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ABSTRACT Intelligent robot companions contribute significantly in improving living standards in the
modern society. Therefore, human-like decision making skills are sought after during the design of such
robots. On the one hand, such features enable the robot to be easily handled by its non-expert human
user. On the other hand, the robot will have the capability of dealing with humans without causing any
disturbance by the robot’s behavior.Mimicing human emotional intelligence is one of the best and reasonable
ways of laying the foundation for robotic emotional intelligence. As robots are widely deployed in social
environments, perception of the situation or intentions of a user prior to an interaction is required to be
proactive. Proactive robots are required to understand what is communicated by the human body language
prior to approaching a human. Social constraints in an interaction could be demolished by this assessment
in this regard. In this review, we incorporate various findings of human–robot interaction, social robotics
and psychophysiology to assess intelligent systems which were capable of evaluating the emotional state of
humans prior to an interaction. Second, we identify the cues and evaluation techniques that were utilized by
such intelligent agents to simulate and evaluate the suitability of a proactive interaction. Available literature
has been evaluated to distinguish limitations of existing methods and suggest possible improvements. These
limitations, guiding principles to be adhered to and suggested improvements, are presented as an outcome
of the review.

INDEX TERMS Interaction initiation, nonverbal cues, context-awareness, social robots, human-robot
interaction.

I. INTRODUCTION
We live in a complex environment filled with various distinct
phenomena. In the mean time, we revolve around other peo-
ple we daily meet. We react to people and phenomena around
ourselves in various means, based on the nature of a particular
situation. Our reactions are visible to outside through behav-
ior. Out of such reactions, words, expressions and physical
movements are powerful drivers of human behavior [1].

Today, robots are deployed in our environments to make
most of the tasks easier. Such robots are expected to have a
general sense of the outcomes of their behavior in human-
robot collaborative environments [2]. Many robots entering
social environments are expert in only one or a few given
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approving it for publication was Marina Gavrilova.

specific tasks. Cleaning robots [3], [4], rescue robots [5],
shopping assistants [6] and healthcare robots [7] are some
examples for task-specialized robots which require lesser
overall emotional intelligence. However with the deploy-
ment of robots in social environments, robotic systems have
become a demonstrator of social and emotional interaction
among humans and robots [8]–[10]. Therefore in the decades
to come, the hospitality and emotional intelligence of artifi-
cial agents are expected to increase with their wide variety
of social applications. Most significantly, the robots have
to match between a particular situation and their emotional
behavior [9].

Some situations urge a robot to take decisions regard-
ing the pattern of interaction expected. Such situations
request a conscious observation. Such robotic systems are
already used in teaching, childcare and other social domains.
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These systems still require development to adjust according
to unexpected situations where human intentions change.
Simulating and comprehending diverse social behaviors of
humans is a challenging, and yet sought after feature to be
engraved into a robot’s personality [11]. In contrast, there
are humanoid robots which can replicate typical human char-
acteristics in the form of physical appearance, movements,
words, facial expressions, etc. An example system in which
robot’s responses evolved by means of an adaptive behavior
is presented in [12].

Human ascribes upon robots must be considered before
planning this present robot’s intelligence. For instance, cre-
ators in [13] researched how robots can enhance the personal
satisfaction of senior citizens by being a partner to defeat
loneliness. Here, individuals’ mentality that robots are per-
forming overwhelming undertakings but still lacking in intel-
ligent conduct, could be changed with such an approach. For
example [14], [15] are models for fall detection of elderly
by robots. Thus, robots are acknowledged by numerous com-
munities as a partner having the required capacities installed
within. In such situations, following a decorum; essen-
tially a ‘‘robotiquette’’ acknowledged by people is expected
[16], [17]. Somehow numerous reactive techniques for
human-robot domains have been set up so far, but yet not
many proactive strategies were settled [18].

Preference-based collaboration with robots is a demanding
viewpoint in human-robot shared situations [19]. In such cir-
cumstances, adopting supportive behaviors which rely on the
insight, instead of playing out a requested task are required.
Fitting such smart conduct is as critical as challenging. This
is because of the multifaceted and complex nature of human
conduct and perceiving such practices, outcoming the diffi-
culties in innovation and environment. Accordingly human-
level prediction of situations still needs enhancement [20].

A set of observable cues extracted from humans and their
environment can be used as demonstrators for a perception
model to simulate a human-robot scenario. Hence the level of
interactivity within a situation can be determined. Nonverbal
features of perceiving a situation are the most prominent
and effective for an evaluation of the situation prior to an
interaction. Understanding nonverbal behavior or the body
language elevates decision making capabilities related to the
interaction initiation by a robot, as the system outputs a
measure of the emotional state in the human-robot encounter.
Two such encounters are shown in Fig. 1. In the first instance
in Fig. 1(a), the user gives instructions to follow. Hence the
perception of the object placement, user’s gestures and voice
instructions will be adequate to perform the task. In contrast,
Fig. 1(b) shows an occasion in which the user was unaware
of the robot’s presence. In both the situations, the state of the
user is determined by the intentions of him/her as well as fac-
tors that exist in the surrounding environment. As Fig. 1 (b),
objects and people make the environment, while intentions
of the user are responsible for the factors within him/herself
which might also affect the emotional state of that situation.
In order to deliver a service in a polite manner, the robot

FIGURE 1. Example scenarios where the required level of
situation-awareness differs. (a) shows a situation in which a human
commands a robot to do a task (b) shows a situation where the user was
engaged in a task. As the user was not attentive of the presence of the
robot, robot tries to initiate an interaction. In such a scenario, facts from
the surrounding as well as within the user may affect the emotional state
of the interaction scenario [2].

can adjust it’s approach behavior, dialogs and other actions
regarding interaction to match the situation. User’s engage-
ment in the task and interest for an interaction have to be
predicted by the robot based on the factors visible in the sce-
nario. Hence perception of emotional, social, psychological
and other aspects of the situation become prominent during
this type of scenario.

In this review, we aim at providing a detailed overview
of the mechanisms used in modern artificial agents to gain
emotional intelligence. We discuss the observable human
cues used in support of such systems and evaluate to which
extent such assessments by robots have been accepted by
humans.We compare how humans perceive their surrounding
when there are others around and the same concepts in human
emotional intelligence in such scenarios have been adopted to
evaluate the existing mechanisms used until now. Secondly,
we compared earlier and modern approaches adopted by
robots to evaluate observable, nonverbal human behavior. The
review is concluded examining the most appropriate mecha-
nisms to be adopted to gain emotional intelligence in human-
robot collaborative environments. Furthermore, the areas
where similar assessment of human behavior is required and
challenges for such robots to overcome have been identified.
Guiding principles and implications for future research are
stated in the end. While this review analyses how robots
perceive human behavior through observation, emotion rep-
resentation and appearance of robots and the perception of its
physical environment related to the encounter such as objects
are beyond the scope of the review. On that account, this paper
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presents a review of literature on existing mechanisms and
systems deployed to perceive nonverbal human behavior in
human-robot encounters where a robot intends to initiate an
interaction with its human user.

A. REVIEW PROTOCOL
The definitions and meanings of phrases used in the paper
are listed below in order to provide a clear and concise
understanding for the reader.

• Situation-awareness: Robot’s intelligence upon the
elements or events in an occasion encountered with a human.
These elements are assessed analogous to time or space with
the intent of finding meaningful relationships between occa-
sions and behavior. The situation includes the humans and
objects in the environment. The physiological, psychologi-
cal, emotional, social and other aspects of the encounter are
included in gaining awareness.

• Nonverbal cues: Features that could be observed from
humans that do not involve direct verbal communication.
These include bodily movements, facial expressions, details
of appearance, postures, etc.

• Interaction demanding or interaction readiness: The
extent to which a human prefers to have an interaction. The
interest towards an interaction is measured by the interaction
expected by a particular human. This interest is evaluated by
using the observable cues displayed by that human.

• State: The current condition of an encounter. During
HRI (Human-Robot Interaction), the parameters associated
with the encounter between a human and a robot define the
‘state’ of that encounter. The state can be used to determine
the level of interactivity required in an encounter.

• Interaction initiation: Start of an approach behavior or a
conversation after observation of a particular situation. This
is the phase during which the initiator gets the attention of
the responder. In robot-initiated or proactive HRI, the robot
is responsible for interaction initiation while the user is
engaged.

•Proactive robots:Robots which identify the requirement
of a certain situation and acts instantly without any instruc-
tions from outside.

The literature was selected from major indexed databases
such as IEEE Xplore, Google Scholar, SCOPUS, ACM,
Elsevier and ScienceDirect. Manuscripts published in peer-
reviewed journals and conferences were considered to ana-
lyze during this survey. Unpublished or non-peer reviewed
research articles such as technical reports, news, web arti-
cles, theses and dissertations were excluded from the study.
In contrast, books and chapters which could support findings
and definitions were included. Major focus was given to facts
and findings established by journal articles upon conference
papers. Only articles published in English were considered.
Literature related to understanding and generating voice was
excluded from this survey. In this review, proactive behaviors
of industrial robots are excluded and only social robots are
considered. Literature under Social Robotics, Human-Robot

Interaction, Emotionally intelligent artificial agents andmany
more.

The paper is structured as follows. Nonverbal features of a
human-robot encounter is discussed in section II. A brief dis-
cussion about features associated with human-robot encoun-
ters and what proactive robots should look for during HRI
are discussed in section III. Section IV gives an overview
about the current status of existing systems and directions
of related research. Limitations identified in modern systems
and possible improvements are discussed in section V. Finally
the investigation is concluded in section VI.

II. NONVERBAL INTERACTION DURING HRI
Capacity of making inviting discussions at right occasions
is indispensable in accomplishing a proactive behavior of a
robot. Robots are required to have insight to decide when
to cooperate and when not to. When starting communica-
tion, this natural or human-like conduct upgrades joint effort
among robots and the non-master. So as to improve the union
between human clients and robots, robots which can replicate
human practices so as to assume the role of a close contact,
for example, ‘companion’ and ‘parental figure’ are being
produced [21]–[25]. However, the focus of these methodolo-
gies is restricted to the investigation and implementation of
strategies that ought to be encapsulated into the robots. This
helps robots to keep up a fluid interaction with their users.
However, how does a robot identify key features to observe
during a human-robot encounter?

To find answers to this question, researchers have been
trying to establish common criteria to model human behavior.
A large number of the current frameworks utilize facial
expressions and body postures and additionally voice so as
to decide the interaction demanding or the emotional state
of a situation [26], [27]. In spite of the fact that voice can
be utilized as a factor which demands interaction from an
outsider, this is just conceivable after the user speaks. That
is, after the user initiates the interaction. Meantime, a few
methodologies have been introduced to assess the expressions
and body postures during an interaction so as to judge user’s
likeliness towards an interaction with the robot [28], [29].
However, these realities can be assessed simply after the
commencement of the interaction. Perceived information is
used to decide upon the continuation of interaction flow there-
after. In any case, postures are useful in distinguishing the
interaction demanding of the human subject before beginning
a conversation.

Picard et al. suggested using haptic interaction tools to
evaluate affective interactions [30]. This study uses body
measures which are able to provide additional insight into an
emotional state of a user without relying on an individual’s
cognitive assessment of the emotional state. But there is a rare
chance for users to touch a robot (physical interaction) before
an interaction and even they do, then it can be considered that
the interaction was initiated by the user by means of touch,
not the robot.
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TABLE 1. Summary of the literature discussed in Section II.

The above-discussed systems consider a limited set of cues
from its surrounding to valuate the possibility of an interac-
tion. Furthermore, integration of spatial and body factors are
not adequately deployed in identifying the user behavior in
these approaches. Restrictions for interaction must be param-
eterized and analyzed before the engagement with a user. For
example, if the user was doing a certain task which involves
rapid movements, it is reasonable for the robot to interpret
the occasion as an ‘engaged user’. On the other hand, if the
user was standing, adopting very slow movements, that situ-
ation can be interpreted as a situation with a high interaction
demanding where it is okay for the robot to interact with
its user.

Which factors to be selected to analyze a situation is an area
which requires attention. As a situation consists of the robot
and its surrounding, factors from all these three aspects will
need to be analyzed. Even so, development of a criteria which
can bring all these factors to a common pool is still confusing
and challenging. Difficulty of quantifying emotional factors
for the analysis can be stated as the reason which retards the
progress in respective field of research.

A summary of the discussed literature is given in TABLE 1.

A. WHAT TO OBSERVE?
Navarro and Karlins [1] reveal fascinating trends in nonverbal
human behaviors, or the body language. In this way, transmis-
sion of information is achieved through body-based behaviors
such as facial expressions, gestures, touching, physical move-
ments, posture, and body adornment, etc. Nonverbal behavior
comprises approximately 60-65% of all interpersonal com-
munication or an interaction [31].

In order to derive intentions upon a certain situation,
the robot has to be eclectic about the factors particular to that
unique situation. A situation between a human and a robot
consists of the robot itself, the user and the environment
around the robot and human, as shown in Fig. 1. When
the robot intends to perceive such a situation, it first has to
identify interactive factors within itself and the user as well
as which are in the environment. Factors within the robot
itself include the dialog patterns the robot generates, main-
taining an interactive distance in between, and displaying
appropriate behavior, etc. Factors within the user will be
numerous, but emotions, social norms, beliefs, personality

traits, user’s current activity and other psychophysiological
factors contribute majorly to decide the level of interaction
readiness within a human. Objects and other humans in the
surrounding, obstacles, etc. make the list of factors in the
environment which have to be perceived by the robot . Factors
which are exhibited by the robot such as the personality traits,
human-likeness, appearance, etc. were not considered within
the scope of this review.

Psychological state is the reason behind human behavior.
This psychological state is displayed to the outside through
both verbal and nonverbal behavior. Body-based behavior is
the result of cognitive processes developed in human brain.
Behavior can be analyzed as an interplay of mental states
and actions. Simply, thoughts and emotions provoke actions.
In addition, cognitive elements such as facial expressions,
verbal phrases, etc. fall under ‘behavior’ which includes both
verbal and nonverbal aspects. Furthermore, brain activities
such as internal states of mind, cognition and emotions are
responsible for one’s actions. Proper interaction between
brain activity and actions, not only makes him perceive the
world around him, but also enables the others around to
perceive him. Fig. 2 shows how the behavior of the user
changes in the presence of the robot.

FIGURE 2. How the user behavior changes in the presence of robot as in
[2]. (a) Initially only the robot is aware of the mutual existence of the user
and robot (b) The user happens to see the robot as the robot approaches
him (c) User’s reaction for the approaching robot was looking at it (d)
User waves hand towards robot (e) As the user responds to the robot in a
friendly manner, robot decides to go closer and initiate a conversation.

Behavioral responses of humans can either be voluntary
or sometimes involuntary. Furthermore, many involuntary
behaviors are nonverbal. There is a number of psycholog-
ical theories behind both voluntary and involuntary human
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behavior. Among these various theories, the theory of planned
behavior and the theory of reasoned action map human
actions and their thoughts in a rather reasonable and a jus-
tifiable basis [32]. Hence a method to perceive and combine
these factors associated with a situation to predict the emo-
tional state of a certain situation is required.

Introducing an established relationship between these var-
ious factors which are difficult to quantify, has been chal-
lenging at all the times. This is the reason to develop systems
which evaluate only a limited number of factors so far. Often
these systems either evaluate human factors or environmental
factors alone.

FIGURE 3. User-centered perception of a situation is shown. Each aspect;
user, robot and environment is subdivided into smaller elements which
affect the situation. For example, factors within the user are categorized
into psychological attributes, physiological attributes, social norms and
rules etc. Factors in the environment are divided into people and objects.
Both spatial and emotional attributes of each aspect are considered.

B. COMMON ENCOUNTERS
The overall scenario addressed during the review is depicted
in Fig. 3 and the situation was perceived by the robot in a
user-centered manner. The user was not intended to adjust
his/her behavior to fit the capabilities of the robot as in the
past. Instead, the robot was allowed to adapt according to the
perceived events around the user and other related subjects.
Hence perception of factors external to robot is crucial in
a user-centered design similar to the human-robot interac-
tion scenario. Such situations are often encountered in social
environments, domestic settings, museums, shopping malls,
elderly and childcare etc.

1) USER-CENTERED DESIGN
User-centered design confronts designers tomold an interface
around the capabilities and requirements of the operators.
Rather than displaying information that is gathered around
sensors and technologies which produce it, a user-centered
design unites such various information in ways that set the
goals, tasks, and requirements of the users. As a result of the
user-centered design, we can extraordinarily diminish blun-
ders and enhance productivity without requiring significantly
new technical capabilities. Alongside user-focused structure,
also comes enhanced user acceptance and satisfaction as

a side advantage, by removing much of the frustration upon
limitations of present technologies. User centered designs
provide measures to support humans and then humans will
work better with robots. The requirement of user’s adaptation
according to the limitations in technology is abolished during
this approach.

In order to avoid people calling a robot explicitly, proactive
robotic systems which can offer their help voluntarily are
required. Therefore the user will not have to formulate his/her
behavior to suit the capabilities of the robot, as the robot can
read the intentions of its user. Simply, the proactivity of the
robot reduces the user’s effort.

A robot with cognitive skills engraved into its personality
traits is more reliable [33]. Furthermore, humans display a
more open and friendly behavior in front of a robot than
another human. It is also upon robots that humans show more
rejection when dissatisfied or disturbed by their behavior [2].
Hence situation-awareness of user behavior will mitigate
incidents in which robots being rejected by their users.

In dynamic environments, decision making is largely
reliant on robot’s awareness- a constantly evolving picture of
the state of the environment. This awareness drives decision
making and consequently the performance of the robot [34].

2) REQUIREMENT OF PERCEPTION OF BEHAVIOR
The key points that have initiated the development of
behavior-cautious robots and the requirement for such sys-
tems can be summarized as follows.

a. With the widened utilization of service robots in social
environments over the past few decades, intelligence in such
robots have to be developed to cater to human needs in close
encounters. These systems should not make disturbances to
humans through their behavior.

b. In most robotic systems, there are limitations in emo-
tional intelligence than in its physical capabilities and effi-
ciency. In contrast, emotional intelligence plays a major
part in social environments. Monitoring human behavior
is required before the robot initiates an interaction with a
human, unless the individual requested for a specific service.

c. Users have to restrict their behavior when a robot lacks
the capability to perceive their situation. For instance, if a
robot invades the personal space of a user when approaching
that individual, he/she has to limit his/her movements so as
not to hit the robot. Such inaccuracies could be avoided if the
robot perceives its surrounding in a human-friendly manner.

d. Situations which are favorable for a robot to initiate an
interaction can be predicted through emotional intelligence
of a robot. It will further enhance the relationship between
humans and robots. In addition, robots will be accepted by its
users for a longer duration as well.

e. Reliability of the robot by means of behavior can be
improved by gaining emotional intelligence. Subsequently
the events in which people getting disturbed by ver-
bal or proxemic behavior of a robot, can be decreased.
In addition, perception of human behavior has many applica-
tions other than Social Robotics. Caretaker robots, healthcare
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TABLE 2. How cues displayed by humans vary in different scenarios.

robots, rescue robots and robots deployed in extreme condi-
tions such as disaster sites can make use of this capability to
track and identify humans and their intentions to complete the
robot’s specified task accordingly. Furthermore, it’s impor-
tant to identify human behavior in order to generate most
appropriate and timely responses during emergencies.
Interim Summary: Existing frameworks to interpret human

behavior consider only a limited number of observable human
cues. Therefore only a few aspects of a situation were effec-
tively perceived by these mechanisms. On the other hand,
establishing a common criteria to assess a situation, consid-
ering all the aspects: human, robot and environment, is still
confusing and lacks conceptual basis. The key features of
humans that could reveal their internal state of mind have
been identified. In addition, different attributes: emotional
and spatial, during a human-robot encounter have also been
identified. This will create a user-centered perception of a
robot, which will demolish the requirement of the human user
to adopt a restricted behavior to accommodate the robot’s
limited perceptive skills. Therefore it has been identified that
intelligent and adaptive decision-making skills in dynamic
environments make robots more appealing and effectively
performing in human-robot collaborative environments.

III. BUILDING ATTENTIVE ROBOTS
Theory of Mind has been developed in order put various
attributes in mind together, to reason out a certain behavior
and it has often been used to evaluate abnormal or awkward
behaviors which have been deviated from the accepted level
of behavior [35], [36]. The Theory of Mind has been used in
several architectures to perceive human intention associated
with a specific situation [37], but these approaches still esti-
mate user’s preferences based on a limited number of cues
from its environment. Henceforth adequate evaluation of a
situation is critical for emotional intelligence.

A. STUDY OF HUMAN BEHAVIOR
A human’s intention alters involuntarily upon the factors that
prevailed already in the surrounding. This perception will
be based on various parameters including the individual’s
beliefs. Hence, the user’s reaction upon an interaction which
has been initiated by the robot will take different forms
depending on the scenario. Responses that are most likely to
be displayed from a human during a human-robot interaction
scenario, can be used to assess human behavior during the
study [38]. Such observable responses are listed below.

• Gaze - Maintaining or returning to original gaze e.g:
looking at the robot and/or looking away

• Gestures - Usingmainly hand gestures e.g: waving hand,
calling in

• Postures - Changes in existing posture e.g: sitting to
standing posture

• Utterances - Verbal responses e.g: ‘‘Hello’’, ‘‘May I get
you something?’’

• Movements - Random or intentional movements associ-
ated with activity

• Expressions - Facial expressions e.g: smile, disgust,
frown

These responses devote to perceive and evaluate atti-
tudes, attention, expectations, subjective norms and perceived
behavioral control mainly as explained by the theory of
planned behavior. Common encounters with the above behav-
iors are listed in TABLE 2.

The basic idea of this study is to evaluate the require-
ment of providing the robot with the ability of understanding
situations or ‘cognition’. Hence the cognition in situations
will relate the connection between human’s state and his/her
behavior. This facilitates a dynamic interplay of flexibility
and adaptation in robot.

B. ENVIRONMENTAL FACTORS
Orientation and locomotion are profound collaborators in
‘interest’ during an interaction among humans. This fact
remains the same during human-robot interaction as well.
Locomotion and attribution of body-based movement as an
interpretation of own intentions are committing factors during
HRI [39]. [40] provides an example of proactive obstacle
avoidance in dynamic environments. Such systems are exam-
ples for intelligent agents with situation-awareness based
on spatial behavior of subjects. Spatial arrangement of the
two conversant is an important fact to determine the inter-
activity of a situation. Furthermore, the number of outsiders
and placement of objects affect both directly and indirectly
towards the emotional state of a situation. According to Fig. 3,
the task of a user and approach behavior of an outsider are
influenced by the placement of objects. Similarly, the rela-
tionships between people and behavior of the people in the
surrounding further affect the responses of a human to a
certain situation. Simply, all the subjects in the environ-
ment which are part of a person’s cognitive mapping have
an impact on his/her behavior [41]. Perception of natural
environment such as symbol anchoring [42] and tracking
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dynamic obstacles [43] accounts for a proper understanding
of the environment. However we exclude literature about
robot’s perception upon the environment and robot itself in
this review.

C. FACTORS WITHIN THE ROBOT
Certain features and practices encapsulated in robots have
an effect on individuals’ willingness to participate in at least
a brief interaction with the robot. Work explained in [44]
has displayed a lot of social standards for robot conduct
(a ‘robotiquette’) which is convenient and agreeable to peo-
ple. As indicated by that, the conceptual space of HRI expects
a robot friend in a home to ‘do the correct things’ and meet
their expectations comfortably. Moreover, constant execution
of the robot which pursues human social traditions and stan-
dards are bound to be acknowledged for a long span by its
users [45].

In [46] the robot is exemplified with the ability to express
emotions with a humanoid face and demonstrate attention
by turning towards the subject. Creators have theorized that
these highlights were non-negligible prerequisites for a viable
social communication between a human and a robot. Anyway
this framework has ignored enhancing the capacity of the
robot to predict or realize user situation before using the
previously mentioned two highlights while having an inter-
action. This approach gives an example of socially intelligent
behavior of the robot as well. Even so it focuses on the
behavior of the robot rather than that of the human. As per
the model proposed in [47], perception and evaluation are
constantly considered as critical attributes in human-robot
interaction.

Authors in [48] present a framework for a mobile robot
to initiate a dialog with a person and create an engagement.
Such engagement was used to improve the performance of the
robot’s face recognition module with the help of the person.
This robot further used body orientation to convey its inter-
est for an interaction and, verbal responses and nonverbals
such as gestures and arm and neck movements were used in
support of the approach behavior. In this approach, the robot
proactively seeks a human’s help to learn its adjustments
required for proper face recognition. A proactive behavior
was adopted to improve the perception capabilities of the
robot by enabling the human to teach it. Otherwise violation
of user expectations when the robot asks help when the user
is busy, will be unavoidable.
Interim Summary: Psychological theories such as the The-

ory of Mind and some previous studies in HRI identified
various observable human cues related to movements and
behavior that display human interest in a particular subject.
Gaze, gestures, posture changes, involuntarymovements, ver-
bal responses and facial expressions to name a few. In this
review we exclude voice responses, as a conversation opened
by the user cannot be a part of robot-initiated interaction.
In addition, there are environmental factors such as objects,
distancing and location, and factors within the robot such as
the personality and the physical appearance which will affect

the emotional state of a human-robot encounter. As identified
from this evaluation, a robot having a general sense of these
attributes will receive a considerably higher attention as well
as acceptance from its users.

IV. CURRENT STATUS: INTELLIGENT AGENTS WITH
SOCIAL EMOTIONAL INTELLIGENCE
A. EARLIER APPROACHES
At the point when these robots are required to perform as
domestic companions, starting a conversation at right events
is very demanding among users. A great part of the users lean
toward interaction by means of voice or friendly conversa-
tions [49]. Such insightful behavior upgrades the attachment
and connection between the user and the robot [21]–[25].
In this way, gaining that emotional intelligence is a critical
viewpoint concerning social situations.

There have been various psycho-physiological approaches
to gain emotional intelligence through perception of behavior.
Cognitive methods to understand the interactivity during a
conversation have already been developed. These address the
problem of identifying the intent of the conversational partner
based on verbal cues and facial expressions. For example,
in [50], the engagement of a human is assessed by the head-
nod during a conversation.

In [51], a robot which was an insightful weight reduction
mentor has been presented. This is an excellent example
for behavior perception exemplified in the robot itself and
subsequently has been deployed to reduce obesity among
participants. In this case, the robot has been accepted for
a long term interaction as well. Anyway this framework
wasn’t completely skilled to perceive rather general user
situations other than monitoring physical health. By incorpo-
rating instinctive behavioral aspects in emotional situations
into a robotic architecture, a higher emotional intelligence as
well as a greater user acceptance can be ensured [52].

There are numerous automated frameworks to shape a
discussion between a human and a robot, yet the ability of
these frameworks are restricted simply after the initiation
of an interaction, not before the interaction [54]. Mimicing
human behavior is exceedingly applauded in cooperative dis-
cussions [55]. This methodology is prominent for keeping
up interaction which has already been started, not prior to
an interaction. Satake et. al in [53] enhances this scenario
by taking various user cues into scrutiny. Forecasting of
walking direction was valuable in estimating whether the
user showed any interest for a conversation. ‘User unaware’
failure was abrogated in this method by moving toward the
user before starting a conversation. In ‘user unaware’ failure,
the user leaves the situation without realizing that the robot
approaches to interact with him/her. Furthermore, in [53],
a model to define an approach behavior for a robot to ini-
tiate a conversation with dynamic users has been proposed.
The system was first intended to use in shopping malls to
prevent ‘user unaware’ failure when a robot approaches a
walking user. The approach model includes the following
functions.
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TABLE 3. Model of the approach behavior in [53].

TABLE 4. A summary of the existing systems discussed in Section IV-A.

1) Predicting the walking behavior of people
2) Choosing a target person
3) Planning its approaching path
4) Nonverbally indicating its intention to initiate a conver-

sation
As a robot finds it difficult to recognize human gaze in a

real environment, this method uses the body orientation of
the subject and the robot as non-verbal cues which support
an interaction. The robot’s target was to approach humans
and recommend shops in a selected mall. During this study,
four occasions in which a robot may fail without or while
interaction were listed.

1) unreachable- The robot did not get close to target per-
son.

2) unaware- The person did not look at robot or did not
listen to it.

3) unsure- The person recognized its presence and reacted
but the robot did not respond correctly in time.

4) rejected- The person recognized its presence and it’s
greeting behavior, but did not start a conversation.

The model of approach behavior based on above is shown
in Table 3. First the robot finds a target for interaction
by predicting how people walk and estimating who can be
approached. Then mutual distancing is determined. Here,
human behavior was anticipated by means of walking direc-
tion and trajectories. Hence ‘busy people’, ‘idlers’, ‘station-
ary people’ and ‘window shoppers’ (just wandering around)
were identified. Fig. 4 shows how these states were identified
from the walking trajectory.

This mechanism was effective to predict the intention of
dynamic users. Such approachesmight not perform in smaller
spaces such as domestic environments, as users adopt much
less speeds and short trajectories in general.

Method proposed in [56] computed the ‘degree of interest’
of a user towards an interaction with a robot by evaluating

FIGURE 4. Classification of trajectories in different behaviors while
walking as explained in [53].

the subject’s attention and the distance from the robot to
its subject by using a fuzzy logic based system. Head tilt
angle was used as a variable which determines the attention
of the subject. The output of the system was the degree of
the user’s interest. This system could perceive ambiguous
situations with a higher accuracy with the help of linguistic
variables that account for the fuzziness. However, head pose
is not the only cue that demonstrates user’s attention. Besides,
a major concern while having a conversation is the distancing
between the two conversant. Accordingly, the robot must
decide upon the appropriate distancing for their communi-
cation before initiating a conversation. Personal zones suit-
able for such circumstances were presented in [57] and [58].
Hence a robot may choose which zone to enter while hav-
ing an interaction, depending on the displayed interest of
the user.

A summary of the discussed existing systems is given
in TABLE 4.
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Interim Summary: Most earlier approaches which
intended to evaluate human attention or the interest towards
an interaction focused on the face i.e. head nod or gaze.
Verbal cues and facial expressions came next. In addition
to movements, approach behaviors played an important role
in finding human intention in dynamic environments such
as museums and shopping malls. Some systems utilized the
body orientation as a cuewhen recognizing gazewas difficult.
Systems which used multiple cues as input, utilized fuzzy
logic to evaluate vagueness in portraying intentions through
behavior. Other approaches used predefined set of interpreta-
tions for most observable cues and appropriate robot’s behav-
ior. Previous studies further explored that higher emotional
intelligence in robots increased user acceptance.

B. MODERN DEVELOPMENTS
A significant number of the past work have investigated
the elements which influence human-robot interaction [44].
However exploring methods of initiation and maintaining
smooth flow of a robot-initiated interaction, have been
impeded due to practical and theoretical constraints. One
under-investigated factor in this manner is perceiving nonver-
bal human behavior before communication. Once the robot
is able to evaluate nonverbal human behavior at a certain
scenario, it could evaluate the likelihood of initiating an
interaction based on the encounter. In thismanner, the impres-
sion of user situation is fundamental in such an event.
Conversely, the absence of predictability and the trans-
parency in numerous advanced mechanical frameworks have
adversely influenced human’s trust and dependence on
robots [59]. A verbal approach for interaction is shown
in [60]. During this approach, a robot which reacts dynam-
ically to a visitor is deployed. Conversational opening is used
as a critical influencer in maintaining visitor engagement.
It further analyzed user’s upper-body postures, facial expres-
sions and head movements as demonstrators of engagement.
However robot opened a conversation as a user approached.
‘Pause’ and ‘restart’ of a conversation by robot varied upon
the variation of above demonstrators.

Law et al. [61] presented a similar mechanism to under-
stand one aspect in this regard. A wizard-of-oz (WoZ) study
has been conducted with the participation of humans to assess
the curiosity level aroused in humans in the presence of
assistive robots. The study confirmed that the human curios-
ity considerably diversified when the robot’s intelligence is
higher. The study further suggested that the social acceptance
of a social robot increases when the robot can comprehend the
very needs of its user and act according to the situation [62].
Results of the human study in [63] verified the fact that
humans prefer user-adaptive dialogs while having a conver-
sation even with a robot companion. Work proposed in [64]
is an encouraging example for the growing harmony between
humans and robots that are emotionally intelligent, as stated
above. Users further expect the companionship grown upon
interactive communication in between theirselves and robot,
despite the service tasks most robots are designed for [65].

Likeliness of the robot being acknowledged as a conver-
sational partner relies upon the surrounding and also the
emotional state of the user.Moreover, it is imperative to inves-
tigate human inclinations towards a communication with a
robot since human behavior before another human could take
a different form in comparison to that before a robot. The
human study performed in [2] was planned to investigate
human responses towards an interaction with a robot in vari-
ous circumstances. As indicated by this investigation, human
reactions upon a robot-initiated interaction vary depending on
their current activity. Consequently engraving social intelli-
gence into a robot to perceive situations, is imperative before
utilizing them in social environments.

In [66], nonverbal user engagement is approximated using
initiator and responder gaze times, face orientation and feed-
back times for the two speakers as cues. Bodily postures of
humans that are also an interesting parameter just as the gaze
time were excluded in this method. A well known application
for collaboration with the user could be found in a museum
guide robot as explained in [67]. This research presented
an effective mechanism for museum guide robots to reach
visitors after an observation at a distance. Spatial formation
of guests, body orientation and mutual gaze times of guests
were considered as the critical cues during the observation by
a guide robot. However there are circumstances in household
situations in which spatial arrangement of the two parties
and body orientation do not demonstrate any interest for
interaction although the user intends to interact. Henceforth,
the technique is not adoptable for domestic service robots.

Mimicking real-world HRI behaviors and simulating sce-
narios based on observable information are key features
during human-robot collaboration (HRC) [68]. A predictive
and adaptive system based on learning by demonstration is
explained in [69]. This system is an example for robots with
supportive behavior for the user but it does not identify many
salient features which portray human intention. A situation-
conscious model is proposed in [70] to improve the design
and interactive capabilities of an industrial robot. These find-
ings show that the impact of social and spatial environment
have to be considered in order to design a context-aware
robot.

In [71], an android system with the capability of mon-
itoring noverbal behavior of humans. However this cannot
generate physically appealing behaviors such as a robot.
There has been systems which were capable to match the
appearance and demeanor as well [72]. Even though such sys-
tems cover psychological and physical aspects in interaction,
there should be emotional aspects as well in order to behave
appropriately in social environments.

A context-sensitive approach to anticipate the human
behavior while the human is followed by a robot has been
proposed in [73]. Although this anticipated human motion
while walking, prediction of human behavior during station-
ary situations becomes highly dependent of the emotional
state and the task of that human. Hence anticipation of station-
ary situations is a complex process. There are CPU-intensive
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TABLE 5. A summary of the modern systems discussed in Section IV-B.

approaches to recognize human activities such as [74].
However less CPU-intensive techniques to monitor human
behavior are admired when real-time decisions have to
be taken. Requirement of lesser pre-processing in such
techniques become advantageous in implementing them in
real-time.

Perceiving emotional cues that shows affect is important in
avoiding misbehaviors of robots and improving acceptance
in human community [75]. Findings suggest that perception
of nonverbal behavior positively impacts HRC and hence
the understandability of the robot is increased as well [76].
A situated interaction method which uses behavioral cues
such as proximity, velocity, sound and posture information
is presented in [77]. A virtual companion adjusted himself
according to the situation and outputs an engagement score at
each occasion. Even so only the gaze behavior of the virtual
companion was evolved based on behavioral cues of the user.

A summary of these modern systems is given in TABLE 5.
Interim Summary: Evaluating nonverbal behavior could

determine the likelihood of initiating an interaction based
on the features of that particular encounter. Conversation/
interaction opening is considered a critical influencer in
maintaining user engagement and most of the modern
approaches critically evaluate observable cues before mak-
ing interaction decisions. Wizard-of-oz studies have been
useful in exploring user tendencies in various encounters.
Such studies have further discovered that users prefer adap-
tive behaviors adopted by robots, which enhance interactiv-
ity. Properties of gaze: gaze angle, gaze time, averted gaze
etc. played an important role in determining nonverbal user
engagement in modern approaches. Posture-based behaviors
such as body orientation, posture changes, and body pose
have also received attention in determining the state of a
human in some literature. Some work considered walking
patterns of humans to determine user-supportive approach
behaviors before an interaction. In general, context-aware

robots observe multiple behavioral cues and a measurable
score, for instance ‘engagement score’ in [77], ‘attention’
in [78] and ‘level of interaction’ in [79], to determine the
‘favorability for an interaction’ of an encounter.

In comparison, modern approaches have focused on mul-
timodal mechanisms which consider multiple cues from a
human as much as possible, than earlier stages. Furthermore,
evaluation of human cues in these mechanisms are mov-
ing towards learning algorithms (e.g: reinforcement learning,
Bayesian networks, regressive models, artificial neural net-
works) other than logic (fuzzy logic, predefined set of situ-
ations and actions). In addition, newer approaches use cues
from multiple aspects, for instance body orientation (spatial),
gaze, gestures, pose changes, walking patterns (physiologi-
cal) and facial expressions (psychological). The requirements
and basis of both earlier and modern approaches of emotional
intelligence have been the same over decades.

C. SYSTEMS WITH ADAPTIVE PERCEPTION OF
SITUATION BASED ON HUMAN CUES
An intuitive, multimodal approach for interaction was intro-
duced in a museum guide robot in [80]. This robot used audio
and video information to shift attention among humans and
to monitor its eye and hand gestures while speaking. This
robot further interacts with multiple users at a time and uses
a series of facial expressions based on users’ interest. This
method further determined focus of attention to be paid on
each person based on the time when a person has last spoken,
distance between the person and the robot, and its position
relative to robot’s front. Therefore this method can be stated
as a first step towards perceiving a situation for adaptive
social behavior.

Mead et. al proposed a method to evaluate the perception
of distance in [81]. During this approach, robot used gestures
and verbal responses of the user to determine the mutual
distance. In [82] a probabilistic approach has been adopted to
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analyze the engagement in verbal cues and gestures used by
a human during interaction. However both these approaches
are possible only after initiating an interaction by the user.
Hence the task performance of a human-robot team can con-
siderably be improved by mutually understanding nonverbal
cues responsible for the situation [83]. Therefore perception
of nonverbal cues related to human behavior and relating
various cues together to determine the state of the situation
are the attention-seeking requirements during HRI.

An affective robot was deployed to interact naturally
with customers in a shopping mall and to provide shopping
information [64]. It further tried to build a rapport between
customer and the robot by remembering customers who
repeatedly visit. Findings were based on a wizard-of-oz
experiment. This was an effort to identify which kind of
robots were required by people to in their shopping routine.
Features that have to be embodied in the robot by means of
physical existence, interactivity and the capability of person-
alized communication. These three roles were defined on the
following considerations.

1) Guiding- The robot was co-located with people so that
people could ask questions such as where to shop.

2) Building rapport- As the robot becomes to be consid-
ered as a representative of the mall, a friendly behavior
was expected from it. Therefore a personalized service
was delivered to the customer.

3) Advertisements- The robot advertises for further shop-
ping by attracting people.

FIGURE 5. Retrieved model about observed variables in [64].

This decisioning process of the model is shown in Fig. 5.
During this interaction process, people praised explicit iden-
tification of their names and other details by the robot.
Furthermore they used a rather friendlier means of conver-
sation after building a rapport. This is an example for a spe-
cial scenario where a market-related situation perception was
used. However actual human behavior will be more complex
than in a shopping environment.

When robots are deployed in our ecosystems, they have to
be self sufficient physically [84] as well as instincts in order
to play the role of an active companion.

A framework to develop mixed-initiative approach for
specifying the relationship between dialog structure and
task structure using generic interaction patterns is proposed
in [85]. Action-oriented dialogs were generated by a robot
depending on the current task of its user. Objects from the
environment and the task of a person were linked to find
relationship in between, and hence conversation between the
robot and the human was adapted accordingly during an
object-grasping task. The work proposed in [86] is an exam-
ple for a robot creating a map and maintaining a knowledge
database through interaction with people in natural language.

In [87], a social robot was used to handle emotionally
charged health care situations. According to the findings of
this research, people’s perception of robot was affected by
how robots cope or how they think robots can cope with their
emotions. In the end, improved intelligence of robots, like
in these mechanisms, will increase people’s acceptance of
robots for longer interaction.

During the study of psychological benchmarks in HRI,
in many forms of human-robot interaction there is almost
nothing gained functionally by using a humanoid [88].
Furthermore, intelligence and capabilities become prominent
in a robot upon its appearance. There are also contexts where
the humanlike formmight work against optimal human-robot
interaction. For example, an older person might not want
to be seen by a robot with a humanlike appearance when
being helped to thewashroom. In addition, peoplemay dislike
a robot that looks exactly human but lacks a humanlike
behavioral repertoire [89]. Hence we do not consider the
robot aspect during this survey of research on situation-
awareness of robots.

Lack of intelligence pose issues for sociable service robots
when user expectations are violated. This is inevitable when
the robot is part of our physical environment and shares
the world with us [38]. In a robot’s view, human society
will always be a challenging environment given its dynamic
nature, richness in different scenarios, unpredictability, and
uncertainty.

An effort to model interactivity of an encounter using
four types of connection events which incorporate gesture
and speech: directed gaze, mutual facial gaze, conversational
adjacency pairs and back channels was taken in [90]. This
uses initiator and responder gaze times to determine gaze and
gaze is used with the other three parameters to determine user
engagement during interaction. This is an example for using
both verbal and nonverbal cues to perceive an interaction
scenario. Adaptive speech control mechanism as a response
for conditions in the environment has been proposed in [91].
However these are an example for evaluating a single or fewer
number of cues from a situation.

User-awareness has been taken into consideration in [92]
for safety and acceptance reasons. Spatial relationships,
objects and dynamic gait behavior of a human were consid-
ered as features of the setting. Another mechanism for an
approach behavior was proposed in [93]. But in this approach
the tradeoff between user’s and robot’s gaze were used as
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FIGURE 6. (a) and (b) represent the input membership function
corresponding to angular movement and the output membership
function which corresponds to the level of interaction demanding in [79].

a cue to evaluate the situation. Here, situation-awareness
was used to determine approach behavior prior to an inter-
action. Another interactive conversational model which per-
ceive space and verbal instructions has been proposed in [94].
A method to estimate the attention of a user is proposed
in [79]. Authors have used the pose and speeds of specific
angular joints of a human to predict the nonverbal interaction
demanding of a human user. These two cues were evaluated
with the help of a fuzzy logic based mechanism to derive a
user’s interest level towards a robot. Membership functions
used for the evaluation are shown in Fig. 6. Decisions regard-
ing interaction; whether or not to reach user and if reaches,
the mutual distance to be kept in between were taken by this
evaluation. Possible routes after decisioning in this approach
are shown in Fig. 7. Even so the considered cues were not
the only set of cues which associates nonverbal interaction
demanding of a human.

Baraglia et. al in [95] presented how best humans collabo-
rate with proactive robots. They have used human responses
during a tray preparation task to evaluate this fact. This
system used a Dynamic Bayesian Network (DBN) to antic-
ipate environmental states in future and robot’s actions to
approach people. A specialty in this approach was that the
robot switched between different assistive behaviors; helping
when help is requested (human-initiated help), reactively
helps when it realizes that help is needed. The robot evaluated
a situation according to the defined criteria (robot-initiated
reactive help) and proactively helped whenever it can help
(robot-initiated proactive help). Their findings further elab-
orate that face gazes can be perceived as early cues for
situation-awareness. To study these various help trigger
mechanisms, an end-to-end system for executing joint tasks
was developed. Every object had three predicates; ‘object’,
‘position’ and ‘region’. Here, both the human and the robot

FIGURE 7. Routes taken by the robot during various encounters in [79].
Robot enters the scenario along route 1 and leaves along 4, if the
attention of the user was ‘low’. It approaches the user along route 2 and
travels a distance of s2, if the attention was ‘high’ and approaches further
along route 3 and travels a distance of s1 if the attention level was ‘very
high’.

were assumed to have one task-relevant action-pick and
place. Here, ‘pick’ denotes the ‘object’ and ‘place’ denotes
(x, y) coordinates of the goal. States of the objects were
‘color’, ‘size’ and ‘location’ as perceived by the robot.
Actions were parametrized with the ‘object’ to be picked and
the ‘location’ at which the object has to be placed. This model
is given in Fig. 8.

FIGURE 8. The model proposed for helping robots as in [95]: This model
recognized the current environmental state and predicted possible future
states with a dynamic Bayesian network. Then the actions to achieve the
desired end-states were generated.

Actions were defined as a sequence of poses; pre-grasp,
grasp and lift. Here, the actions of the robot were all related
to manipulation of the object. Task execution was based on
a two time-series DBN comprised of two multinomial nodes,
environment states and actions. The policies involved

1) ‘Human-initiated help’ where the user explicitly says
‘‘Robot, can you help me?’’,

2) ‘Robot-initiated reactive help’ where the robot detects
that predicted states were not reached, and

3) ‘Robot-initiated proactive help’ where robot takes
human actions that might be in progress into account.
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An interesting feature used in this approach is switching
between these policies. However the system was capable of
performing in pick and place tasks only, limiting its applica-
tions to only a fixed number of environments.

Museum guide robots observing visitors to find an appro-
priate situation to guide has been proposed in [67]. This
perception was then used by the robot to locate himself in
a spatial-oriental arrangement with a human. The purpose
of this behavior was to allow humans perceive their par-
ticipation. A transactional segment of space was used to
monitor gaze and orientation of a visitor. A conversation was
possible with a visitor only when both parties; robot and
visitor establish a common belief to share a conversation.
In this method, the robot believed that a visitor is interested
in an exhibit if their face and body are oriented towards the
exhibit for a certain duration. Similarly, their requirement to
know further about the exhibit was determined by if they
maintain face and body orientation towards the robot for a
certain duration. A complex situation existed when there are
more than one visitor in a single scenario. Therefore scenarios
were categorized based on the directional gaze of each visitor.
These were as follows.

1) When all the visitors are looking towards the robot-
The robot turns its face and body towards them. The
angle between the two vectors drawn from robot to
each visitor; V1 and V2 marked in Fig. 9 (a) were
calculated. Robot follows the median vector between
V1 and V2 to approach visitors. It keeps a gap of 100-
130 cm from the visitors. This complete process is
shown in Fig. 9 (b), (c) and (d). After initiating the
conversation, the robot moves to a position convenient
to explain the exhibit.

2) If only some of the visitors are looking at robot- Robot
pays attention to the ones who are looking at it.

3) When all the visitors are looking at the exhibit-
Robot approaches them and waits for a favorable
occasion to start conversation (robots wait for either
scenario 1 or 2).

In this approach, the robot tried to maintain maximum
level of interactivity without violating visitor expectations.
But in social environments, human encounters will be more
complex than those in a museum. Hence much more cues will
be associated with user behavior.

A mobile robotic system which adaptively attend its
user based on walking/sitting behavior of its user has been
deployed in [96]. This system uses Finite State Machines
(FSM) to model transitions of the user’s state. The robot
tracks a person’s position and orientation to determine his/her
state as illustrated in Fig. 10. The decision of the system
based on these states was the path followed to approach the
particular human. Here, three states: ‘initial’, ‘walking’ and
‘sitting’ were used by the FSM to model the transition of
the person’s state. Here, ‘initial’ refers to the person’s state
before recognition of the human. The adaptive attendancewas
determined as follows.

FIGURE 9. The occasion with two visitors looking towards the
robot in [67].

FIGURE 10. The actual scenario and the estimated position and
orientation of the target person as explained in [96].

1) Walking state: Robot follows the target with a gap
of 1 m in between.

2) Sitting state: Robot moves to an appropriate waiting
position by considering the structure of the environ-
ment and comfort of the person. This is further based
on collision safety, comfortable attendance and social
distance to the person. Hence a situation-aware atten-
dance can be observed through this approach.
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Accordingly, dynamic or static behaviors in humans have
a great impact upon the interactivity of a situation. It con-
siderably affect the approach behavior of the robot as well.
Yuan et al. [97] evaluate the applicability of deep learning
approaches to adapt to and predict comfortable proxemic
behavior during interaction. Themodel estimated the discom-
fort when approaching its user. Distance between participant
and robot, angle of approach, gender, age, previous experi-
ence with robots, preferred writing hand, and pet ownership
was chosen as the inputs to the algorithm. Even though the
research was about a comparison of different deep learning
algorithms, the approach taken for the proxemic behavior
was itself novel and situation-based. The model was capable
of predicting proximity distances that were suitable in the
context of HRI.

In [98], authors have proposed a system which used Reg-
ulatory Focus Theory, user’s psychological state and game
performance information to determine user’s stress while
playing a game. Hence the robot adapted its behavior accord-
ingly. Hand movements of users were used to monitor stress
level. Different kinds of body-based gestures and speech
speeds of the robot were regulated based on the observations
on the scenario. Furthermore this is an example for using
body-based behaviors as a demonstrator of internal state of
humans. [99] is and example for human’s sensitivity towards
empethetic and emotional features in a robot’s speech. This
fact can be associated with the overall performance of a robot
as well in addition to speech alone.

In [39] the question ‘How do the spatial distances and
orientations of a user in relation to a robot vary throughout
a cooperative task performed in a home-like environment?’
has been addressed. Hence a spatial conduct for the robot was
developed during this approach. This spatial management
behavior was capable of active monitoring and dynamically
reacting to each others’ movement and position changes. This
used the definitions of proxemics introduced byHall [100] for
interpersonal distancing and Kendon’s F-formation arrange-
ment for orientation between two persons [101]. The robot
was intended to learn and find objects that were missing from
its original location. For this purpose, the robot had to follow
users who were willing to show the objects. Spatial formation
of the human and the robot was analyzed during ‘following
the user’, ‘showing an object’ and ‘validating’. As different
formations could be observed during each occasion, it could
be deduced that there should be a perception upon each
occasion during an interaction.

A computational model to recognize the engagement
between human and robot is presented in [90]. This system
used directed gaze, mutual gaze, conversational adjacency
pairs and back channels as connection events in the deci-
sioning process. Each connection event was analyzed on a
timeline to find mutual occurrences. Information flow during
recognition and decisioning are shown in Fig. 11.
In [102], body postures have been used as a mediator

of affect during interaction. Here, an initial computational
model to analyze postures and body motion to recognize

FIGURE 11. Retrieved model about observed variables as
explained in [90].

engagement of children while playing chess with a robot has
been introduced. Hence the robot act as a gaming companion
but not a social companion. The engagement of the user
was determined to sustain interaction throughout the game.
A lateral view of the user was analyzed by a human to
determine whether he/she was engaged in the game or not.
Postural behavior was then analyzed using image process-
ing techniques to relate the postural behavior with the
engagement.

In [103], a robot that distributed flyers to pedestrians has
been developed. This focuses on achieving the target by iden-
tifying the behavior of pedestrians and determining appro-
priate approaching mechanisms. This intended to approach a
human being non-obstructive to the receiver. A video stream
and positioning data of all the people in a selected area were
used to calculate the detailed parameters. Following behavior
types were used during implementation of the method.

1) Extend arm first and wait for pedestrian
2) Wait for the pedestrian and extend arm nearby
3) Extend arm first and approach pedestrian
4) Approach pedestrian and extend arm nearby

In addition, the timing of the processes such as approaching
and handing over the flyer, and approach direction were also
computed after a detailed observation on actual scenarios
involving human-human interactions. Hence an entire distri-
bution plan was deployed within a single situation.

A user’s attention towards robot’s presence was evaluated
based on a number of parameters in [78]. This introduced
a model to interpret the level of attention of the user as the
robot approaches him/her. Upper body information extracted
from RGB-depth data was used to approximate the level of
attention of its user. This system deployed separate functional
units assigned to extract information and analyze observed
cues, estimate the attention level of the target subject and
finally to take decisions regarding an interaction with that
particular subject. Overall, it involved fuzzy evaluation of
meaningful parameters which determine the attention of a
human. This model used the spatial transformations in upper-
body joints in vector format, which is important in quantify-
ing slight movements which cannot be defined meaningfully
in actual context. User’s emotional state was determined by
the variation of gaze, gestures and changes in pose. These
major variables were subdivided into their properties and
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TABLE 6. A summary of the adaptive systems discussed in Section IV-C.

FIGURE 12. (a), (b) and (c) show the input membership functions of the
gaze parameters: Gaze direction, gaze time and the level of returned gaze
respectively as explained in [78]. These inputs determine ‘gaze level’
in Fig. 13 (a).

FIGURE 13. Output membership functions from gaze parameters, output
from friendly gestures and change in pose in [78] are shown
in (a), (b) and (c) respectively. These were then used as input parameters
of a second fuzzy evaluation.

analyzed using fuzzy logic as shown in Fig. 12. Gaze level
was determined by the ‘gaze direction’, ‘gaze time’ and
‘gaze return’ (whether the person looks away). Similarly,
gesture level was determined by the ‘gesture speed’, ‘gesture
time’ and ‘happiness’ where ‘happiness’ was defined by the
usage of ‘smile’ and ‘waving hand’. Finally, attention was
estimated based on the variation of these variables; gaze level,
gesture level and changes in pose as shown in Fig. 13.
The overall assessment was based on two fuzzy systems
and the output membership function used to determine the
attention level is shown in Fig. 14. This system used many
factors from the ‘human’. Even so it has omitted factors in the
environment which may have an impact upon the emotional
state of the human-robot encounter. In addition, autoregres-
sive models [104] can be used to model and predict behaviors

FIGURE 14. Output Membership Functions of second fuzzy evaluation in
the system explained in [78].

with unexplained relationships. It further facilitates unsuper-
vised simultaneous learning in human robot encounters [105].

Semantic maps also provide robots with an abstraction
of the context. A clear understanding of objects and space
relationships helpful in exploring emotional aspects associ-
ated with certain encounters. Hence the concept of semantic
maps have a close association with human-robot collaborated
environments. Therefore semantic maps will serve as a tool in
combining the human and robot aspects with the environment
in an encounter.

A summary of these modern systems is given in TABLE 6.
Interim Summary: Since a few decades, researchers were

trying to use multimodal approaches to interpret the user
behavior. Such approaches incorporate multiple cue from
its subject of various aspects (psychophysiological, social,
emotional, norms and rules, etc.). As most of the human
behaviors are immeasurable, determining the internal state of
mind based on such behaviors has been cumbersome. There-
fore most existing work has deployed fuzzy logic, Bayesian
networks, auto-regressivemodels, andmachine learning tech-
niques to evaluate nonverbal messages in our body language.
Such approaches have been successful in interpreting emo-
tions in behavior due to the difficulty of modeling vagueness
and uncertainties associated with such inputs. Such evalua-
tions were finally used to determine appropriate behaviors
of the robot, such as approach behaviors, mutual distanc-
ing, type of conversation to initiate, emotions shown by the
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robot, etc. There have been methods incorporating multiple
human cues which can reasonably represent the emotional
state of an encounter. Still there are numerous cues remaining
to be interpreted for their meaning and conveyed messages.
Hence there is yet space for future researchers to improve the
perception of intelligent agents to translate nonverbal human
behaviors for affective and user-friendly HRI.

V. LIMITATIONS AND OUTLOOK
A. CHALLENGES IN IMPLEMENTING SITUATION-
AWARENESS IN PROACTIVE ROBOTIC SYSTEMS
Following challenges have been disclosed during the study of
present proactive robotic systems.

• Robust human detection and tracking systems to analyze
gait and nonverbal behavior are not in par with advanced
conceptual design of such systems.

•Establishing a relationship between intent and observable
human cues has been challenging and lacks conceptual basis.

• Monitoring the environment in parallel with human
behavior has been difficult and relating environment fac-
tors and human factors upon a certain behavior has been
challenging.

• Deceiving and ironical human behaviors which do not
match the shown intent with the real intent cannot be differ-
entiated by existing robots.

• Bringing all observable cues to a combinable common
platform in order to make interaction decisions, still needs
further development. In other words, unwrapping the social
and emotional attributes in physically observable cues still
lacks conceptual basis.

Hence emotionally intelligent agents need development
optimizing these challenges on the way.

B. IMPLICATIONS FOR AWARENESS
THROUGH OBSERVATION
Much of the work suggest that there are factors in the environ-
ment and within the user itself, which affect user responses
during a certain situation. Therefore the conceptual design
of a robot’s intelligence must consider these factors before
implementing its task specific actions.

Most of the findings were based on a limited number
of tasks selected from the environment and the user itself.
In a real-life scenario, this number will be much higher than
the number of factors considered in the present systems.
Therefore a maximum number of parameters must be
observed from the user and his/her environment before the
decision-making process of a robot. Therefore these systems
could not replicate all parts of the HHI (Human-Human
Interaction) into the HRI scenario.

These methods were based on the assumption that people
prefer the same rules of interaction with the robot as they do
when interacting with humans. There can be certain cultures
and social groups in which there are alterations regarding
this fact. Hence such communities would react to robots in
a different manner. In addition, behavior adaptation is as

important as behavior monitoring in such a scenario. Several
other factors which might influence interaction such as the
gender, previous experience and familiarity with the robot
were not considered within the context of many methods
analyzed during this review. Furthermore there should be a
common platform which can analyze psychophysiological,
social, cultural, and other aspects of a situation. Finding
relationships between these aspects and the emotional state
of a situation is still found to be challenging. Unveiling the
intentions behind the web of various human behaviors is
another requirement in modeling cognitive models for social
robots.

C. IMPLICATIONS FOR A SMOOTH INTERACTION
As users prefer their robots not to interrupt their usual behav-
ior, the first design guideline suggested from these findings
is to respect the preferences of humans by simply following
their concerns. These ‘concerns’ can be determined by the
factors considered in the study. This ‘sense’ of user situation
further acts as an etiquette for the robot to fit well in social
environments. This can be presented as the second design
guideline for social robots.

The third design guideline is to extract information regard-
ing the situation as much as possible. Considering a higher
number of cues from the user and the environment increases
the chance of an accurate perception of the situation. To per-
ceive a number of such cues, the robot should acquire visual
and auditory sensory information for an adequate duration.
This will be the forth design guideline for a situation-aware
robot. Establishment of a common criteria to evaluate dif-
ferent aspects of nonverbal cues is the fifth design guideline
that can be deduced from this review. Such an approach could
solve the problem of matching a psychophysiological behav-
iors and accurate interpretation of such behaviors. Ground
for these implications are derived from the findings of this
review.

D. POTENTIAL APPLICATIONS
Potential applications in which proactive robots with
situation-awareness can be deployed can be listed as follows.

• As a companion in domestic service environments
• To assist people with special needs. In example such

robots can support in children with autism, elders, sick and
injured and robotic nurses which can tackle emergencies.

• As guides and to provide service. Such robots can be
deployed in shopping malls, museums and cities.

• In rescue sites. These areas require management of the
site and completing dangerous missions in areas unreachable
by humans.

• To establish security by detecting theft and other harmful
acts of humans which pose a threat to peace or the existence
of general public.

Current status of methods used to gain situation perception
in robots, their limitations and possible improvements are
summarized taxonomically in Table 7. In Table 7, the key fea-
tures of the scope covered by present systems and additional
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TABLE 7. A summary of the existing systems and methods used for situation-awareness during HRI and suggested improvements in the future.

features that could enhance the skills of such robots are given
under ‘Current Status’ and ‘Possible Improvements’. Next,
the situations encountered during a typical HRI scenario at
present are given under ‘Interaction Scenario’. In that section,
the requirement of situation-driven behavior is identified
and approaches towards that behavior are pinpointed under
‘Adaptive Behavior’.

VI. CONCLUSION
Enter of artificial agents in to human environments explored
new horizons in human-robot interaction. In the present
review, we provided an overview of the robotic systems with
the perception of human behavior. Such perceptive intel-
ligence was used to generate situation-cautious responses
rather than delivering only what is requested by a human.
Many mechanisms were deployed by proactive robots to

evaluate nonverbal human behavior or the body language
before the initiation of an interaction during a social
encounter. Such evaluations were used to generate situation-
friendly responses from a robot without disturbing its human
users or violating their expectations.

Perception of nonverbal cues displayed by humans
involved in a scenario was the prominent and most effective
means of perceiving body language. Verbal cues are rather
direct in delivering information to outside, but this is possible
only after initiating an interaction by the human. On the
other hand, behaviors such as facial expressions and smile
which directly targets someone, can be deceiving and the
person’s real intentions may differ from what is shown to
outside. Therefore nonverbal cues are more appropriate and
less disturbing to a user in social encounters. Without going
for direct interaction, situation-cautious behavior further gave
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a robot more human-like personality based on social eti-
quettes. Hence the ability to interpret the emotional state of a
scenario and evaluating that scenario for the suitability of an
interaction makes HRI more adaptive and meaningful.

Evaluation of a number of nonverbal observable cues is
required for proactive interaction. Therefore existing such
systems have been critically investigated in this review.
Neuro-fuzzy based approaches, machine learning techniques
and auto-regressive models have been most prominent in
situation-cautious proactive robotic systems. The ability of
such methods to model inexplainable relationship between
human psychology and behavior has been the reason for wide
usage of such approaches. Difficulty of integrating emotional
states into a consistent user model mathematically or scien-
tifically, and explaining reasonably the intentions of explicit
human behavior, have retarded advancement of situation-
aware robots.

Limitations of existing systems have been identified and
possible future improvements have been suggested. This
review provides principles and approaches for further devel-
opment of perceptive intelligence. In summary, capability of
existing robotic systems tomake proactive decisions based on
human behavior is far below that of a human. Furthermore
literature related to robot-initiated interactive systems with
situation-awareness is relatively scarce even though there is a
great potential of development in this aspect.
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