CE 16/01

627.8 (SA8.2)

NB

TH

DCE 04/01

පුස්තකාලය මොරටුව විශ්ව විදහාලය, හුී ලංකාව මොරටුව,

CAVITATION IN HYDRAULIC STRUCTURES

WITH SPECIAL REFERENCE TO HOLLOW JET VALVE TYPE ENERGY DISSIPATORS AND UKUWELA OUTLET WORKS

A. NADARASAH B.Sc (Eng); M·I·C·E (LOND).

The Dissertation submitted to the Civil Engineering Department, Faculty of Engineering, University of Moratuwa in partial fulfillment of requirements for the degree of Master of Engineering. (Irrigation and Water Power.)

ن المالية المحلمة محلمة المحلمة محلمة محلمة

38717

UKUWELA POWER HOUSE Downstream view

SYNOPSIS

Cavitation is a major source of damage to hydraulic structures and hydraulic machinery and leads to failure of function. In all forms of cavitation (fixed, travelling, vortex and vibratory) low ambient pressures and high velocities are conducive to cavitation. Low pressures can be caused by narrowing down or abrupt change of curvature of flow passages, separation of flow from wall surface, vorticity or pulsation and stable cavities are formed when local pressures drop close to vapour pressure. Cavities thus formed, collapse when they move into high pressure zones with tremendous implosive violence causing the damage to guiding surfaces.

Theoretical analyses of "Bubble Dynamics" have been made and the theories verified experimentally. The influence of factors such as surface tension, viscosity, tensile strength of liquids, solvates etc. have also been analysed.

Elaborate equipment such as water tunnels with facilities for observing cavitation on models, controlling and simulating influencing conditions such as velocity, pressure, temperature and measuring functions such as torque and thrust, while visually observing and "listening in" on cavitating components have been evolved. Stroboscopic lighting and high speed motion photography have been developed to record and study such phenomena. Equipment such as Rotating Disc and Drop Impact Device have been made to study cavitation resistance of various materials.

Study of cavitation through models and comparison of performance and ensuring dynamic similarity are achieved by use of a dimensionless coefficient - the Cavitation Parameter, which is a ratio of energy available to collapse a cavity to the energy available to produce it. The computation of this parameter takes a form appropriate to the hydrodynamic context. The Cavitation Parameter is also used as an index to demarcate cavitation inception, threshold, advanced stage, etc.

Stilling basins are structures under potential cavitation hazard. Ukuwela Power House Irrigation Outlet Stilling Basin of Jet Diffusion type with Twin Hollow Jet value has been selected for case study, since the structure commissioned in 1976 suffered cavitation damage in several forms. Model tests for this structure have been conducted by the Irrigation Department Hydraulic Laboratory earlier. The model test results and "Wet test" results on the Prototype are reviewed in the light of Cavitation Theory studied in depth.

Conclusions regarding situations conducive to cavitation and methods of preventing same by appropriate design and computation have been drawn from the above study. Thus recommendations for cavitation free design and construction of hydraulic structures (especially stilling basins) have been made for future guidance.

ACKNOWLEDGEMENT

The following acknowledgement of help, guidance and assistance given to me is gratefully recorded.

- Professor P.C. Varghese, Professor V.C. Kulandaiswamy of UNESCO, Professor D.S. Wijeyasekera and Dr. D.C.H. Senarath of Moratuwa Campus and Mr. O.A. Gunawardana, Deputy Director Irrigation Department for reading through the text fully, participating in a Panel Discussion and for offering valuable guidance both in the subject matter as well as presentation.
- 2. Mr. N. Karunakaran, Chief Engineer (Hydraulics) and the other staff at the Irrigation Department for supervision of the model tests and guidance in observing and interpreting test results.
- 3. Mr. K.W. Upasena, Project Engineer Central Engineering Consultancy Bureau for photography.
- 4. Messrs. Robert Lamahewa and T. Kulasekeram for illustrations.
- 5. Miss Kalum Wickramatunga and Mr. Sam Ratnasamy for typing.

The model tests described in this text were carried out at the Irrigation Department Hydraulics Laboratory under the direction of Mr. K.B.E. de S. Karunaratne, Deputy Director of Irrigation and Mr. N. Karunakaran, Chief Engineer (Hydraulics). The writer in his capacity as Chief Engineer(Structural Designs), was able to participate in the tests to make observations, and suggest probing of probable problem areas.

The prototype tests at Ukuwela were carried out by Technical staff from Mitsubishi Japan. Their work was monitored by Mr. K.L. Ariyananda, Deputy General Manager (E&M) as regards mechanical performance, and myself as regards structural safety. I am indebted to these personnel for carrying out additional tests and observations, and modifying certain test procedures as requested by me. During testing period, my interest was of course, safety and durability of structural components - but this experience later came to be material for presentation in a dissertation.

The first part of the text is largely an assimilation (and re-presentation in a condensed form) of theory obtained from text books, articles, research papers presented in Journals and Proceedings of Technical Institute Symposia etc. Acknowledgement for same is made throughout the text by cross reference to relevant sources serially numbered in the Bibliography. CONTENTS

				Page
			LIST OF PLATES	vii
			LIST OF ILLUSTRATIONS	viii
			LIST OF TABLES	×
			LIST OF SYMBOLS	×i
CHAPTER	1		INTRODUCTION	1
	2		THE CAVITATION HAZARD	6
	3		THE MECHANISM OF CAVITATION	10
		3.1	The Cavitation Process	10
		3.2	Distinction from Boiling	10
		3.3	Cavitation Defined	10
		3.4	Cavitation influenced by other factors	11
		3.5	Gaseous Cavitation	11
		3.6	Cavitation in Acoustic Fields	11
		3.7	Growth and collapse of Cavities	11
		3.8	Ventilated Cavities	11
		3.9	The Macroscopic appearance of Cavitation Zone	11
		3.10	Nature of Cavitation - Its Microscopic Revelation	12
		3.11	Cavitation Inception	12
		3.12	Mechanics of cavitation in stilling basin	13
	4		TYPES OF CAVITATION	14
		4.1	Fixed Cavitation	14
		4.2	Supercavitation	14
		4.3	Travelling Cavities (Fig. 4.2)	15
		4.4	Vortex Cavitation (Fig. 4.3)	15
		4.5	Vibratory Cavitation	16
	5		BUBBLE MECHANICS	17
		5.1	Rayleigh Analysis of Spherical Cavities	17
		5.2	Extension of Rayleigh Analysis to Inter- mediate Time	19
		5.3	Extension of Rayleigh Analysis to gas filled cavities	19
		5.4	Pressure Distribution by Rayleigh Analysis	20

	5.5	Rayleigh Analysis Extended to Compressi-	
		ble fluids	21
	5.6	Gas Filled Cavities in Compressible Fluids	22
	5.7	Non Spherical Bubbles	22
	5.8	Deformation at Solid Boundaries - Jetting	22
	5.9	Surface Deformation at Interface	23
	5.10	Effect of other Fluid Properties	23
6		FACTORS INFLUENCING CAVITATION	24
	6.1	Tensile Strength of Liquids	24
	6.2	Tensile Strength Measurements	24
	6.3	Dynamic Tensile Strength	25
	6.4	Tensile Strength Experiments - Conclusion	25
	6.5	Solid Impurities	25
	6.6	Hydrophilic and Hydrophobic Surfaces	26
	6.7	Gaseous and Vapour Nucleii in Liquids	26
	6.8	Stability of Gas Nucleii	27
	6.9	Harvey's Theory for Stability of Gaseous Nucleii	27
	6.10	Free Energy, Surface Tension, and Wetting	28
	6.11	Effect of Surface Tension on Cavitation	29
	6.12	Effect of Viscosity	29
	6.13	Effect of Density	29
7		CAVITATION INVESTIGATION METHODS	30
	7.1	General Requirements of last facilities	30
	7.2	Water Tunnels	32
	7.3	Pressure, Velocity, Temperature Controls	33
	7.4	Test Chamber Illumination and Observations	33
	7.5	Rotating Disc Apparatus (Fig. 7.4)	35
	7.6	Mapping Cavitation Zones	35
	7.7	Accelerated Damage Tests on Materials	36
	7.8	Drop Impact Device (Fig. 7.5)	36
	7.9	Cavitation Sound Measurement - Acoustic Beaker	36
8		PREDICTION OF CAVITATION - THE CAVITATION PARAMETER	37
	8.1	The Need for Prediction	37
	8.2	Prediction from Models - Hydraulic Similitude	37

	8.3	Evolution of the Cavitation Parameter - K	
		(Refer Fig. 8.1)	37
	8.4	Advanced Stage of Cavitation	40
	8.5	Cavitation Index	40
	8.6	Physical Significance of the Parameter	40
	8.7	Application to Hydraulic Structures	40
	8.8	Cavitation Damage Number	41
	8.9	Thomas Criteria for Cavitation (Ref. Fig.8.4)	45
	8.10	Cavitation Scale Effects	48
	8.11	Frictional Scale Effects	48
	8.12	Shape Factor Scale Effects	48
	8.13	Scale Effects due to Surface Roughness	48
	8.14	Other Scale Effects	49
	8.15	Significance of Scale Effects on the Uku- wela Stilling Basin	49
	8.16	Cavitation Index for Valves	49
	8.17	Cavitation Index for Sudden Enlargement Energy Dissipators	50
9		CAVITATION RESISTANCE OF VARIOUS MATERIALS	52
	9.1	Material Properties Determining Resistance	52
	9.2	Different Types of Erosive Action on Materials	53
	9.3	List of Cavitation Resistant Materials	53
	9.4	Non-Metallic Material Behaviour	54
	9.5	General Behaviour of Metals	55
	9.6	Concrete	56
10		UKUWELA POWER PLANT AND STILLING BASIN	58
	10.1	Polgolla Diversion	58
	10.2	Diversion Characteristics	58
	10.3	Ukuwela Power Plant	58
	10.4	Ukuwela Irrigation Outlet	60
	10.5	Calculations of Hollow Jet Valve	61
11		HOLLOW JET VALVE STILLING BASINS	63
	11.1	Purpose of the Stilling Basin	63
	11.2	Comparison with Hydraulic Jump Type Still- ing Basins	63
	11.3	History of Evolution	63

iv

	11.4	Description of the Valve	64
	11.5	USBR Type Hollow Jet Valve	65
	11.6	Howell Bunger Type Hollow Jet Valve	65
	11.7	Comparison of Valve Suitability	66
	11.8	Hollow Jet Valve Type Stilling Basin - Design Procedure	68
12		MODEL TESTS ON UKUWELA OUTLET WORKS	69
	12.1	Irrigation Outlet - Model Tests for ECI Proposals	69
	12.2	Model Tests on Hollow Jet Valve Type Outlets	74
	12.3	Pressure and Velocity Observations at the Ukuwela Irrigation Outlet Model	76
	12.4	Cavitation Tests on Power Plant & Draft Tube Models	78
13		UKUWELA IRRIGATION OUTLET - PROTOTYPE	
	10 1		82
	12.1		62
	13.2	Rumbling Noise in Irrigation Uutlet buard Valves	83
	13.3	Stilling Basin Behaviour	85
	13.4	Vibrations on Stilling Basin Partition	86
14		CRITICAL STUDY OF MODEL TESTS AND PROTOTYPE BEHAVIOUR AT UKUWELA OUTLET WORKS	88
	14.1	Model Tests on the Stilling Basin	89
	14.2	Scale Effects	90
	14.3	Model Atmosphere Effect	9 2
	14.4	Inadequate Sensitivity of Instrumentation	97
	14.5	Faulty Construction	98
	14.6	The Case of the Singing Valve	98
	14.7	Case of the Oscillating Divide Wall	100
	14.8	Case of the Vibrating Penstock	101
	14.9	Cavitation in Ukuwela Draft Tube	103
15		CONCLUSION AND RECOMMENDATION	105
	15.1	General Conclusions	105
	15.2	Recommendations for Models	107
	15.3	Cavitation Free Design	109
	15.4	Aeration of Cavities	111

v

15.5	Cavitation Free Construction	111
15.6	Surface Linings	112
15.7	Repairs to concrete Damaged by Cavitation	112
15.8	Repair work	114
15.9	The Ukuwela Stilling Basin Repairs	114
15.10	Recommendation for Design of Hollow Jet Valve Type Stilling Basins	115
15.11	New Developments - The future trend	116
	BIBILIOGRAPHY	117

LIST OF PLATES

-

REF. NO.		DESCRIPTION	FACING PAGE
Frontispiece	-	UKUWELA POWER HOUSE	
1	-	UKUWELA POWER HOUSE STILLING BASIN	3
2	-	BY-PASS HOLLOW JET VALVE	4
3 & 4	-	UKUWELA STILLING BASIN-CAVITATION DAMAGE	7
5	-	CAVITATION ON FRANCIS TURBINE	9
6	-	BAFFLE TYPE ENERGY DISSIPATOR DOWNSTREAM VIEW D. SIDE VIEW	71
7	-	BAFFLE TYPE ENERGY DISSIPATOR MODEL a. SIDE VIEW b. VIEW SHOWING MERCURY MANOMETERS	71
8	-	BAFFLE TYPE ENERGY DISSIPATOR MODEL a. CESSURE TAPPINGS - DOWNSTREAM VIEW b. PRESSURE TAPPINGS - SIDE VIEW	71
9 to 13 .	-	BAFFLE TYPE ENERGY DISSIPATOR MODEL TEST PHOTOGRAPHS FOR VARYING DISCHARGES	71
14	-	HOLLOW JET VALVE TYPE STILLING BASIN MODEL	76
15	-	PLEZOMETER TUBING WITH PERMANGANATE	78
16	-	HĴV TYPE STILLING BASIN MODEL AT FULL DISCHARGE	78
		a: DOWNSTREAM VIEW	
		b SIDE VIEW	
17	-	HJV TYPE STILLING BASIN a. TUBES b. BED	78
18	-	HJV TYPE STILLING BASIN MODEL FIXED CAVITY FORMATION	78
		a. INCEPTION	
		b. ELONGATION	

LIST OF ILLUSTRATIONS

			DESCRIPTION	FACING PAGE
Fig.	3.1	-	STATIC FORCES ON A SPHERICAL BUBBLE	12
Fig.	3.2	-	PRESSURE VERSUS BUBBLE SIZE	12
Fig.	4.1	-	FIXED CAVITY CYCLING	14
Fig.	4.2	-	TRAVELLING CAVITIES	14
Fig.	4.3	-	EXAMPLES OF VORTEX CAVITATION	15
Fig.	5.1	-	RAYLEIGH ANALYSIS – PRESSURE PROFILE NEAR A COLLAPSING BUBBLE	20
Fig.	5.2	-	JETTING AND BUBBLE COLLAPSE	23
Fig.	6.1	-	STABILITY OF GASEOUS NUCLEII	28
Fig.	6.2	-	FREE ENERGY AT INTERFACES	29
Fig.	7.1	-	LAYOUT OF TWO DIMENSIONAL WATER TUNNEL	32
Fig.	7.2	-	PROPELLER TESTING TUNNEL	33
Fig.	7.3	-	ILLUMINATING DEVICES FOR PHOTOGRAPHING MODEL	5 :4
Fig.	7.4	-	LAYOUT OF ROTATING DISC APPARATUS	35
Fig.	7.5	-	DROP IMPACT DEVICE	36
Fig.	8.1	-	BODY FLOW DYNAMICS AND IDEALISED CAVITATION TEST BEHAVIOUR	37
Fig.	8.2	-	CRITICAL CAVITATION IN SPILLWAYS	42
Fig.	8.3	-	SCALING OF NON SEPARATED TYPE FLOWS ON AXISYMMETRIC BODIES	43
Fig.	8.4	-	THOMA'S CRITERIA FOR CAVITATION	45
Fig.	8.5	-	THOMA'S CRITERIA - EXPERIENCE CURVE	47
Fig.	8.6	-	SCALING OF SEPERATION - TYPE FLOWS	48
Dwg.	10.1	-	UKUWELA POWER PLANT - GENERAL LAYOUT OF PENSTOCK AND POWER PLANT	60
Dwg.	10.2	-	UKUWELA POWER PLANT - GENERAL ARRANGEMENT	61
Fig.	11.1	-	HOLLOW JET VALVE ASSEMBLY	65
Fig.	11.2	-	GENERALISED DESIGN OF HOLLOW JET VALVE TYPE STILLING BASIN	68

Fig.	11.3	-	DEVELOPED BASIN	68
Fig.	11.4	-	(a) IDEAL TAIL WATER DEPTH	
			(b) TAIL WATER SWEEP OUT DEPTH	68
Fig.	11.5	-	STILLING BASIN LENGTH	68
Dwg.	12.1	-	IRRIGATION OUTLET ECI PROPOSAL	69
Fig.	12.1	-	MODEL LAYOUT (SCHEMATIC DIAGRAM)	76
Fig.	12.2	-	ILLUSTRATION OF HEAD MEASUREMENT METHOD	78
Fig.	12.3	-	SECTION OF TESTING PLANT	78
Fig.	12.4a &	Ь	CAVITATION CHARACTERISTIC CURVES	80
Fig.	12.5	-	COMPARISON OF CAVITATION LIMIT WITH PLANT SIGMA	80
Fig.	13.1	-	HJV CALIBRATION CURVES	83
Dwg.	13.1	-	BIPLANE VALVE DISC	84
Fig.	13.2	-	NOISE OF IRRIGATION OUTLET GUARD VALVE	85
Fig.	13.3) 13.4)& 13.5)	-	RESULT OF REAL TIME ANALYSED	85
Fig.	14.1	-	INSTANTANEOUS SITUATION IN STILLING BASIN	90
Fig.	14.2	-	TWIN JET PHENOMENON	90
Fig.	14.3	-	CAVITATION ON PIT LINER	104

LIST OF TABLES

REF. NO.		TITLE	FACING PAGE
11.1	ي له	COMPARISION OF BASIN DIMENSIONS	64
12.1		TEST RESULTS - ORIGINAL DESIGN	71
to			
12.5			
12,6	-	TEST RESULTS - REVISED DESIGN	78
8c			
12.7		·	
14.1		MODEL TESTS ON HOLLOW JET VALVES CAVITATION INDICES	89
14.2	676	MODEL TESTS ON HOLLOW JET VALVES	95

LIST OF SYMBOLS

А	-	A Gas Constant Proportional to No. of Gas Molecules
Ъ	-	Width
В	-	Width of Basin
С	-	Celerity
С	-	Constant
d	-	Depth
D	-	Diameter
E	-	Young's Modulus of Elasticity
g	-	Acceleration due to Gravity
h	-	Head
н	-	Static Draft Head
Н	-	Frictional Head Loss
Н	-	Atmospheric Pressure Head
н	-	Vapour Pressure Head
K	-	Cavitation Parameter
l	-	Lenjth
L	-	Length (of Stilling Basin)
n	- ,	Numtar
Ν	-	RPM, Gas Constant
Þ	-	Pressure
₽v	-	Vapour Pressure
79	-	Partial Pressure of Gas
þ*	-	Critical Minimum Pressure
Perit	-	Critical Pressure

Po	-	Ambient Pressure
poo	-	Undisturbed Stream Pressure
Q	-	Initial Gas Pressure
r	-	Radius at a Point from Bubble Centre
R	-	Bubble Radius
R	-	Critical Bubble Radius
t	-	Time
ī	-	Temperature
u	-	Velocity at a point
U	-	Cavity wall Velocity
W	-	Specific Weight
У. Э	-	Height above Datum
Z	-	Ratio R_o^3/g^2
K	-	Apex Angle
P	-	Ratio R/R.
r	-	Specific Weight
μ	-	Viscosity
P	-	Density
٢	-	Sur ace Tension
٢		Time Required for Bubble Collapse
ω	-	Angular Velocity