the
stream processing functionality of HomoESM by imple-
menting homomorphic multiplication.

• Optimization of homomorphic operations We optimized
several homomorphic evaluation schemes such as equal-
ity and less than/greater than comparison. We also do
data batching-based optimizations.

• Evaluation We evaluate the proposed approaches by
implementing them on real-world systems. We compare
the performance of homomorphic add/subtract opera-
tions as well as multiplication operations. We also evalu-
ate the criteria for scaling into multiple VMs in public
cloud.

The paper is organized as follows. Next, we provide the
related work in Sect. 2. We give the brief overview to the
technologies used in this paper in Sect. 3. We provide the
details of system design in Sect. 4 and implementation of the
HomoESM in Sect. 5. The evaluation details are provided in
Sect. 6. We make a discussion of the results in Sect. 7. We
provide the conclusions in Sect. 8.

2 Related Work

There have been multiple previous works on elastic scaling
of event processing systems in cloud environments.

Cloud computing allows for realizing an elastic stream
computing service, by dynamically adjusting used resources
to the current conditions. Hummer et al. discussed how elas-
tic computing of data streams can be achieved on top of
cloud computing [17]. They mentioned that the most obvi-
ous form of elasticity is to scale with the input data rate and
the complexity of operations (acquiring new resources when
needed and releasing resources when possible). However,
most operators in stream computing are stateful and cannot
be easily split up or migrated (e.g., window queries need to

1 https ://githu b.com/arosh arodr igo/event -publi sher.
2 https ://githu b.com/arosh arodr igo/stati stics -colle ctor.
3 https ://githu b.com/arosh arodr igo/simpl e-siddh i-serve r.

https://github.com/annonaccount/event-publisher
https://github.com/annonaccount/statistics-collector
https://github.com/annonaccount/simple-siddhi-server

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

store the past sequence of events). In HomoESM, we handle
this type of queries by query switching.

Stormy is a system developed to evaluate the with ‘stream
processing as service’ concept [22]. The idea was to build a
distributed stream processing service using techniques used
in cloud data storage systems. Stormy is built with scalabil-
ity, elasticity, and multitenancy in mind to fit in the cloud
environment. They have used distributed hash tables (DHTs)
to build their solution. They have used DHTs to distribute
the queries among multiple nodes and to route events from
one query to another. Stormy builds a public streaming ser-
vice where users can add new streams on demand. One of
the main limitations in Stormy is it assumes that a query
can be completely executed on one node. Hence, Stormy is
unable to deal with streams for which the incoming event
rate exceeds the capacity of a node. We address this issue in
our work via the concept of data switching of HomoESM.

Cervino et al. [3] try to solve the problem of providing
a resource provisioning mechanism to overcome inherent
deficiencies of cloud infrastructure. They have conducted
some experiments on Amazon EC2 to investigate the prob-
lems that might affect badly a stream processing system.
They have come up with an algorithm to scale up/down
the number of VMs (or EC2 instances) based solely on the
input stream rate. The goal is to keep the system with a
given latency and throughput for varying loads by adap-
tively provisioning VMs for streaming system to scale up/
down. However, none of the above-mentioned works have
investigated on reducing the amount of data sent to public
clouds in such elastic scheduling scenarios. In this work, we
address this issue.

Data stream compression has been studied in the field of
data mining. Cuzzocrea et al. have conducted research on a
lossy compression method for efficient OLAP [4] over data
streams. Their compression method exploits semantics of
the reference application and drives the compression process
by means of the with ‘degree of interestingness.’ The goal
of this work was to develop a methodology and required
data structures to enable summarization of the incoming
data stream. However, the proposed methodology trades off
accuracy and precision for the reduced size.

Dai et al. [5] have implemented homomorphic encryp-
tion library on graphic processing unit (GPU) to accelerate
computations in homomorphic level. As GPUs are more
compute-intensive, they show 51 times speedup on homo-
morphic sorting algorithm when compared to the previous
implementation. Although computation-wise it gives better

speedup, when encrypting a Java String field, its length goes
more than 400 KB which is too large to be sent over a public
network. Hence, we used HElib as the homomorphic encryp-
tion library in our work.

Intel has included a special module in CPU, named Soft-
ware Guard eXtension (SGX), with its sixth generation Core
i5, i7, and Xeon processors [27]. SGX reduces the trusted
computing base (TCB) to a minimal set of trusted code
(programmed by the programmer) and the SGX processor.
Shaon et al. developed a generic framework for secure data
analytics in an untrusted cloud setup with both single-user
and multiuser settings [27]. Furthermore, they proposed
BigMatrix which is an abstraction for handling large matrix
operations in a data oblivious manner to support vectoriza-
tions. Their work is tailored for data analytics tasks using
vectorized computations and optimal matrix-based opera-
tions. However, in this work HomoESM conducts stream
processing which is different from the batch processing done
by BigMatrix.

3 Overview

In this section, we provide a brief description of WSO2
Stream Processor which is the stream processing engine
used for implementing our HomoESM. Then, we discuss
about existing ESM and furthermore give introduction to
homomorphic encryption concept and available libraries.

3.1 Overview of WSO2 Stream Processor

WSO2 Stream Processor (WSO2 SP) is a lightweight, easy-
to-use, stream processing engine. In our work, we are using
Siddhi library which is a component of the WSO2 Stream
Processor [32]. It is available as open source software under
the Apache Software License v2.0 [31]. WSO2 SP lets users
provide queries using an SQL-like query language in order
to get notifications on interesting real-time events, where it
will listen to incoming data streams and generate new events
when the conditions given in those queries are met by cor-
relating the incoming data streams.

WSO2 SP uses a SQL-like Event Query Language to
describe queries. For example, the following query detects
the number of taxis dropped off in each cell in the last
15 min [20].

 A. Rodrigo et al.

1 3

from Tr i p #window . t ime (15 min)
s e l e c t coun t (meda l l i o n) a s coun t group by c e l l I d
i n s e r t i n t o Outpu tS t r eam

Listing 1 EmailFilter condition.

implementation will look for a pre-configured latency value
as the QoS parameter.

3.3 Homomorphic Encryption

Homomorphic encryption is a type of encryption that allows
computation on ciphertexts. It generates an encrypted result.
When decrypted, the result matches with the result of the
operations as if they had been performed on the plaintext.
The purpose of homomorphic encryption is to allow com-
putation on encrypted data [2]. Therefore, homomorphic
encryption allows complex mathematical operations to be
performed on encrypted data without compromising the
privacy.

...

...

ESM

Public
cloud

Private
cloud

Public
cloud

Private
cloud

Full event stream has
been directed to public
cloud with/without
compression

Input event
streams

Output streams
Output streams

Input event
streams

Stream Processing
Engine

R
ec

ei
ve

r

Pr
of

ile
r

(a) (b)

Stream Processing
Engine

Stream Processing
Engine

QoS
Specification

QoS
Specification

...

ESM

Q_1 Q_n... Q_1 Q_i...

...

...

...

...

...

...

...

...

...

...

...

Sc
he

du
le

r

C
om

pr
es

se
r

Pu
bl

is
he

r

Compression
Handler

Q_i
...

Q_n

O
O

H

...

...

...

...

...

R
ec

ei
ve

r

Pr
of

ile
r

O
O

H

Sc
he

du
le

r

C
om

pr
es

se
r

Pu
bl

is
he

r

Fig. 1 Approach for elastic compressed complex event processing. System operation with single query switched to public cloud with data
switching. a Private cloud-only mode of operation. b Hybrid cloud mode of operation with data switching and compression

3.2 Elastic Switching Mechanism

The Elastic Switching Mechanism (ESM) [25] is designed
to operate stream processing engines between private and
public cloud environments as shown in Fig. 1. Basic idea is
to have on-demand public SP engine according to the input
load. This mechanism is able to maintain good QoS met-
rics as it can automatically scale for additional resources
when required. ESM will route data between private and
public stream processing engines with taking care of a QoS
parameter configured by user. QoS measurements need to
be taken at receiver component of ESM end, and publisher
component will check for QoS level to take the decision
of routing data to public stream processing engine. Current

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

There are two main homomorphic encryption schemes:
partially homomorphic encryption and fully homomor-
phic encryption (FHE). FHE supports arbitrary computa-
tion on ciphertexts and is far more powerful while partially
homomorphic encryption supports limited computations.
Fully homomorphic cryptosystems have great practical

implications in the outsourcing of private computations in
the context of cloud computing.

There are several implementations of homomorphic
encryption. CUDA Homomorphic Encryption Library
(cuHE) [5] is a GPU-accelerated library for homomorphic
encryption (HE) schemes and homomorphic algorithms
defined over polynomial rings.

Another popular implementation of homomorphic
encryption is HElib. This library is open source on GitHub
and written in C++ [14]. Unlike some earlier HE schemes,
HElib uses a SIMD-like optimization known as ciphertext
packing. As a result, each individual ciphertext element with
which one can perform a computation (addition or multi-
plication) is conceptually a vector of encrypted plaintext
integrals. HElib is particularly effective with problems that
can benefit from some level of parallel computation. The
size of this vector decides according to the settings when to
initialize the HElib. HElib supports multithreaded environ-
ment, and we need to enable that feature while we install
HElib on a system. It provides low-level routines such as set,
add, multiply and shift. These are the reasons for why we
choose HElib over other homomorphic encryption libraries
to implement HomoESM.

4 System Design

In this section, we first describe the architecture of
HomoESM and then describe the switching functions which
determine when to start sending data to public cloud.

The HomoESM architecture is shown in Fig. 2. The com-
ponents highlighted in the dark blue color correspond to
components which directly implement privacy-preserving
stream processing functionality.

Figure 2 shows an example scenario of comparison opera-
tion has been implemented. There are three events E1, E2,
and E3 where E1 and E3 satisfy the stated conditions.

profiler

Public
cloud

Private
cloud

Portion of the events
stream directed to
public cloud with
encryption

Input events stream

Results stream

H
om

om
or

ph
ic

C
EP

 E
ng

in
e

Scheduler

CEP Engine
(z==0 && find>0

&& find <3)

QoS
Specification

HomoESM
E

nc
ry

pt
or

P
ub

lis
he

r

D
ec

ry
pt

or

R
ec

ei
ve

r

H
om

om
or

ph
ic

E

nc
ry

pt
io

n
E

xt
en

si
on

s

H
E

lib
 A

P
I

Output events
stream

E1={z:0, find:2}

E2={z:1, find:5}

E3={z:0, find:1}

E1

E2

E3

E1

E2

E3

E1

E1

E3

Fig. 2 System architecture of homomorphic encryption-based ESM
(HomoESM) with an example of how comparison operation has been
conducted

Table 1 Notation

Notation Description

t Unit time slot
L
t

Average latency measured at the receiver component of the HomoESM during the time slot t
Ls VM Startup threshold latency. When the average latency exceeds this value, the HomoESM decides to initiate the VM start up

process
Ld Data switching threshold latency. When L > Ld , the HomoESM starts sending data to public cloud
� Tolerance period. After the unit timeslot (t) elapses, the HomoESM waits for additional � period before it initiates the VM startup

process. In the current implementation of the ESM, � is set equal to t
Lp Private cloud threshold latency. At least Lp amount of latency needs to be present in the private cloud for a VM to be kept running in

the next unit time slot
D

t
Total amount of data received by the VM from private cloud during the time slot t

Ds Threshold for total amount of data received by the VM from private cloud during the time slot t

 A. Rodrigo et al.

1 3

However, E2 does not satisfy this condition. Hence, it gets
filtered out.

The HomoESM Scheduler collects events from the Plain
Event Queue according to the configured frequency and the
timestamp field on the event. Then, it routes the events into
the private publishing thread pool and to the public publish-
ing queue, according to the load transfer percentage and the
threshold values.

Receiver receives events from both private and public
Siddhi. If the event is from the private Siddhi, it is sent to the
Profiler. If the event is not a composite event, it is directed
to the ‘Composite Event Decode Worker’ threads located
inside the Decryptor which basically performs the decryp-
tion function. Finally, all the streams which go out from
HomoESM run through Profiler which conducts the latency
measurements.

In this paper, we use the same switching functions
described in [25] for triggering and stopping VMs and send-
ing data to public cloud (see Eqs. 1 and 2). Here, �VM(t) is
the binary switching function for a single VM and t is the
time period of interest. Lt−1 and Dt−1 are the latency and data
rate values measured in the previous time period. A time
period of � has to be elapsed in order for the VM startup
process to trigger. The symbols used in the two equations
are shown in Table 1.

ESM needs to take decisions on following three main
scenarios,

When to start public VM Average latency measured for
the last period at receiver (Lt−1) should be greater than VM
startup threshold latency (Ls), and tolerance period (�)
needs to be elapsed.

When to stop public VM We do not switch off the VMs
just because the charging period elapses. The decision is
taken at the end of charging period if the following two con-
ditions are satisfied.

• Data sent to public VM within the last period (Dt−1)
should be less than threshold amount of data sent to pub-
lic VM for a period (Ds)

(1)𝜙VM(t) =

⎧
⎪
⎨
⎪
⎩

1, Lt−1 ≥ Ls, 𝜏 has elapsed.

0, Dt−1 < Ds, Lt−1 < Lp Otherwise,

,

(2)𝜙data(t) =

⎧
⎪
⎨
⎪
⎩

1, 𝜙VM(t − 1) = 1, Lt−1 ≥ Ld, Ls > Ld

0 Otherwise,

,

• Average latency measured for the last period at receiver
(Lt−1) should be less than private cloud threshold latency
(Lp)

When to send data to public VM

• Public VM should be up and running
• VM Startup threshold latency (Ls) should be greater than

data switching threshold latency (Ld). Note that this con-
dition is always true and it is maintained by ESM initial
configurations.

• Average latency measured for the last period at receiver
(Lt−1) should be greater than data switching threshold
latency (Ld).

5 Implementation

First, we describe the implementation details of HomoESM
in Sect. 5.1, and we describe the benchmark implementa-
tions in Sects. 5.2, 5.3, 5.4, and 5.5.

5.1 Implementation of HomoESM

We have developed the HomoESM on top of the WSO2
Stream Processor (WSO2 SP) software stack. As we
described earlier, WSO2 SP internally uses Siddhi which is
a complex event processing library [20]. Siddhi feature of
WSO2 SP lets users run queries using an SQL-like query
language in order to get notifications on interesting real-
time events.

High-level view of the system implementation is shown
in Fig. 3. Input events are received by the ‘Event Publisher.’
Java objects are created for each incoming event and put
into a queue. Event Publisher thread picks those Java objects
from the queue according to the configured period. Next, it
evaluates whether the picked event needs to be sent to the
private or the public Siddhi server, according to the config-
ured load transfer percentage and threshold values. If that
event needs to be sent to private Siddhi, it will mark the
time and delegate the event into a thread pool which handles

Input

Fig. 3 Main components of HomoESM

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

sending to private Siddhi. If that event needs to be sent to
public Siddhi, it will mark the time and be put into the queue
which is processed by the Encrypt Master asynchronously.

Encrypt Master thread (see Fig. 4a) periodically checks
a queue which keeps the events required to be sent to public
cloud. The queue is maintained by the ‘Event Publisher’ (see
Fig. 5a). If that queue size is greater than or equal to com-
posite event size, it will create a list of events equal to the
composite event size. Next, it delegates the event encryption
and composite event creation task to the ‘Composite Event
Encode Worker’ (see Fig. 4b).

Composite Event Encode Worker is a thread pool which
handles event encryptions and composite event creations.
First, it combines nonoperational fields of each plain event in
the list by the pre-defined separator. Then, it converts opera-
tional fields into binary form and combines them together.
Next, it pads the operational fields with zeros in order to
encrypt using HElib API. Finally, it performs encryption on
those operational fields and puts the newly created compos-
ite event into a queue which is processed by the ‘Encrypted
Events Publisher’ thread (see Fig. 5b).

Firing events into the public VM is done asynchronously.
Decision of how many events are sent to the public Siddhi

server was taken according to the percentage we have config-
ured initially. But the public Siddhi server’s publishing flow
has max limit of 1500 TPS (tuples per second). If the Event
Publisher receives more than the max TPS, the events are
routed back into the private Siddhi server’s VM.

‘Encrypted Events Publisher’ thread periodically checks
for encrypted events in the encrypted queue which is put by
the ‘Composite Event Encode Worker’ at the end of the com-
posite event creation and encryption process (see Fig. 4b).
First, it combines nonoperational fields of each plain event
in the list by the pre-defined separator. If there are encrypted
events, it will pick those at once and send them to public
Siddhi server. The encryptor module batches events into
composite events and encrypts each composite message
using homomorphic encryption. The encrypted events are
sent to the public cloud where Homomorphic CEP Engine
module conducts the evaluation.

We encrypt operand(s) and come up with composite oper-
and field(s) in each HE function initially, in order to perform
HE operations on operational fields in composite event. For
example, in the case of the E-mail Filter benchmark, at the
Homomorphic CEP Engine which supports homomorphic
evaluations, initially it converts the constant operand into
an integer (int) buffer with size 40 with a necessary 0 pad-
ding. Then, it replicates the integer buffer ten times and
encrypts using HElib [14]. Finally, the encrypted value and

Encrypt Master Composite Event Encode
Worker

Idle and check
for plain
events

periodically

Is plain event
queue size

<
composite

event size ?

No

Yes

Create a list of plain events
and dispatch to

'Composite-Event-Encode'
Worker thread

ev

Create a list of plain e
and dispatch to

'Composite-Event-Enco
Worker thread

Combine non
operational fields in the
plain event list by the
pre-defined separator

Convert operational
fields into binary form

and combine

Combined binary forms
will be padded with

zeros

Perform encryption on
operational fields
using HElib API

Put encrypted composite
event into encrypted queue

which is processed by
'Encrypted-Events-Publisher'

(a)
(b)

Fig. 4 Data encryption and the composite event creation process at
the private Siddhi server. a Encrypt Master thread b composite Event
Encode Worker thread

Event Publisher Encrypted Events Publisher

Idle and check
for events

periodically

Send to
public
cloud?

Mark current
timestamp in
the data and
delegate the
plain events
into a thread
pool to send

to private
Siddhi server

Yes

No

Mark current timestamp in
the data and put plain

event into the queue which
is processed by the Encrypt

Master asynchronously

Idle and check
for encrypted

events
periodically

Is encrypted
queue
empty?

No

Yes

Send composite
encrypted event to

public Siddhi
server

(a) (b)

Fig. 5 Operation of the Event Publisher and the Encrypted Events
Publisher components. a Event Publisher, b Encrypted Events Pub-
lisher

 A. Rodrigo et al.

1 3

the relevant field in the composite event are used for HElib’s
relevant (e.g., comparison, addition, subtraction, multiplica-
tion, etc.) operation homomorphically. The result is replaced
with the relevant field in the composite event and is sent to
the receiver without any decryption.

The received encrypted information is decrypted and
decomposed to extract the relevant plain events. The
latency measurement happens at the end of this flow. ‘Event
Receiver’ thread checks whether the event received from the
Siddhi server is encrypted with homomorphic encryption.
If so, it delegates composite event into ‘Composite Event
Decode Worker.’ If not, it will read payload data and calcu-
late the latency (see Fig. 6a).

After receiving a composite event from the Event
Receiver, the Composite Event Decode Worker handles all
decompositions and decryptions of the composite event (see
Fig. 6b). It first splits nonoperational fields in the compos-
ite event by the pre-defined separator. Second, it performs

decryption on the operational fields using HElib API and
splits the decrypted fields into fixed-length strings. Then,
it creates plain events using the split fields. Next, it checks
each operational field in the plain event to see whether it
contains zeros and then processes the events. Finally, it cal-
culates the latency of the decoded events.

Note that we implement the homomorphic comparison of
values following the work by Togan et al. [30]. We have used
Togan et al.’s methodology for implementing homomorphic
comparison operation because it provides an O(log2(n)) solu-
tion which evaluates the comparison. Furthermore, accord-
ing to the authors, their approach provides good results com-
pared to other previous approaches [1]. For two single-bit
numbers with x and y, Togan et al. [30] have shown that the
following equations (see Eq. 3) will satisfy greater-than and
equal operations, respectively.

Togan et al. have created comparison functions for n-bit
numbers using divide and conquer methodology. In our case,
we derived two-bit number comparisons as follows. x1x0 and
y1y0 are the two numbers with two bits (see Eq. 4). Here,
every ‘+’ operation is for XOR gate operation and every ‘ ⋅ ’
operator is for AND gate operation.

Reason that we build up comparison functions for two-bit
numbers is to apply the concept of homomorphic encryption
and evaluation into the CEP engine. Even for two-bit number

(3)
x > y ⇔ xy + x = 1

x = y ⇔ x + y + 1 = 1

(4)

x1x0 > y1y0 ⇔ (x1 > y1)(x1 = y1)(x0 > y0) = 1

⇔ (x1 ⋅ y1 + x1) + (x1 + y1 + 1)(x0 ⋅ y0 + x0) = 1

⇔ x1 ⋅ y1 + x1 + x1 ⋅ x0 ⋅ y0 + x1 ⋅ x0+

y1 ⋅ x0 ⋅ y0 + y1 ⋅ x0 + x0 ⋅ y0 + x0 = 1

x1x0 == y1y0 ⇔ (x0 + y0 + 1) ⋅ (x1 + y1 + 1) = 1

⇔ x0 ⋅ x1 + x0 ⋅ y1 + x0 + y0 ⋅ x1 + y0 ⋅ y1 + y0 + 1 = 1

x1x0 < y1y0 ⇔ (x1x0 > y1y0) + (x1x0 == y1y0) + 1 = 1

⇔ (x1 ⋅ y1 + x1 + x1 ⋅ x0 ⋅ y0 + x1 ⋅ x0 + y1 ⋅ x0 ⋅ y0+

y1 ⋅ x0 + x0 ⋅ y0 + x0) + (x0 ⋅ x1 + x0 ⋅ y1+

x0 + y0 ⋅ x1 + y0 ⋅ y1 + y0 + 1) + 1 = 1

Receive an
event from a
Siddhi server

Event Receiver

Is from
HE

Stream?

Retrieve payload
data and calculate

latency

Yes

No

Delegate the composite
event into ‘Composite
Event Decode Worker’

to handle decomposition
and decryptions

Composite Event
Decode Worker

Split non operational
fields in the composite

event by the pre-defined
separator

Perform decryptions on
operational fields using

HElib API

Split decrypted fields
into fixed-length Strings

Create plain events
using the splitted fields

Check whether each
operational field in the
plain event contains

zeros and perform the
processing logic

Retrieve payload data
and calculate latency of

each decoded and
processed plain events

(a) (b)

Fig. 6 Event receiving, decomposition, and decryption processes

Fig. 7 Architecture of E-mail
Filter benchmark

Q1

Q3

Q2

Q4 Q5 Q6 Q7

Q9Data
injector

Metrics

InputEmailsStream FilteredEmails Stream

Output
FilterPublish

Decision
Taker

Composition Encryptor
HE equal
operations Decryptor Decomposition

Input
HE
EmailsStream

Output
HE
EmailsStream

Filtered
Emails
StreamIn

pu
tE

m
ai

ls
S

tre
am

Composite
Events

Composite
Events after
HE
operations

Q8

Plain
Events

HE Logic
Filter

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

comparisons, a number of XOR and AND gate evaluations
need to be done as above.

After evaluating the individual HE operations at public
SP, filtering using those gate operations happens at private
SP. Boolean conditions are evaluated on encrypted operands
using HE with above limitations for input number range, and
‘NOT,’ ‘AND,’ and ‘OR’ gate operations are evaluated at
private SP after decrypting/decoding the events which come
from public SP after HE evaluations.

We have evaluated the HomoESM’s functionality using
five benchmark applications developed using two data-
sets. Next, in order to ensure the completeness of this
section, we describe the implementation details of these
benchmarks.

5.2 E‑mail Filter Benchmark

E-mail Filter is a benchmark we developed based on the
canonical Enron e-mail dataset [21]. The dataset has

517,417 e-mails with an average body size of 1.8 KB, the
largest being 1.92MB. The E-mail Filter benchmark only
had filter operation and was used to compare filtering
performance compared to the EDGAR Filter benchmark
which is described in the next subsection. The architec-
ture of the E-mail Filter benchmark is shown in Fig. 7.
The events in the input e-mails stream had eight fields
iij_timestamp, fromAddress, toAddresses, ccAddresses,
bccAddresses, subject, body, regexstr where all the fields
were Strings except iij_timestamp which was long type.
We formatted the toAddresses and ccAddresses fields to
have only single e-mail address to support HElib evalua-
tions. The criterion for filtering out e-mails was to filter
by the e-mail addresses lynn.blair@enron.com
and richard.hanagriff@enron.com. The fil-
tering SiddhiQL statement can be stated as in Listing 2,

Fig. 8 EDGAR filter benchmark

Q1

Q3

Q2

Q4 Q5 Q6 Q7

Q9
Data

injector

Metrics

InputEdgarStream

FilteredEdgarStream Output
Filter

Publish
Decision

Taker

Composition Encryptor HE equal
operations

Decryptor Decomposition

Input
HE
EdgarStream

Output
HE
EdgarStream

Fi
lte

re
dE

dg
ar

sS
tre

am

In
pu

tE
dg

ar
S

tre
am

Composite
Events

Composite
Events after
HE
operations

Q8

Plain
Events

HE Logic
Filter

NOT ((f romAddress i s e qu a l t o ‘ l ynn . b l a i r@en ron . com ’) AND
((t oAdd r e s s e s i s e qu a l t o ‘ r i c h a r d . h anag r i f f@en ron . com ’)
OR (ccAdd r e s s e s i s e qu a l t o ‘ r i c h a r d . h anag r i f f@en ron . com ’
)))

Listing 2 EmailFilter condition.

 A. Rodrigo et al.

1 3

5.3 EDGAR Filter Benchmark

We developed another benchmark based on a HTTP log
dataset published by Division of Economic and Risk Analy-
sis (DERA) [11]. The data provide details of the usage of
publicly accessible EDGAR company filings in a simple but
extensive manner [11]. Each record in the dataset consists
of 16 different fields; hence, each event sent to the bench-
mark had 16 fields (iij_timestamp, ip, date, time, zone, cik,
accession, extension, code, size, idx, norefer, noagent, find,
crawler, and browser). Similar to the E-mail Filter bench-
mark, all of the fields except iij_timestamp were strings.

Out of these fields, we used noagent field by adding lengthy
string of 1024 characters to the existing value, in order to
increase the events’ size. (Note that we have done the same
for all the EDGAR benchmarks described in this paper.) The
architecture of EDGAR filter benchmark is shown in Fig. 8.

The EDGAR benchmark was developed with the aim of
implementing filtering support. Basic criterion was to filter
out EDGAR logs, which satisfies the conditions shown in
Listing 3.

Fig. 9 EDGAR Add/Subtract
benchmark

Q1

Q3

Q2

Q4 Q5
HE Q6 Q7

Q8
Data

injector

Metrics

InputEdgarStream

ModifiedEdgarStream Output
Adder/Subtractor

Publish
Decision

Taker

Composition Encryptor add/subtract
operations Decryptor Decomposition

Input
HE
EdgarStream

Output
HE
EdgarStream

In
pu

tE
dg

ar
S

tre
am

Composite
Events

Composite
Events after
HE
operations

Plain
Events

Fig. 10 EDGAR Multiply
benchmark Metricss

Output
Multiplier

Publish

Composition Encryptor HE
multiply operation

HE
EdgarStream

Output
HE
EdgarStream

Composite
Events

Composite

HE
operations

Plain
Events

(e x t e n s i o n == ‘ v16003sv1 . htm ’) and (code == ‘ 200 . 0 ’) and
(d a t e == ‘2016−10−01 ’)))

Listing 3 EDGAR filter condition.

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

Most of the EDGAR log events were the same, and the
logs did not have any data rate variation inherently. There-
fore, we introduced varying data rate by publishing events in
different TPS values according to a custom-defined function.

5.4 EDGAR Comparison Benchmark

Using the same EDGAR dataset, we developed EDGAR
Comparison benchmark to evaluate the performance [10] of
homomorphic comparison operation. In the EDAGR Com-
parison benchmark, we have changed the input format of the
zone and find fields to integer (Int) in order to do comparison
operations. Since we are doing only bitwise operations, we

limited the HElib message space to 2, in order to use only
0s and 1s. Therefore, maximum length for encrypting field
when we used message space as 2 was 168, and we used
composite event size as 168 when sending to public Siddhi
server. The architecture of EDGAR Comparison benchmark
is similar to the topology shown in Fig. 7. Basic criterion
is to filter out EDGAR logs, which satisfies the following
conditions (see Listing 4).

(zone == 0) and (f i n d > 0) and (f i n d < 3)

Listing 4 EDGAR comparison condition.

Private Siddhi
Server

Public Siddhi
ServerHomoESM

Private Cloud Public Cloud

EC2 instance type: m4.xlarge
Region: North Virginia, USA
Hardware: 4 cores, 16GB RAM
OS: Ubuntu 16.04.2 LTS

EC2 instance type: m4.4xlarge
Region: North Virginia, USA
Hardware: 16 cores, 64GB RAM
OS: Ubuntu 16.04.2 LTS

730Mbits/sec 500Mbits/sec

EC2 instance type: m4.xlarge
Region: Ohio, USA
Hardware: 4 cores, 16GB RAM
OS: Ubuntu 16.04.2 LTS

Fig. 11 Experiment setup of HomoESM on Amazon EC2

Fig. 12 Input data rate variation of the two benchmarks a E-mail Filter benchmark b EDGAR benchmarks

 A. Rodrigo et al.

1 3

5.5 EDGAR Add/Subtract Benchmark

In EDGAR Add/Subtract benchmark, we have changed
the input format to an Integer, for code, idx, norefer, and
find fields in order to support add/subtract operations. The

corresponding Siddhi query which depicts the addition and
subtract operations conducted by this benchmark is shown
in Listing 5.

Fig. 13 Average latency of elastic scaling of the E-mail Filter benchmark with securing the event stream sent to public cloud via homomorphic
encryption

Fig. 14 Average latency of elastic scaling of the EDGAR benchmark with homomorphic filter operations

Fig. 15 Results comparison for three runs of the EDGAR benchmark with homomorphic filter operations

@info (name = ’ query5 ’) from
inpu tEdga rS t r e am s e l e c t i i j t i m e s t amp , ip , da t e , t ime ,
zone , c ik , a c c e s s i o n , e x t e n s i o n , code−100 as code , s i z e ,
i dx +30 as idx , n o r e f e r +20 as n o r e f e r , noagen t , f i nd −10
as f i nd , c r aw l e r , b rowse r i n s e r t i n t o ou t pu tEdga rS t r e am ;

Listing 5 EDGAR add/subtract siddhi query.

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

The architecture of EDGAR Add/Subtract benchmark is
shown in Fig. 9. Note that EDGAR Multiply benchmark
also has similar architecture although Q2 and Q5 operators
conduct multiply operations instead.

5.6 EDGAR Multiply Benchmark

In EDGAR Multiply benchmark, we have changed the
input format to an Integer, for ‘code’ and ‘idx’ fields. As in

EDGAR filter benchmark, here also we add lengthy string
of 1024 characters to the existing value of ‘noagent’ field, in
order to increase the packet size. We multiply code field by
2 and idx field by 3. The corresponding Siddhi query which
depicts the multiplication operation done by this benchmark
is shown in Listing 6. The architecture of EDGAR Multiply
benchmark is shown in Fig. 10.

Fig. 16 Average latency of elastic scaling of the EDGAR benchmark with homomorphic comparison operations

Fig. 17 Average latency of elastic scaling of the EDGAR benchmark with homomorphic add/subtract operations

d e f i n e s t r e am inpu tEdga rS t r e am (i i j t i m e s t am p long , i p
s t r i n g , d a t e s t r i n g , t ime s t r i n g , zone s t r i n g , c i k s t r i n g ,
a c c e s s i o n s t r i n g , e x t e n s i o n s t r i n g , code i n t , s i z e s t r i n g ,
i dx i n t , n o r e f e r i n t , noagen t s t r i n g , f i n d i n t , c r aw l e r
s t r i n g , b rowse r s t r i n g) ;
@info (name = ’ query5 ’) from inpu tEdga rS t r e am s e l e c t
i i j t i m e s t amp , ip , da t e , t ime , zone , c ik , a c c e s s i o n ,
e x t e n s i o n , code ∗2 as code , s i z e , i dx ∗3 as idx , n o r e f e r ,
noagen t , f i nd , c r aw l e r , b rowse r i n s e r t i n t o
ou t pu tEdga rS t r e am ;

Listing 6 EDGAR multiply siddhi query.

 A. Rodrigo et al.

1 3

6 Evaluation

We conducted the experiments using three VMs in Amazon
EC2. In this experiment, two VMs were hosted in North
Virginia, USA, and they were used as private cloud while
the VM used as public cloud was located in Ohio, USA. We
used the E-mail Filter benchmark in this experiment which
does filtering of an e-mail event stream. Out of the two VMs
in North Virginia, one was a m4.4xlarge instance which had
16 cores, 64 GB RAM while the private CEP Engine was
deployed in a m4.xlarge instance which had four CPU cores,
16 GB RAM. In m4.4xlarge VM, we have deployed ‘Event
Publisher’ (Event Publisher) and ‘statistic-collector’ (Event
Receiver) modules. The Stream Processor engine running in
the public cloud was deployed on the VM running in Ohio
which was a m4.xlarge instance. All the VMs were running
on Ubuntu 16.04.2 LTS (Long-Term Support). Using a net-
work speed measurement tool, we observed that network
speed between the two VMs in North Virginia was around

730 Mbits/s while the network speed between North Virginia
and Ohio was 500 Mbits/s. Figure 11 shows the architecture
of the experimental setup. The input data rate variation of
the E-mail benchmark and the EDGAR benchmark datasets
is shown in Fig. 12a, b respectively. The two charts indicate
that the workloads imposed by the two benchmarks have
significantly different characteristics.

6.1 E‑mail Filter Benchmark

In the first round, we used E-mail Filter benchmark. The
results of this experiment are shown in Fig. 13. The curve
in the blue color (dashed line) indicates the private cloud
deployment. The red color curve indicates the deployment
with switching to public cloud. A clear reduction in average
latency can be observed when switched to the public cloud
in this setup compared to the private cloud-only deploy-
ment. With homomorphic elastic scaling, an overall average
latency reduction of 2.14 s per event can be observed. This

Fig. 18 Average latency of elastic scaling of the EDGAR benchmark with homomorphic multiplication operation

Fig. 19 Average Latency of running E-mail Filter benchmark with HomoESM for multiple VM test

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

is 10.24% improvement compared to the private cloud-only
deployment. Note that in all the following charts, we have
marked the times where VM start/VM stop operations have
been invoked in order to start/stop the VM in the public
cloud. Since VM startup and data sending times are almost
similar, in this paper we assume VM startup time as the data
sending time and VM stop time as the point where we stop
sending data to public cloud.

6.2 EDGAR Filter Benchmark

In the second round, we used EDGAR Filter benchmark
for evaluation of our technique. The results are shown in
Fig. 14. Significant performance gain in terms of latency
can be observed when switching to public cloud with the
EDGAR benchmark. A notable fact is that EDGAR dataset
had relatively smaller message size. The average message
size of the EDGAR benchmark was 1.1 KB. The HomoESM
mechanism was able to reduce the delay with considera-
ble improvement of 17%. Furthermore, multiple rounds of
experiments done with EDGAR Filter benchmark indicate
that our approach provides consistent results (see Fig. 15).

6.3 EDGAR Comparison Benchmark

Next, we evaluated the homomorphic comparison opera-
tion. Here, we have used a slightly modified version of the
EDGAR Filter benchmark to facilitate comparison operation
in a homomorphic manner. Here, also we add lengthy string
of 1024 characters to the existing value of ‘noagent’ field.
The results are shown in Fig. 16.

We could see only a slight improvement in latency with
EDGAR comparison benchmark. The improvement in the

average latency was around 449 ms which is 3% improve-
ment compared to the private-only deployment. Compared
to equal-only operation, less-than and greater-than opera-
tions consume more XOR and AND gate operations in the
homomorphic encryption (HE) level. Due to that, Siddhi
engine processing throughput, when having homomorphic
less-than and greater-than operations, is quite low compared
to equal operation-only case. Therefore, the portion of events
sent to public Siddhi is lesser than other cases. That’s why
we could not see much advantage (only 3%) on latency
curves for both private and public Siddhi setup compared to
private Siddhi-only setup. During the middle spike shown
in Fig. 16, a 26.17% improvement in latency was observed.

6.4 EDGAR Add/Subtract Benchmark

We evaluated the homomorphic add/subtract operation using
the EDGAR benchmark. The addition and subtraction HE
operations’ supported message space range is from 0 to
1201. Although 32-bit full adder circuits using HElib could
increase the range further, we keep this as a further work.
The overall improvement was 3.68% for the scenario where
1.5% of the load was sent to the public VM. We observed
a maximum 6.13% performance improvement in the third
spike shown in Fig. 17.

6.5 EDGAR Multiplication Benchmark

Next, we studied the performance behavior of the homomor-
phic multiplication functionality. The multiply HE opera-
tion’s supported message space range is from 0 to 1201. If
we need to support full-range multiply operation, we need to
come up with at least 32-bit binary multiplier circuit using

Fig. 20 CPU utilization at Event Publisher/statistics collector VM when sending data to public SP engine

 A. Rodrigo et al.

1 3

HElib. But in this work we do not address this issue. The
results of this experiment are shown in Fig. 18.

Multiplication had similar performance curve to the
Add/Subtract benchmark. The third spike has performance
improvement of 7.81%.

6.6 Multiple VM Test for E‑mail Filter Benchmark

Up to this point, we had evaluated the performance improve-
ment we could obtain using only one public cloud VM. In
this experiment, we evaluated the advantage of using mul-
tiple VMs and scaling the homomorphic stream processor
among those VMs. We conducted E-mail Filter benchmark
performance test with two public VMs and four public VMs
in two separate tests. The purpose of the experiment was to
investigate whether adding more VMs in the public cloud
may improve the performance. We identified that when we
used a single public VM with a routing load percentage of
1.5%, the public VM is still not overloaded. Therefore, even
if we increased the number of public VMs, the expected
advantage could not be achieved. On the other hand, we can-
not increase the routing load percentage more than 1.5% due
to higher CPU utilization in Event Publisher VM instance.
Therefore, we have ended up with similar latency curves for
all cases with single, two, and four public VMs (Fig. 19).

7 Discussion

In this paper, we have not only implemented a mechanism
for elastic privacy-preserving data stream processing but
also shown considerable performance benefits on real-world
experimental setups. Results comparing HomoESM to the
private cloud-only deployments demonstrate 3–17% latency
improvements. Furthermore, during large workload spikes,
HomoESM has shown 6–26% latency improvements which
is almost doubled performance improvement. Workload
spikes are the key situations where HomoESM needs to be
deployed which indicates HomoESM’s effectiveness in han-
dling such situations.

According to the above experiments, we can see bet-
ter results only in E-mail Filter and EDGAR Filter bench-
marks. These benchmarks’ evaluations undergo only with
single homomorphic XOR gate computations per composite
event. Therefore, the complexity of computation at public
SP engine is low, compared to EDGAR comparison and
Add/Subtract benchmarks. This is why we see higher per-
formance gains with the E-mail Filter and EDGAR Filter
benchmarks compared to other benchmarks.

Apart from the above, EDGAR comparison and Add/
Subtract benchmark experiments have limitations. EDGAR
comparison benchmark experiment is performed only on
two-bit numbers. This is due to the increment of circuit

complexity in HElib, with the increment of no. of bits.
EDGAR Add/Subtract benchmark also supports the range
from 0 to 1201, which is the message space of HElib accord-
ing to our selected settings. If we want to have support for
larger numbers like 32-bit integers, we need to come up with
HElib circuitry that will take longer time.

Although one could argue that the techniques presented
in this paper are restricted due to the nature of the modern
homomorphic encryption techniques, we have overcome the
difficulties via batching and compressing the events, which
is one of the key contributions of this paper. We have used
high-performance VM instance type m4.4xlarge in the eval-
uations, because composite event composing and decompos-
ing require more CPU for publisher and statistics collector.
In the multi-VM experiment for example when we routed
1.5% load into the public cloud VM, the CPU utilization
almost reached 100%. This is due to higher CPU consump-
tion when performing composition and decomposition by
Event Publisher and statistics collector, respectively. Java
Flight Recorder (JFR) output for Event Publisher when send-
ing data to public SP engine is shown in Fig. 20.

A limitation of FHE is that it needs prior knowledge of
the data to conduct different operations on the encrypted
data. Hence, HomoESM is applicable only for data streams
with finite and unchanging data.

8 Conclusion

Privacy has become an utmost important barrier which hin-
ders leveraging IaaS for running stream processing appli-
cations. In this paper, we introduce a mechanism called
HomoESM which conducts privacy-preserving elastic data
stream processing. We evaluated our approach using two
benchmarks called E-mail Filter and EDGAR on Amazon
AWS. We observed significant improvements in overall
latency of 10% and 17% for E-mail Processors and EDGAR
datasets with using HomoESM on equality operation. We
also implemented comparison, add/subtract, and multiplica-
tion operations in HomoESM which resulted in maximum
26.17%, 6.13%, and 7.81% improvements in the average
latencies, respectively. In the future, we plan to extend this
work to handle more complicated streaming operations. We
also plan to experiment with multiple query-based tuning for
privacy-preserving elastic scaling.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption

1 3

References

 1. Aguilar-Melchor C, Fau S, Fontaine C, Gogniat G, Sirdey R
(2013) Recent advances in homomorphic encryption: a possible
future for signal processing in the encrypted domain. IEEE Signal
Process Mag 30(2):108–117

 2. Armknecht F, Boyd C, Carr C, Gjøsteen K, Jäschke A, Reuter CA,
Strand M (2015) A guide to fully homomorphic encryption. IACR
Cryptol ePrint Arch 2015:1192

 3. Cervino J, Kalyvianaki E, Salvachua J, Pietzuch P (April 2012)
Adaptive provisioning of stream processing systems in the cloud.
In: 2012 IEEE 28th international conference on data engineering
workshops (ICDEW), pp 295–301

 4. Cuzzocrea A, Chakravarthy S (2010) Event-based lossy com-
pression for effective and efficient OLAP over data streams. Data
Knowl Eng 69(7):678–708

 5. Dai W, Sunar B (2015) cuhe: A homomorphic encryption accel-
erator library. Cryptology ePrint archive, report 2015/818. https
://eprin t.iacr.org/2015/818

 6. Dayarathna M, Perera S (2018) Recent advancements in event
processing. ACM Comput Surv 51(2):33:1–33:36

 7. Dayarathna M, Suzumura T (2012) Hirundo: a mechanism for
automated production of optimized data stream graphs. In: Pro-
ceedings of the 3rd ACM/SPEC international conference on per-
formance engineering, ICPE ’12, pp 335–346, New York, NY,
USA. ACM

 8. Dayarathna M, Suzumura T (2013) Automatic optimization of
stream programs via source program operator graph transforma-
tions. Distrib Parallel Databases 31(4):543–599

 9. Dayarathna M, Suzumura T (2013) A mechanism for stream pro-
gram performance recovery in resource limited compute clusters.
Springer, Berlin, pp 164–178

 10. Dayarathna M, Suzumura T (2013) A performance analysis of
system S, S4, and esper via two level benchmarking. In: Joshi K,
Siegle M, Stoelinga M, D’Argenio PR (eds) Quantitative evalua-
tion of systems. QEST 2013. Lecture notes in computer science,
vol 8054. Springer, Berlin, Heidelberg, pp 225–240. https ://doi.
org/10.1007/978-3-642-40196 -1_19

 11. DERA (2017). Edgar log file data set. https ://www.sec.gov/dera/
data/edgar -log-file-data-set.html

 12. Gentry C (2009) Fully homomorphic encryption using ideal lat-
tices. In: Proceedings of the forty-first annual ACM symposium
on theory of computing, STOC ’09. ACM, New York, NY, USA,
pp 169–178

 13. Google (2017) Cloud dataflow. https ://cloud .googl e.com/datafl ow/
 14. Halevi S (2017) An implementation of homomorphic encryption.

https ://githu b.com/shaih /HElib
 15. Halevi S, Shoup V (2014) Algorithms in HElib. Springer, Berlin,

pp 554–571
 16. Hayes JP, Kolar HR, Akhriev A, Barry MG, Purcell ME, McK-

eown EP (2013) A real-time stream storage and analysis plat-
form for underwater acoustic monitoring. IBM J Res Dev
57(3/4):15:1–15:10

 17. Hummer W, Satzger B, Dustdar S (2013) Elastic stream process-
ing in the cloud. Wiley Interdiscip Rev Data Min Knowl Discov
3(5):333–345

 18. IBM (2017) Streaming analytics. https ://www.ibm.com/cloud /
strea ming-analy tics

 19. Ishii A, Suzumura T (2011) Elastic stream computing with clouds.
In: 2011 IEEE 4th international conference on cloud computing,
pp 195–202

 20. Jayasekara S, Perera S, Dayarathna M, Suhothayan S (2015) Con-
tinuous analytics on geospatial data streams with wso2 complex
event processor. In: Proceedings of the 9th ACM international
conference on distributed event-based systems, DEBS ’15. ACM,
New York, NY, USA, pp 277–284

 21. Klimt B, Yang Y (2004) Introducing the enron corpus. In: CEAS
 22. Loesing S, Hentschel M, Kraska T, Kossmann D (2012) Stormy:

An elastic and highly available streaming service in the cloud. In:
Proceedings of the 2012 Joint EDBT/ICDT workshops, EDBT-
ICDT ’12, ACM, New York, NY, USA, pp 55–60

 23. Page A, Kocabas O, Ames S, Venkitasubramaniam M, Soyata T
(Dec 2014) Cloud-based secure health monitoring: Optimizing
fully-homomorphic encryption for streaming algorithms. In: 2014
IEEE Globecom Workshops (GC Wkshps), pp 48–52

 24. Quoc DL, Chen R, Bhatotia P, Fetzer C, Hilt V, Strufe T (2017)
Streamapprox: Approximate computing for stream analytics. In:
Proceedings of the 18th ACM/IFIP/USENIX Middleware Confer-
ence, Middleware ’17. ACM, New York, NY, USA, pp 185–197

 25. Ravindra S, Dayarathna M, Jayasena S (2017) Latency aware
elastic switching-based stream processing over compressed data
streams. In: Proceedings of the 8th ACM/SPEC on international
conference on performance engineering, ICPE ’17. ACM, New
York, NY, USA, pp 91–102

 26. Rodrigo A, Dayarathna M, Jayasena S (2019) Privacy preserv-
ing elastic stream processing with clouds using homomorphic
encryption. In: Li G, Yang J, Gama J, Natwichai J, Tong Y (eds)
Database systems for advanced applications. Springer, Cham, pp
264–280

 27. Shaon F, Kantarcioglu M, Lin Z, Khan L (2017) Sgx-bigmatrix:
A practical encrypted data analytic framework with trusted pro-
cessors. In: Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, CCS ’17. ACM, New
York, NY, USA, pp 1211–1228

 28. Striim (2017) Striim delivers streaming hybrid cloud integration to
microsoft azure. http://www.strii m.com/press /hybri d-cloud -integ
ratio n-to-micro soft-azure

 29. Theeten B, Bedini I, Cogan P, Sala A, Cucinotta T (2014) Towards
the optimization of a parallel streaming engine for telco applica-
tions. Bell Labs Tech J 18(4):181–197

 30. Togan M, Plesca C (2014) Comparison-based computations over
fully homomorphic encrypted data. In: 2014 10th international
conference on communications (COMM), pp 1–6

 31. WSO2 (2018) Wso2 stream processor. https ://wso2.com/analy
tics-and-strea m-proce ssing

 32. WSO2 (2019) Stream processing and complex event processing
engine. https ://githu b.com/siddh i-io/siddh i

https://eprint.iacr.org/2015/818
https://eprint.iacr.org/2015/818
https://doi.org/10.1007/978-3-642-40196-1_19
https://doi.org/10.1007/978-3-642-40196-1_19
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://cloud.google.com/dataflow/
https://github.com/shaih/HElib
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
http://www.striim.com/press/hybrid-cloud-integration-to-microsoft-azure
http://www.striim.com/press/hybrid-cloud-integration-to-microsoft-azure
https://wso2.com/analytics-and-stream-processing
https://wso2.com/analytics-and-stream-processing
https://github.com/siddhi-io/siddhi

	Latency-Aware Secure Elastic Stream Processing with Homomorphic Encryption
	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Overview of WSO2 Stream Processor
	3.2 Elastic Switching Mechanism
	3.3 Homomorphic Encryption

	4 System Design
	5 Implementation
	5.1 Implementation of HomoESM
	5.2 E-mail Filter Benchmark
	5.3 EDGAR Filter Benchmark
	5.4 EDGAR Comparison Benchmark
	5.5 EDGAR AddSubtract Benchmark
	5.6 EDGAR Multiply Benchmark

	6 Evaluation
	6.1 E-mail Filter Benchmark
	6.2 EDGAR Filter Benchmark
	6.3 EDGAR Comparison Benchmark
	6.4 EDGAR AddSubtract Benchmark
	6.5 EDGAR Multiplication Benchmark
	6.6 Multiple VM Test for E-mail Filter Benchmark

	7 Discussion
	8 Conclusion
	References

