LBITH/23/2022 DME 04/69

NUMERICAL STUDY OF MICROCHANNEL HEAT TRANSFER WITH NANOFLUID BASED TWO-PHASE SLUG FLOW

Siriwardana Sitanange Geethal Chandima Siriwardana

178262G

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Thesis submitted in partial fulfilment of the requirements for the

degree of

Master of Engineering in-Mechanical Engineering-

Energy Technology.

621 "2022" 620.9(043)

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

TH4794

March 2022

+ CD ROM

THE 4794

DECLARATION

I declare that this is my own work, and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

S. S. G. C. SIRIWARDANA

Signature

UOM Verified Signature

Date: 31-03-2022

The above candidate has carried out research for the Masters thesis under my supervision.

Name of the supervisor: Dr. P.M.T. BANDARA

Signature of the supervisor: UOM Verified Signature

Date: 16/05/2029

Name of the supervisor: Dr. R.A.C.P. RANASINGHE

Signature of the supervisor:

UOM Verified Signature

Date: 16-05-2022

ABSTRACT

Microfluidics has recently gained research attention for its high-end thermal applications, including micro heat exchangers, Lab on a Chip, micro reactors, and MEMS. It has been proven that the addition of suitable nanoparticles to a fluid can enhance the heat transfer efficiency in microchannels, both in single phase and liquid-liquid two-phase flow. In general, slug flow is said to be the most efficient in heat transfer. However, the investigation performed on liquid-liquid slug flow with added nanoparticles was found to be very limited. Hence, this study numerically investigates the heat transfer characteristics in microchannels with liquid-liquid two-phase flow.

The VOF method and phase field equations were solved using ANSYS Fluent and COMSOL Multiphysics to capture two-phase flow interfaces. Adaptive mesh refinement techniques were employed to reduce computational power while maintaining sharp interfaces between fluid phases. The Eulerian mixture model was used to solve the cases containing nanoparticles. Numerical results were validated against published experimental data reported by [1] and [2].

Simulations were conducted for a 3000 micron long microchannel with a diameter of 100 microns for fluid velocity, ranging from 0.1 m/s to 0.5 m/s. First, 1 kW/cm² of heat flux is introduced to the channel wall after 1000 microns to mimic the microchip heat generation, also allowing flow to be developed.

Results have shown that using nanoparticles in either phase significantly increases heat transmission. This can be amplified even more when used in the secondary phase, by 58 percent compared with liquid-liquid two phase slug flow. This was accomplished with a nanoparticle fraction of 0.05 v/v in the secondary fluid phase. The addition of nanoparticles to the primary fluid increased heat transfer by 34%. The findings of this study can be used to improve MEMS and micro-to-macro systems that move heat.

ii

THIS PAGE IS INTENTIONALLY LEFT BLANK

DEDICATION

පිදුම

දරුවන්ගේ නිදහස් අධාපනය වෙනුවෙන් බදු ගෙවනා

සුවහසක් ශී ලාංකික ජනයාට

මෙය පිදුම් දෙමි.

I dedicate this to the

thousands of Sri Lankans who paid and are paying taxes for the free education of

the children

Geethal Chandima Siriwardana

ACKNOWLEDGEMENTS

I would like to express my heartiest gratitude to all the lectures of the Department of Mechanical Engineering, University of Moratuwa and the Department of Mechanical Engineering, University of Sri Jayewardenepura for their valuable advice, guidance, and commitment to the MEng in Energy Technology program. Secondly, I would like to express my heartiest appreciation to my supervisors, Dr P M T Bandara and Dr R A C P Ranasinghe, for their advice, patience, and aspiration to complete this report. I would like to express my sincere gratitude to our Course Coordinator of this MEng in Energy Technology program and all group members of MEng in Energy Technology 2018, who gave me the fullest support in my studies in this academic program. Finally, my sincere thanks go to family members who wished, supported, and spared me at their level best for this study.

Geethal, Chandima Siriwardana

2022-02-04

THIS PAGE IS INTENTIONALLY LEFT BLANK

TABLE OF CONTENT

Declaration	i
Abstract	ii
Dedication	– iv
Acknowledgements	— v
Table of Content	vii
List of Figures	x
List of tables	xv
List of abbreviations	-xvi
Roman Symbols	- xvi
Greek symbols	xviii
Acronyms	-xix
1 Heat transfer in microchannels with slug flow of liquid-liquid using nanopart	icles
1	
1.1 Numerical investigations of microfluidics and nanofluids	2
1.2 Aim and significance of this study	3
1.3 Thesis outline	4
2 A Review: Microchannel Heat transfer and Nanofluids	5
2.1 Why microfluidics?	5
2.1.1 Single phase flow in microchannels	6
2.2 Nanofluids	9
2.2.1 Advantages of nanofluids	9
	12
2.5 Heat transfer in microchannels	

	2.3.2	Thermal conductivity of liquids	14
	2.3.3	Thermal conductivity of nanofluids	16
	2.4 H	Heat transfer in a single-phase flow	16
	2.5 N	Vanofluids in microchannels	22
	2.6	Wall temperature	26
	2.7 F	Flows with two phases and heat transfer	28
	2.7.1	Heat transfer via two-phase liquid-liquid flow	30
	2.7.2	Pressure-drop in two-phase liquid-liquid flow	30
	2.8 H	Bubble velocity and film thickness	37
	2.9 7	Two-phase (slug flow) nanofluidic heat transfer in microchannels	Error!
	Bookm	ark not defined.	
	2.10 \$	Summary	40
3	Num	erical Analysis on Circular Microchannel	41
	3.1 F	Problem Formulation and solution procedure	41
	3.1.1	Interface tracking in two – phase liquid – liquid Flow	41
	3.1.2	Governing Equations	42
	3.2 N	Aethodology	43
	3.2.1	Problem Setup	44
	3.2.2	Mesh generation for the numerical analysis	48
	3.2.3	Void Fraction	51
	3.2.4	Wall wettability and contact angle	52
	3.3 F	Results and Summary	53
4	Num	erical Analysis of flow in Circular Microchannel with nanoparticles-	54
	4.1 F	Problem Formulation and Solution procedure	54
	4.1.1	Conventional single-phase approach for analysis of nanofluid	54
	4.1.2	Multiphase analysis of nanofluid based liquid-liquid slug flow	55

	4.1	.3	Governing Equations	56
	4.2	Me	thodology	56
	4.2	.1	Nanoparticle injection in secondary fluid phase – ANSYS Fluent	57
	4.2	.2	Geometrical model with boundary conditions	57
	4.2	.3	Mesh Generation and study validation	58
	4.3	Res	sults and Summary	62
5	Re	sults	and Discussion	63
	5.1	Flo	w development and droplet formation	63
	5.2	Pre	ssure and velocity distribution across the channel with two phase liqu	uid –
	liquid	l Flo [.]	W	67
	5.3	Rel	ative velocity distribution within the droplet of a two-phase liquid-l	iquid
	flow	71		
	5.4	Eff	ect of nanoparticles in two phase liquid – liquid slug flow	74
	5.4	.1	Effect of nanoparticles in secondary fluid on heat transfer	74
	5.4	.2	Effect of nanoparticles in based fluid on heat transfer	80
	5.4	.3	Pressure drop associate with nanoparticles	86
	5.5	Sur	nmary	87
6	Со	nclu	sions and Recommendations	89
	6.1	Cor	nclusions	89
	6.2	Rec	commendation	90
D.	aforon		+	01

LIST OF FIGURES

Figure 2-1: Size characteristics of microfluidic devices (Adapted from [20])
Figure 2-2: Continuum assumption in fluids illustrated by thought experiment for measuring density [21]
Figure 2-3:Sketches of (a) a gas, such as N_2 , at standard conditions, and (b) a liquid, such as H_2O [22]
Figure 2-4: In a circular channel with laminar flow, the formation of a velocity boundary layer (Adapted from [3])
Figure 2-5:Relative viscosity of nanofluids measured experimentally and simulated as a function of volume fraction (Adapted from [26])
Figure 2-6: The relationship between the relative viscosity of a nanofluid and the diameter of a nanoparticle (adapted from [26])
Figure 2-7:The formation of a thermal boundary layer in a circular duct (Adapted from [3])
Figure 2-8: Ethylbenzene's ($C_6H_5C_2H_5$) heat capacity against temperature (Adapted from [29])
Figure 2-9: Thermal conductivity of benzene (C ₆ H ₆) (Adapted from [29])15
Figure 2-10: Thermal conductivity of water (H ₂ O) (Adapted from [29])15
Figure 2-11: Maximum heat fluxes reported over the years (adapted from [32]) 17
Figure 2-12: Physical processes occurring in the pipe flow of supersaturated (adapted from [38])
Figure 2-13:General relationships of models in fluid dynamics (adapted from [39])21
Figure 2-14:Increase in heat transfer coefficient along tube axis as a function of diameter and volume fraction at 750 Reynolds number [44]24
Figure 2-15: At 750 Reynolds number, reduced surface temperature along the tube axis
by a percentage [44]25

Figure 2-16: Increase in heat transfer coefficient of nanofluid down tube axis for several Reynolds numbers and 100 nm particles with 4 percent volume fraction [44].

Figure 2-26: The stagnant film model was used to calculate the water-toluene (W-T) and ethylene glycol/water-toluene (EG-T) slug flow pressure drop in the 248 µm and 498 µm capillaries as a function of slug velocity at an O/A ratio of 1 (solid line)[57]

Figure 2-28: Comparison of convective heat transfer coefficient friction factor between
the LVG-enhanced microchannel and the plain channel [64]
Figure 2-29: The LVG-enhanced microchannel's velocity (a) and temperature (b)
contours [64]
Figure 3-1:Schematic diagram of two-phase flow model with Cross-Junction (One half
has mirrored via axisymmetric line)
Figure 3-2: Flow shape map as detected by [74] circular test section where diameter is
1.45 mm. Transition lines are not from the Triplett et al. but are indicatives
Figure 3-3: The simulations' mesh elements
Figure 3-4: Generated mesh overlay with the volume fraction of water
Figure 3-5: Schematic of a slug and bubble two-phase flow unit cell [3] 50
Figure 4-1: Initial Setup 57
Figure 4-2: Schematic diagram of three-phase flow model
Figure 4-3: The distribution of velocity of a water slug along a line in the mid plane
perpendicular to the axis
Figure 4-4: Computational mesh with refined gradient adaptation
Figure 4-5: Mesh overlay with phase contour
Figure 4-6: Adapted Mesh after t = 1s
Figure 5-1: Initial flow domains at $t = 0$ s
Figure 5-2: Initial interface contour at $t = 0$ s
Figure 5-3: Outlet velocity magnitude at $t = 1 \text{ ms}$
Figure 5-4: Droplet detachment from the main domain at $t = 4.2$ ms
Figure 5-5: Velocity profile at the point of droplet detachment from the main domain
at $t = 4.2 \text{ ms}$
Figure 5-6: Flow formation with mineral oil inlet velocity at 0.5 m/s and water inlet
velocity at 0.2 m/s
Figure 5-7: Flow formation with mineral oil inlet velocity at 0.2 m/s and water inlet
velocity at 0.2 m/s

Figure 5-8: Flow formation with mineral oil inlet velocity at 0.1 m/s and water inlet
velocity at 0.5 m/s
Figure 5-9: Flow formation with mineral oil inlet velocity at 0.1 m/s and water inlet
velocity at 0.1 m/s
Figure 5-10: Axial Pressure Drop
Figure 5-11: Velocity Contour Map
Figure 5-12: Axial Velocity Distribution Plot
Figure 5-13: Velocity distribution at 2800 μ m where t = 0.016 s70
Figure 5-14: Velocity distribution at 2800 µm when one bubble passes
Figure 5-15: Average Nusselt number vs contact angle
Figure 5-16: Volume fraction (a): at 90-degree contact angle, (c): at 100-degree contact
angle, (c): at 120-degree contact angle, (g): at 150-degree contact angle, (i): at 160-
degree contact angle, (k): at 170-degree contact angle, internal circulation velocity (b):
at 90-degree contact angle, (d): at 100-degree contact angle, (f): at 120-degree contact
angle, (h): at 150-degree contact angle, (k): at 160-degree contact angle, (l): at 170-
degree contact angle,
Figure 5-17: Volume fraction of Nanophase Al2O3
Figure 5-18: Temperature Distribution inside a one bubble
Figure 5-19: Effective Thermal Conductivity Comparison
Figure 5-20: Nusselt number comparison of the nanofluid-based liquid-liquid two-
phase slug flow) nanofluid as the droplet) with respect to single phase and liquid-liquid
two-phase slug flow without nanoparticles
Figure 5-21:The Nusselt number variation with the axial length
Figure 5-22: The relative velocity magnitude of the Al ₂ O ₃ nanoparticles with respect
to the host fluid in a single bubble
Figure 5-23: Temperature variation inside a bubble (Case 01)
Figure 5-24: Axial Temperature distribution in two-phase liquid-liquid slug flow
without nanoparticles

Figure 5-25:Axial Temperature distribution in two-phase liquid-liquid slug flow wi	th
nanoparticles	84
Figure 5-26: Nusselt number comparison of the nanofluid-based liquid-liquid tw	0-
phase slug flow (nanofluid as the slug) with respect to single phase and liquid-liqu	id
two-phase slug flow without nanoparticles	85
Figure 5-27: Nusselt number variation with respect to different cases	86
Figure 5-28: Axial pressure drop across the channel with nanoparticles	87

LIST OF TABLES

Table 2-1: Celata's Experimental conditions [38]	20
Table 3-1: Properties of materials	45
Table 3-2: Different test cases considered for the study	47
Table 3-3: Mesh Details	49
Table 3-4: Capillary Number	51
Table 3-5: Calculation models for different parameters	52
Table 4-1: Material Properties including nanoparticles	58
Table 4-2: Different nanoparticle properties	58
Table 4-3: Mesh properties - Ansys Fluent	. 61
Table 4-4: Nanoparticle case details	. 62
Table 5-1: Distance between two adjacent droplets	. 67
Table 5-2: Average Nusselt numbers for different test cases.	. 71
Table 5-3:Nusselt number comparison	. 72
Table 5-4: Effect of nanoparticles in secondary fluid on heat transfer case paramet	ters
	. 77
Table 5-5: Effect of nanonarticles in based fluid on heat transfer case narameters	82

LIST OF ABBREVIATIONS

Roman Symbols

A	Correlation constant for chemical compound
В	regression coefficients for chemical Compound
Са	Capillary Number.
Со	Confinement number
Cp	Specific heat
C_{ps}	Heat capacity of saturated liquid
D	Diameter of the microchannel
d	Nanoparticle diameter
da	Diameter of the aggregate
df	Fractal dimension of the aggregates
D_h	Hydraulic Diameter
Di	Internal diameter
Do	Outer diameter
е	Internal energy
€ _{Di}	absolute error of the parameter Di
F	Body force
g	Gravitational acceleration
G:	Graetz number
k	Thermal conductivity of the fluid
Κ*	Geometry dependent constants
Kn	Knudsen Number

L	Characteristics channel dimension
Lc	Microchannel length
Lht	Heated length of the microchannel
Lhyd	Entry Length of a flow
М	Constant depends on the geometry of the channel
m	The fraction of the cross-sectional area of the tube covered with liquid.
M*	Dimensionless quantity initiated by the author
n	Constant exponent component
Nu	Nusselt number
р	Pressure
pi	Primary fluid
Pr	Prandtl number
q	Heat flux
Q	Flow rate
ŗ	Distance from the axis
R	Radius of the circular pipe
Re	Reynolds Number
se	Secondary fluid
Т	Temperature
T _(r)	Fluid temperature at a distance of r
Th	Dimensionless heated perimeter
Tm	Bulk mean fluid temperature
Tw	Wall temperature

и	Flow velocity
U(r)	Velocity component in the fully developed laminar flow
Uavg	Average velocity
UB	Bubble Velocity
Us	Slug Velocity
Greek	symbols
ΔP	Pressure drop
μ	Dynamic viscosity
μ_r	Relative Viscosity
λ	Mean free path length
ρ	Local density
ρι	density of the liquid
$ ho_{ u}$	density of the vapor
σ	surface tension
σi	interfacial tension between two fluids
τ	Stress tensor
Φ	nanoparticle volume fractions
σ_{l-g}	surface tension between liquid and gas
σ_{s-g}	surface tension between solid and gas
σ_{l-s}	surface tension between solid and liquid
θ_E	Young's equilibrium contact angle

Acronyms

CFD	Computation Fluid Dynamics
CHF	Critical Heat Flux
CNT	Carbon Nanotubes
EDL	Electric Double Layer
EG-T	Glycol/Water-Toluene
EG-W	Ethylene Glycol and Water
EHF	Extreme High Heat Flux
HHF	High Heat Flux
LoC	Lab On a Chip
LVG	Longitudinal Vortex Generators
МСИ	Micro Controller Unit
MEMS	Micro Electromechanical Systems
<i>O/A</i>	Organic to Aqueous Volumetric
PDE	Partial Differential Equations
SF	Stagnant Film
UHF	Ultra High Heat Flux
W-T	Water-Toluene
MWCNT	Multi-Walled Carbon Nanotubes