PERFORMANCE EVALUATION OF A GENERALIZED MULTILEVEL INVERTER WITH DIFFERENT OPERATING MODES

V.K. Ruchira Sampath

(168531X)

Degree of Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2022

PERFORMANCE EVALUATION OF A GENERALIZED MULTILEVEL INVERTER WITH DIFFERENT OPERATING MODES

Vidana Kankanamge Ruchira Sampath

(168531X)

Dissertation submitted in partial fulfillment of the requirements for the

Degree Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2022

Declaration, copyright statement and the statement of the supervisor

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

Signature:

UOM Verified Signature

Date: 2022.05.19.

The above candidate has carried out research for the Masters Dissertation under my

supervision.

Name of the Supervisor: Prof. J.P. Karunadasa

Signature of the supervisor: UOM Verified Signature

Date: 20. 05. 2022

i

Abstract

Multilevel inverters are found in many applications in high power levels. These converters are available in different topological options, such as Cascaded Half Bridge, Neutral Point Clamp, Flying Capacitor, Hybrid and so on. By selecting appropriate switching sub-circuit, generalized multilevel inverter can be used to derive all common topologies.

A Generalized 9 Level Inverter is developed and controlled to operate in Cascaded Half Bridge, Neutral Point Clamped and Flying Capacitor modes for operation in 3, 5, 7 and 9 levels with square-wave and Pulse Width Modulation control. Relative performances were investigated in terms of Total Harmonic Distortion and efficiency.

Acknowledgement

I would like to express my heartfelt gratitude to all the people who have helped me in successfully achieve the targets of my MSc Electrical Engineering research project.

First of all, I take this opportunity thank my project Supervisor Prof. J.P. Karunadasa for providing the concept and for his continuous guidance and support throughout the period.

My sincere thanks go to all my colleagues at Ceylon Electricity Board who supported me in several ways to achieve my targets during this busy time period.

Finally, I would like to take this opportunity to say my heart felt respect and gratitude to my family members, for helping me to complete my MSc Research Project during this busy and difficult time period.

Table of Contents

D	ECLA	ARATION, COPYRIGHT STATEMENT AND THE STATEMENT OF THE	
SI	JPER	VISOR	l
A.	BSTR	ACT	II
A	CKNO	OWLEDGEMENT	III
1 /	ABLE	OF CONTENTS	IV
L	IST O	F FIGURES	VI
L	IST O	F TABLES	XI
L	IST O	OF ABBREVIATIONS	. XII
1.		INTRODUCTION	1
1.			
	1.1	BACKGROUND	1
2.		PROJECT OVERVIEW	2
	2.1	SCOPE OF MY PROJECT	2
	2.2	OBJECTIVES OF THE STUDY	2
	2.3	METHODOLOGY	3
3.		GENERALIZED MULTI LEVEL INVERTER	4
	3.1	LITERATURE SURVEY	4
	3.2	PROPOSED GENERALIZED NINE LEVEL INVERTER	6
	3.3	OPERATION OF THE GENERALIZED NINE LEVEL INVERTER	7
	3.4	GENERALIZED NINE LEVEL INVERTER CONTROL	20
4.		SIMULATION OF THE GENERALIZED NINE LEVEL INVERTER	. 26
	4.1	GENERALIZED NINE LEVEL INVERTER SIMULATION	26
5.		SIMULATION RESULTS	. 34
	5.1	PULSE WIDTH MODULATION	34
	5.2	SQUARE WAVE MODULATION	38
	5.3	COMPARISON OF TOTAL HARMONIC DISTORTION OF PULSE WIDTH MODULATION AND	
	SQUA	ARE WAVE MODULATION	42
	5.4	ANALYSIS OF OUTPUT WAVEFORMS OF PULSE WIDTH MODULATION WITH DIFFERENT	
	Mon	OULATION DEPTHS	43
	5.5	ANALYSIS OF OUTPUT WAVEFORMS OF SQUARE WAVE MODULATION WITH DIFFERENT	
	Mor	NATION DEPOSITS	го

	5.6	TOTAL HARMONIC DISTORTION AND EFFICIENCY OF PULSE WIDTH MODULATION	
	ОРЕ	RATION	75
	5.7	TOTAL HARMONIC DISTORTION AND EFFICIENCY OF SQUARE WAVE OPERATION	76
	5.8	TABULATE RESULTS	78
6.		CONCLUSION	84
	6.1	TOTAL HARMONIC DISTORTION CONVENIENCE	84
	6.2	OVER ALL OPERATIONAL CONVENIENCE	84
	6.3	EVALUATION OF PERFORMANCE	85
	6.4	TOTAL HARMONIC DISTORTION CONVENIENCE	86
	6.5	EFFICIENCY CONVENIENCE	86
	6.6	OVER ALL OPERATIONAL CONVENIENCE	86
	6.7	RECOMMENDATION	89
	6.8	Conclusions	90
7.		REFERENCES	92

LIST OF FIGURES

Figure 1: G9LI of a one phase	6
Figure 2: Sub circuit of 3 Level CHB	8
Figure 3: Sub circuit of 5 Level CHB	9
Figure 4: Sub circuit of 7 Level CHB	. 10
Figure 5: Sub circuit of 9 Level CHB	. 11
Figure 6: Sub circuit of 3 Level FC	. 12
Figure 7: Sub circuit of 5 Level FC	. 13
Figure 8: Sub circuit of 7 Level FC	. 14
Figure 9: Sub circuit of 9 Level FC	. 15
Figure 10: Sub circuit of 3 Level NPC	. 16
Figure 11: Sub circuit of 5 Level NPC	. 17
Figure 12: Sub circuit of 7 Level NPC	. 18
Figure 13: Sub circuit of 9 Level NPC	. 19
Figure 14: SV Diagram of G9LI	. 20
Figure 15: Six sectors of SV Diagram of G9LI	. 21
Figure 16: Reference vector in sector 1	. 22
Figure 17: SV Diagram and Ref. Vector of 3 Level PWM	. 23
Figure 18: SV Diagram and Ref. Vector of 5 Level PWM	. 23
Figure 19: SV Diagram and Ref. Vector of 7 Level PWM	. 24
Figure 20: SV Diagram and Ref. Vector of 9 Level PWM	. 24
Figure 21: Simulated Generalized Nine Level Inverter Model	. 26
Figure 22: Switching signal and timing calculation sub circuit	. 26
Figure 23: DC source connection for 3 phases sub circuits	. 27

Figure 24: Simulated model of a phase consists of G9LI and the sub circuit ha	ndling
switching signals	28
Figure 25: Power Module of the G9LI	29
Figure 26: Matlab Simulink code for sector identification	30
Figure 27: Matlab-Simulink program for Switching Time Calculator	31
Figure 28: Matlab Simulink program to generate switching signals for 9 leve phase	
Figure 29: Matlab-Simulink program to generate switching signals for mo	ode of
operation (FC, NPC and CHB) for each IGBT of a phase leg	33
Figure 30: 3 Level Inverter Voltage Graphs in PWM	34
Figure 31: 3 Level Inverter Current Graphs in PWM	34
Figure 32: 5 Level Inverter Voltage Graphs in PWM	35
Figure 33: 5 Level Inverter Current Graphs in PWM	35
Figure 34: 7 Level Inverter Voltage Graphs in PWM	36
Figure 35: 7 Level Inverter Current Graphs in PWM	36
Figure 36: 9 Level Inverter Voltage Graphs in PWM	37
Figure 37: 9 Level Inverter Current Graphs in PWM	37
Figure 38: 3 Level Inverter Voltage Graphs in SWM	38
Figure 39: 3 Level Inverter Current Graphs of in SWM	38
Figure 40: 5 Level Inverter Voltage Graphs of in SWM	39
Figure 41: 5 Level Inverter Current Graphs of in SWM	39
Figure 42: 7 Level Inverter Voltage Graphs of in SWM	40
Figure 43: 7 Level Inverter Current Graphs of in SWM	40
Figure 44: 9 Level Inverter Voltage Graphs of in SWM	41
Figure 45: 9 Level Inverter Current Graphs of in SWM	41

Figure 46: 3 Level Inverter Voltage Graph at 25% Modulation Depth in PWM 43
Figure 47: 3 Level Inverter Current Graph at 25% Modulation Depth in PWM 43
Figure 48: 3 Level Inverter Voltage Graph at 50% Modulation Depth in PWM 44
Figure 49: 3 Level Inverter Current Graph at 50% Modulation Depth in PWM 44
Figure 50: 3 Level Inverter Voltage Graph at 75% Modulation Depth in PWM 45
Figure 51: 3 Level Inverter Current Graph at 75% Modulation Depth in PWM 45
Figure 52: 3 Level Inverter Voltage Graph at 100% Modulation Depth in PWM 46
Figure 53: 3 Level Inverter Current Graph at 100% Modulation Depth in PWM 46
Figure 54: 5 Level Inverter Voltage Graph at 25% Modulation Depth in PWM 47
Figure 55: 5 Level Inverter Current Graph at 25% Modulation Depth in PWM 47
Figure 56: 5 Level Inverter Voltage Graph at 50% Modulation Depth in PWM 48
Figure 57: 5 Level Inverter Current Graph at 50% Modulation Depth in PWM 48
Figure 58: 5 Level Inverter Voltage Graph at 75% Modulation Depth in PWM 49
Figure 59: 5 Level Inverter Current Graph at 75% Modulation Depth in PWM 49
Figure 60: 5 Level Inverter Voltage Graph at 100% Modulation Depth in PWM 50
Figure 61: 5 Level Inverter Current Graph at 100% Modulation Depth in PWM 50
Figure 62: 7 Level Inverter Voltage Graph at 25% Modulation Depth in PWM 51
Figure 63: 7 Level Inverter Current Graph at 25% Modulation Depth in PWM 51
Figure 64: 7 Level Inverter Voltage Graph at 50% Modulation Depth in PWM 52
Figure 65: 7 Level Inverter Current Graph at 50% Modulation Depth in PWM 52
Figure 66: 7 Level Inverter Voltage Graph at 75% Modulation Depth in PWM 53
Figure 67: 7 Level Inverter Current Graph at 75% Modulation Depth in PWM 53
Figure 68: 7 Level Inverter Voltage Graph at 100% Modulation Depth in PWM 54
Figure 69: 7 Level Inverter Current Graph at 100% Modulation Depth in PWM 54
Figure 70: 9 Level Inverter Voltage Graph at 25% Modulation Depth in PWM 55

Figure 71: 9 Level Inverter Current Graph at 25% Modulation Depth in PWM 55
Figure 72: 9 Level Inverter Voltage Graph at 50% Modulation Depth in PWM 56
Figure 73: 9 Level Inverter Current Graph at 50% Modulation Depth in PWM 56
Figure 74: 9 Level Inverter Voltage Graph at 75% Modulation Depth in PWM 57
Figure 75: 9 Level Inverter Current Graph at 75% Modulation Depth in PWM 57
Figure 76: 9 Level Inverter Voltage Graph at 100% Modulation Depth in PWM 58
Figure 77: 9 Level Inverter Current Graph at 100% Modulation Depth in PWM 58
Figure 78: 3 Level Inverter Voltage Graph at 25% Modulation Depth in SWM 59
Figure 79: 3 Level Inverter Current Graph at 25% Modulation Depth in SWM 59
Figure 80: 3 Level Inverter Voltage Graph at 50% Modulation Depth in SWM 60
Figure 81: 3 Level Inverter Current Graph at 50% Modulation Depth in SWM 60
Figure 82: 3 Level Inverter Voltage Graph at 75% Modulation Depth in SWM 61
Figure 83: 3 Level Inverter Current Graph at 75% Modulation Depth in SWM 61
Figure 84: 3 Level Inverter Voltage Graph at 100% Modulation Depth in SWM 62
Figure 85: 3 Level Inverter Current Graph at 100% Modulation Depth in SWM 62
Figure 86: 5 Level Inverter Voltage Graph at 25% Modulation Depth in SWM 63
Figure 87: 5 Level Inverter Current Graph at 25% Modulation Depth in SWM 63
Figure 88: 5 Level Inverter Voltage Graph at 50% Modulation Depth in SWM 64
Figure 89: 5 Level Inverter Current Graph at 50% Modulation Depth in SWM 64
Figure 90: 5 Level Inverter Voltage Graph at 75% Modulation Depth in SWM 65
Figure 91: 5 Level Inverter Current Graph at 75% Modulation Depth in SWM 65
Figure 92: 5 Level Inverter Voltage Graph at 100% Modulation Depth in SWM 66
Figure 93: 5 Level Inverter Current Graph at 100% Modulation Depth in SWM 66
Figure 94: 7 Level Inverter Voltage Graph at 25% Modulation Depth in SWM 67
Figure 95: 7 Level Inverter Current Graph at 25% Modulation Depth in SWM 67

Figure 96: 7 Level Inverter Voltage Graph at 50% Modulation Depth in SWM	68
Figure 97: 7 Level Inverter Current Graph at 50% Modulation Depth in SWM	68
Figure 98: 7 Level Inverter Voltage Graph at 75% Modulation Depth in SWM	69
Figure 99: 7 Level Inverter Current Graph at 75% Modulation Depth in SWM	69
Figure 100: 7 Level Inverter Voltage Graph at 100% Modulation Depth in SWM	70
Figure 101 7 Level Inverter Current Graph at 100% Modulation Depth in SWM	70
Figure 102: 9 Level Inverter Voltage Graph at 25% Modulation Depth in SWM	71
Figure 103: 9 Level Inverter Current Graph at 25% Modulation Depth in SWM	71
Figure 104: 9 Level Inverter Voltage Graph at 50% Modulation Depth in SWM	72
Figure 105: 9 Level Inverter Current Graph at 50% Modulation Depth in SWM	72
Figure 106: 9 Level Inverter Voltage Graph at 75% Modulation Depth in SWM	73
Figure 107: 9 Level Inverter Current Graph at 75% Modulation Depth in SWM	73
Figure 108: 9 Level Inverter Voltage Graph at 100% Modulation Depth in SWM	74
Figure 109: 9 Level Inverter Current Graph at 100% Modulation Depth in SWM.	74
Figure 110: Graph of THD of Voltage vs. Number of Levels	78
Figure 111: Graph of THD of Current vs. Number of Levels	78
Figure 112: Graph of Efficiency vs. Number of Levels	79
Figure 113: Graph of THD of Voltage vs. Modulation Depth	79
Figure 114: Graph of THD of Current vs. Modulation Depth	80
Figure 115: Graph of Efficiency vs. Modulation Depth	80
Figure 116: Graph of THD of Voltage vs. Mode of Operation in PWM	81
Figure 117: Graph of THD of Current vs. Mode of Operation in PWM	81
Figure 118:: Graph of Efficiency vs. Mode of Operation in PWM	82
Figure 119: Graph of THD of Voltage vs. Mode of Operation in SWM	82
Figure 120: Graph of THD of Current vs. Mode of Operation in SWM	83

Figure 121: Graph of Efficiency vs. Mode of Operation in SWM	83
LIST OF TABLES	
Table 2: THD of PWM and SWM	42
Table 3: THD and Efficiency of CHB, NPC and FC at 25% Mod. depth in PWM	75
Table 4: THD and Efficiency of CHB, NPC and FC at 50% Mod. depth in PWM	75
Table 5: THD and Efficiency of CHB, NPC and FC at 75% Mod. depth in PWM	75
Table 6: THD and Efficiency of CHB, NPC and FC at 100% Mod. Depth in PWM	76
Table 7: THD and Efficiency of CHB, NPC and FC at 25% Mod. Depth in SWM	76
Table 8: THD and Efficiency of CHB, NPC and FC at 50% Mod. Depth in SWM	76
Table 9: THD and Efficiency of CHB, NPC and FC at 75% Mod. Depth in SWM	77
Table 10: THD and Efficiency of CHB, NPC and FC at 100% Mod. Depth in SW	
	, ,

LIST OF ABBREVIATIONS

Abbreviation Description

PWM Pulse Width Modulation

SWM Square Wave Modulation

NPC Neutral Point Clamped

CHB Cascaded Half Bridge

FC Flying Capacitor

THD Total Harmonic Distortion

G9LI Generalized 9 Lever Inverter

SV Space Vector