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ABSTRACT The Internet of Things (IoT) has rapidly transformed digital environments across a multitude
of domains with increased connectivity and pervasive virtualization. The distributed computing paradigm
of Edge Computing has been postulated to overcome the concerns of response time, bandwidth, energy
consumption, and cybersecurity. In comparison to the other concerns, limited studies have focused on
cybersecurity, mainly due to the inherent complexity of threat detection at the Edge. However, the widespread
adoption of IoT applications in economic, social, and political contexts is a stringent indication of the
significant impact from cyber-attacks. This paper aims to address this challenge by presenting an effective
and efficient machine learning approach for threat detection at the Edge of IoT. The novel contributions of
this approach are, a new Enhanced Geometric Synthetic Minority Oversampling Technique (EG-SMOTE)
algorithm to resolve the imbalanced distribution of data streams at the IoT Edge, an extension to the Growing
Self Organizing Map (GSOM) algorithm based on Hyperdimensional Computing for energy efficient
machine learning from unlabeled data streams. The proposed EG-SMOTE + GSOM approach has been
tested using four open access datasets; three benchmark, KDD99 (F-Score= 0.9360), NSL-KDD (F-Score=
0.9647), CICIDS2017 (F-Score = 0.9999), and one industry-focused botnet IoT traffic dataset, BoT-IoT
(F-Score = 0.9445). The EG-SMOTE approach has outperformed SMOTE and G-SMOTE approaches in a
vast number of experiments that are tried with different classifiers. The results of these experiments confirm
the novelty, efficiency and effectiveness of this approach for cybersecurity at the IoT Edge.

INDEX TERMS Edge computing, cybersecurity, edge IoT, hyperdimensional computing, minority resam-
pling unsupervised machine learning, growing self organizing map algorithm.

I. INTRODUCTION
Edge Computing is primed to address the challenges of
Internet of Things applications that are being developed and
deployed in complex real-world settings [1]. The Internet of
Things Edge (IoT Edge) has enabled computation and storage
in end-user proximity, decreased transmission latency, and
reduced network bandwidth requirements, leading to effi-
ciencies in response time, resource utilization and end-user
outcomes [2], [3]. This has been particularly significant
for real-time IoT Edge applications in energy management,
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smart factories, and digital healthcare [4], [5]. Despite these
advances, there has been limited research conducted on effec-
tive, efficient and secure machine learning at the Edge of
IoT [6]. Furthermore, a recent taxonomic analysis highlighted
the importance of a trust ecosystem for cybersecurity in
order to improve the uptake and proliferation of IoT Edge
applications [7].

The IoT is a key enabling technology in Industry 4.0.
Cybersecurity threats and attacks on IoT Edge applications
have been categorized into three layers, perception, trans-
portation and application [7], [8], and further studied in terms
of class of attacks, key-related, denial of service, replay
and privacy attacks [9]. A cybersecurity attack on an IoT
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Edge application is a breach on the integrity of its structure,
function, and operations, impacting both cyber and physical
elements [10]. The types of cybersecurity attacks are diverse
in terms of exploits, targets, methodologies, and the techni-
cal mechanism. These attacks aim to prevent the legitimate
use of a service, compromise a user’s security and privacy,
interrupt system security and data integrity, gain compro-
mised grant permissions and engineer malicious activities
using DDoS attacks, side-channel attacks, malware injec-
tion attacks, authentication and authorization attacks, man-
in-the-middle attacks, and bad-data injection attacks [11].
Encryption, key management and multi-factor authentica-
tion can be used to reduce these attacks [12], [13]. Each
attack is usually intangible and can remain undetected for
months, deteriorating the critical components of the IoT
Edge. IoT-related vulnerabilities, if successfully exploited,
can affect not only the device itself, but also the application
field in which the IoT device operates [14]. Low computa-
tional capacities, protocol heterogeneities and coarse-grained
access control [11], hardware and social engineering vulner-
abilities [15] within an IOT Edge setting introduce further
challenges for the detection of cyber threats and attacks. IDS
(Intrusion Detection System) have been generally used to
detect cyber-attacks in most application settings. IDS fall
into two broad categories: signature-based and behaviour-
based. Signature-based intrusion detection is based on pattern
matching techniques to efficiently determine a known attack.
Signature-based models require frequent updates with a new
signature [15]. Behaviour-based intrusion detection, also
known as anomaly detection, compares operational behavior
profiles to detect attacks, based on deviations from profiles
of normality. In IoT Edge, anomaly detection approaches
are more effective than signature-based methods as most
cyber physical attacks employ obfuscation techniques such
as inserting no-ops, code re-ordering, register renaming,
expanding and shrinking code, and the insertion of garbage
code to bypass signature checks at databases [16], [17].

Current literature reports three types of approaches for
anomaly detection. They are knowledge-based, statistical and
machine learning approaches. Knowledge-based and statisti-
cal approaches are affected by the limitations of capturing,
profiling and updating IoT Edge configurations at operation
level in a dynamic computing environment, and the exposure
of system vulnerabilities for behaviour profiling, whereas
machine learning is able to address these limitations by man-
aging the adaptive disposition and dynamic behavior of IoT
Edge operations with high detection rates, low false positives
and pragmatic computation and communication costs [18],
[19].More specifically, unsupervisedmachine learningmeth-
ods are technically suited for the detection of behaviour-based
cyber threat and attacks on IoT Edge as it can learn from
unlabeled data [20]. In settings where machine learning is
based on imbalanced datasets, the weakness of general learn-
ing algorithms contributes to the difficulties of classifying
the anomalies as the algorithms generally bias towards the
majority class samples. This limitation is more pronounced

in IoT Edge where failing to account for minority data sam-
ples is consequential than the removal of such data due to
underrepresentation.

Drawing on this context, we propose an effective, efficient
and secure method for machine learning at the IoT Edge,
specifically for cybersecurity threat detection. This method
is effective as it addresses the challenge of high volume,
high velocity unlabeled data streams generated at the IoT
Edge. It is efficient as it conducts unsupervised machine
learning using the Growing Self Organizing Map (GSOM)
algorithm based on hyperdimensional computing, resulting
in an energy-efficient computation and storage footprint. It is
secure as it is boosted by minority resampling of imbalanced
data generated by cybersecurity threats and attacks at the IoT
Edge.

The following research contributions are reported in this
paper.
• The development of a novel EG-SMOTE algorithm for
resampling that addresses the limitations of synthesiz-
ing noisy minority samples, overfitting due to extreme
synthesis of minority samples, and improper synthesis
along the borderlines, specifically from imbalanced data
streams in cybersecurity settings.

• A machine learning method that advances EG-SMOTE
for unsupervised machine learning from unlabeled data
in the IoT Edge. The unsupervised machine learning
capability is based on the Growing Self Organizing
Map (GSOM) algorithm that also utilizes Hyperdimen-
sional Computing for energy-efficient machine learning.

• Empirical evaluation of the proposed approach
using three benchmark datasets, KDD99, NSL-KDD,
CICIDS2017, and an industry-focused botnet IoT traffic
dataset, BoT-IoT that confirms the security, efficiency
and effectiveness of the proposed machine learning
approach at the IoT Edge.

The rest of this paper is organized as follows; Section II
presents related work on threat detection in the IoT Edge,
sampling imbalanced data, machine learning for threat
detection, and hyperdimensional computing for low energy
computation implementations. Section III delineates the pro-
posed approach, focusing on the development of the new
EG-SMOTE algorithm and its incorporation into the GSOM
algorithm for unsupervised classification. Section IV reports
on empirical evaluation that confirms the validity and effec-
tiveness of the proposed approach. The paper concludes with
Section V.

II. RELATED WORK
Threat detection in the IoT Edge can be generalized as devi-
ations from standard behaviour of processes and functions
within an IoT application. The original formulation of such
deviations can be traced back to anomalies as defined by
Hawkins, ’an observation which deviates so much from the
other observations as to arouse suspicions that it was gen-
erated by a different mechanism’ [21]. Anomaly detection
can be used to detect cyber threats on the IoT Edge such
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as side-channel attacks, denial of service attacks, malware
injection attacks and authentication attacks. The main goal
in anomaly detection is to define a precise boundary between
normal and anomaly data [22]. Numerous machine learning
and traditional statistical approaches have been proposed
for anomaly detection, however, only a few of these have
been adopted for cyber threat detection in IoT applica-
tions [23]. An architecture for edge-based security, building
firewalls, intrusion detection systems, authentication proto-
cols and privacy preserving methods have been proposed
recently [24], [25].

When the number of training data is insufficient, the few-
shot learning (FSL) approach can be used which reduces
the task related training via the prior knowledge. This is
a learning paradigm that aims to address concerns with a
shortage of training data by allowing models to identify
novel categories with only a few sample data. The main
drawback is that FSL requires a balanced dataset to detect
the anomalies for intrusion detection [26]. The IoT anomaly
datasets are usually imbalanced, where one class is repre-
sented by a large number of cases and the other is represented
by only a few cases. Granular computing is an important
technique for identifying the optimal granularity under an
imbalanced dataset. Granular Computing (GrC) has risen to
prominence as a new multi-disciplinary paradigm in artificial
intelligence and has attracted a lot of attention in recent years.
Xu et al. [27] states that GrC can be used as an efficient
means of data-preprocessing step which is employed in many
machine learning approaches. Many applications of GrC in
the field of machine learning have recently been described
by Ye et al. [28], and many outlier detection techniques based
on GrC have also been proposed. GrC can be combined with
deep learning techniques to identify minority patterns from
imbalanced data for service planning.

The blockchain-based systems could help to prevent
counterfeiting of data by ensuring that the IoT systems
have not been tampered with. These systems are employed
to overcome the serious concerns regarding the secu-
rity in manufacturing and product lifecycle management
in industry 4.0 such as, blockchain-empowered sustain-
able manufacturing and product lifecycle management in
industry 4.0; blockchain-secured smart manufacturing in
industry 4.0; combining permissioned blockchain with a
holistic optimization model as bi-level intelligence for smart
manufacturing [29]–[31]. Features of blockchain technol-
ogy can be leveraged to provide an Anomaly Detection
Service. NOKIA Bell Labs, proposed the first solution,
Blockchain Anomaly Detection (BAD) for detecting anoma-
lies in blockchain-based systems. Much study has been done
on blockchain-enabled sustainable manufacturing in Industry
4.0 from a technical, commercial, organizational, and opera-
tional standpoint [32].

Most of the anomaly detection methods need human inter-
actions [6]. Drawing on this limitation, the following sub-
sections explore recent work related to the machine learning
approach proposed in this paper.

A. RESAMPLING IMBALANCED DATA
Oversampling is the process of replicating the minority class
and undersampling is the deletion of repeating samples of
the majority class [33]. Extreme oversampling leads to over-
fitting despite the preservation of useful information and
features, while undersampling leads to underfitting and poor
generalization. SMOTE is an oversampling technique, which
synthesizes new minority data along the line segments join-
ing randomly chosen minority samples [34] By generating
examples similar to existing minority points, SMOTE cre-
ates larger and less specific decision limits, which increase
the generalization skills of classifiers and thus increase per-
formance. Han et al. [35] suggested that synthetic samples
must be created upon samples closed to the boundary and
borderline-SMOTE algorithm is based on the sample’s selec-
tion strategy. This borderline-SMOTE categorizes the minor-
ity instances as noise, safe, and danger sets. The data points
in danger sets are considered as the borderline instances, and
they are oversampled similar to SMOTE. Douzas and Bacao
[36] proposed G-SMOTE for generating synthetic samples in
a geometric region of the input space, around each selected
minority instance. The basic configuration of this geometric
region can be a hypersphere or a hyper-spheroid.

B. MACHINE LEARNING FOR ANOMALY DETECTION
Machine learning has proven to be far more effective than
knowledge-based and statistical techniques for anomaly
detection [37]. Existing literature reports all three types of
machine learning for anomaly detection, supervised, unsu-
pervised, and semi-supervised [20]. Supervised learning for
anomaly detection is affected by the need for pre-labelled
data of normal and anomalous behaviors. This is specifically
challenging in an Iot Edge setting, where the data is inher-
ently unlabeled, and the volume of anomalies can be large
and not easily accessible or available from vendors or other
end-users due to concerns of exposing further vulnerabilities.
Given this is a significant limitation, it is pertinent to focus
specifically on unsupervised learning techniques for threat
detection. Eskin et al. [38] evaluated clustering, k-NN as well
as a one-class SVM using KDD-Cup99 dataset.

Techniques like autoencoders are trained on normal data
and can be used to detect anomalies [39]. In contrast to
these unsupervised learning approaches, the GSOM algo-
rithm transforms high-dimensional data into low-dimensional
data while preserving the underlying topology representation
of the data [40]. The GSOM algorithm has also been used
for clustering, classification and visualization based on this
property of dimensionality reduction. GSOM has been suc-
cessfully adapted for DoS attack detection [41], and activity
detection [42].

C. RESAMPLING IMBALANCED DATA
Hyperdimensional (HD) computing is a bio-inspired compu-
tational approach for representing and manipulating concepts
and their meanings in a high-dimensional space with a low
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computational overhead [43]. High dimensional binary vec-
tors of fixed length are the basis for representing information
in this type of computing, and the information in anHDvector
is evenly distributed across the vector’s positions, therefore,
hyperdimensional computing operates with distributed rep-
resentations [44]. These distributed representations contrast
with localist representations as they can be used to perform
low-resource computations on digital acceleration hardware
such as FPGA units available on IoT and Edge devices.
Recent work [45]–[47], successfully demonstrated the effec-
tiveness of the adaptation of the GSOM algorithm based
on HD computing for unsupervised learning from unlabeled
data in low energy devices and settings. As delineated in
the following section, the proposed machine learning method
expands on this success.

FIGURE 1. Proposed machine learning approach in the context of the
architecture for cloud-edge orchestration of IoT applications, based
on [41] and [42].

III. THE PROPOSED APPROACH
We have designed the proposed machine learning approach
in the context of the architecture for cloud-edge orchestration
of IoT applications [48]–[50]. As illustrated in Fig. 1, it is
positioned between the Cloud layer and the Edge layer as
it receives data streams from IoT devices situated in both
the Edge and Mobile Edge layers. This cooperative archi-
tecture across Cloud, Edge and Mobile Edge layers enables
real-time responses for the detection of cyber threats and
attacks. The proposed machine learning approach begins
with the EG-SMOTE algorithm for resampling that generates
balanced IoT data streams. Next, the adaptation of the GSOM
algorithm based on HD computing performs unsupervised
learning from unlabeled data, within the bounds of the com-
putational constraints of the Edge layer. Finally, a classifi-
cation module is used to identify anomalies and push these
across as alerts and notifications to the Edge andCloud layers.

A. THE DEVELOPMENT OF EG-SMOTE ALGORITHM
G-SMOTE extends the linear interpolation procedure by
generating samples based on a geometric region [36]. This
algorithm defines a geometric region around the specific
sample inside which the new samples are synthesized.

Algorithm 1
Input: Smaj, Smin, N, k, αtrunc, αdef, γ , β
Smaj - Samples of the majority class
Smin - Samples of minority class
N - Total number of synthetic samples to be

created
K - k-nearest data points
β - Sampling ratio (Smin: Smaj)
γ -Sub-cluster resampling contribution

rate (SRCR)
ni - Upper limit of synthetic samples that a

sub-cluster (ith sub-cluster) can generate
αtrunk - Truncation factor (−1 ≤ αtrunc ≤ 1)
αdef - Deformation factor (0 ≤ αdef ≤ 1)
n - Number of sub-clusters
Output: S gen
Start
1. Define β, αtrunc and αdef.
2. Calculate the number (N) of synthetic samples to be

generated.

N = Num (Majority)
[

β

1 − β

]
−Num (Minority)

(1)

3. Cluster theminority samples into an optimum number
of sub-clusters (n).

4. Find the maximum number(ni) of synthetic samples
that can be created by each cluster.

ni= (γN)
Number ofminority points insub cluster

Total number of minoritypoints
(2)

5. Find k-nearest points ∀ x (x ∈ Smin)
Lnearest - list of k-nearest neighbors of x
Lnear_min - list of k-nearest minority neighbors of x
Pmaj - nearest majority point of x

6. Execute the following steps until N number of syn-
thetic points are generated.
• Shuffle the minority points
• Randomly choose a minority point Si ∈ Smin
• Selection Phase (Si)
Scenter = Si
If (∀ y ∈ Lnearest) ∈ Smaj

Continue
Else if (Lnearest = Lnear_min)

Modify αtrunc
Select a minority point Pmin (Pmin ∈ Lnear_min)
Ssurface = Pmin
point_generation (Scenter, Ssurface)

Else
Randomly select a minority point y
(y ∈ Lnear_min)
Ssurface = argmin Pmin, Pmaj (|| Scenter-Pmin||,
||Scenter-Pmaj||)
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Algorithm 1 (Continue):
Point_generation (Scenter, Ssurface)

Point_generation (Scenter, Ssurface)
If Ssurface ∈ Smin

Modify αtrunc
Check the ni that ith cluster can generate s.t
Si ∈ ith cluster
If (ni > 0)

Synthesize a point in a safe region
ni = ni − 1

Else
Continue

Else
Modify αtrunc
Synthesize a point in a safe region

•• Synthesize_sample ()

EG-SMOTE extends G-SMOTE by implementing spe-
cific modifications in synthetic sample generation. The
EG-SMOTE algorithm can be further discussed in six steps.
Step 1 deals with the initialization process of the algorithm,
defining and assigning values for the known parameters.
These parameter inputs are given in the algorithm and will be
elaborated in the following steps. Step 2 defines the number
of samples to be synthesized. Step 3 and 4 are novel steps
introduced into the algorithm to segregate the sub clusters to
which the resampling can be re-applied. Step 5 and 6 are the
critical part of the algorithm where the minority points are
chosen at random and subjected to resampling based on the
defined category. The above-mentioned steps are elaborated
below.

Step 1: Truncation factor (αtrunc) and deformation fac-
tor (αdef) which were introduced in G-SMOTE [36]
and Sampling rate (β), are initialized. Truncation factor
corresponds to the transformation of the hyper-sphere into
a hyper-spheroid. Similar to the truncation, the deforma-
tion transformation further modifies the initially uniform
probability distribution. EG-SMOTE restricts the number of
samples to be generated by sampling ratio β, in contrast to
G-SMOTE which synthesizes new samples until the ratio of
majority to minority becomes 1:1. Considering this 1:1 ratio
of oversampling in G-SMOTE, the generation of humon-
gous amounts of synthetic data will lead the models to learn
unrealistic synthetic knowledge that do not exist in datasets.
Therefore, EG-SMOTE restricts the rate of oversampling to
reduce excessive synthesizing of minority samples. αtrunc and
αdef are initialized with an initial value and later modified
depending on the category of the selected minority sample
(further explained in Step 6). In contrast, G-SMOTE operates
with a static value for both factors.

Step 2: As mentioned above, the number of samples to be
generated (N) is calculated using (1) based on the sampling
ratio (β). Generally, N is calculated as the difference between
the number of minority and majority samples which leads to
the minority points to be synthesized in abundance such that

minority, majority ratio be 1:1. This abundant creation of syn-
thetic samples may lead to overfitting. Therefore, a parameter
called sampling ratio (β) is introduced to limit the number of
points to be generated.

Step 3 and 4: Minority samples are clustered into an opti-
mum number of sub-clusters (n) to generalize the generation
of new samples across all regions, which reduces the effect
of overfitting. Since we employ an approach which allows
resampling based on sub-clusters, sub-cluster resampling
contributing rate γ (0 < γ < 1) is given a value such that
the contribution from each sub-clusters in synthesizing new
samples is constrained by an upper limit as presented in (2).

The k-means clustering algorithm is used to cluster the
minority samples after obtaining optimum value for k from
the ‘Elbow Test’ [51]. The number ni limits the contribution
to N from each sub-cluster to prevent overfitting and allow
the synthesis of minority points from every other category.

Step 5: k-nearest points are identified for each minor-
ity sample in three categories: k-nearest points from minority
samples, k-nearest points from both minority and majority
samples and a nearest majority point.

Step 6: EG-SMOTE categorizes the selectedminority point
based on the k-nearest points and chooses the surface point
based on the category where G-SMOTE fails to do so. Based
on the ratio of (majority:minority) in k-nearest neighbors,
minority samples are categorized. Considerm being the no. of
majority samples in k-nearest neighbors.
• If m = k, it is an absolute noisy sample
• If m >= 3k/4, it is a noisy sample
◦ Both these samples are considered noisy algorithms.

Borderline SMOTE has considered only the first case
as noisy leaving the second as borderline sample [35].
But since there are possibilities for a miniature noisy
cluster, with one to two minority points, EG-SMOTE
refrains from treating those as borderlines and rather
treat those as noisy. By this EG-SMOTE intends to
prevent creation of more noisy samples.

• If m = 0, it is an absolute safe sample
• If m <= k/4, it is a safe sample
◦ EG-SMOTE reduces the threshold for safeness as

opposed to Borderline SMOTE [35]. Borderline
SMOTE never synthesizes new samples for safe zone
data, which introduces an intra-cluster imbalance.
EG-SMOTE algorithm addresses this intra-cluster
imbalance, by synthesizing new samples for safe zone
samples. But the algorithm shrinks the threshold for
safe samples since extensive synthesis of minority
data will lead to overfitting of data [52].

◦ EG-SMOTE identifies a sample as borderline only when
k/4 < m < 3k/4.

There is a necessity of addressing the inherent nature of
minority samples. Hence, they are categorized accordingly,
provided with different hyper-sphere selection phase, and
point generation phase specific to that category. The point
generation phase differs from one category to another by
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assigning different values for αtrunc and αdef. Hyper-sphere
is pruned as per the category, and a new minority sample
is synthesized. The method synthesis_sample for generating
points follow similar steps of G-SMOTE. Points generation
based on the above-mentioned categories is elaborated as
follows.

There is a necessity of addressing the inherent nature of
minority samples. Hence, they are categorized accordingly,
provided with different hyper-sphere selection phase, and
point generation phase specific to that category. The point
generation phase differs from one category to another by
assigning different values for αtrunc and αdef. Hyper-sphere
is pruned as per the category, and a new minority sample
is synthesized. The method synthesis_sample for generating
points follows similar steps of G-SMOTE. Points generation
based on the above-mentioned categories is elaborated as
follows.

FIGURE 2. Incorporating samples for noisy instances.

1) NOISY SAMPLES
A minority sample is noisy when all the k-nearest neigh-
bors are majority samples or when the majority is the most
frequent (>80%) in the k-nearest neighbors. EG-SMOTE
prohibits synthesizing new samples for noisy samples.
G-SMOTE has identified the problem correctly, however,
the algorithm does not prevent incorporating new samples
from noisy minority samples. As a result, G-SMOTE has the
potential to end up in synthesizing new instances for noisy
samples, as depicted in Fig.2. Consider a scenario where all
the k-nearest points belong to the majority, G-SMOTE selects
the nearest majority sample as the surface point and tries to
synthesize newminority instances in the hyper-sphere. Hence
primarily, the G-SMOTE algorithm is enhanced to prevent the
integration of further noisy minority samples.

2) BORDERLINE SAMPLES
Borderline minority samples occur when the existence of
minority data in the k-nearest neighbors is above 40% but less
than 80% as discussed above. These borderline samples are
often located in overlapping regions of minority and majority

classes or placed close to the complex decision boundaries
between the types. It is essential to define a safe zone for point
generation in the borderline of the minority and majority data
clusters. This issue is proposed and handled by G-SMOTE
correctly. However, G-SMOTE has a static truncation and
deformation factor. The deformation factor deals with a plane
of synthesis point where truncation deals with the pruning
of the sphere to define a safe zone for point generation
[36]. The negative values for the truncation factor would
prune the same side of the selected surface point and vice
versa. Consider a situation similar to Fig.3, where the surface
point is a minority sample. G-SMOTE, with its truncation
factor (−1 <= αtrunc <= 1) being a static value (consider
truncation factor to be 1.0), the algorithm prunes the same
side of the selected surface point for both instances. This
approach would be successful in some instances like when
the surface point is a majority sample at the same time leading
to synthesizing noisy samples when the minority point is
selected to be the surface point.

FIGURE 3. Synthesizing samples in borderline.

Based on the empirical evaluation, it was decided to define
the truncation factor based on the point chosen as the surface
point (either majority or minority) to reduce the impact of
synthesizing minority data in the clusters of majority clus-
ter space. Fig.3 shows the generation of new instances in
the borderline between both binary clusters. With respect
to EG-SMOTE, for a minority point, the truncation (αtrunc)
factor is assigned to a value lesser than zero when the selected
surface point belongs to themajority class such that pruning is
done on the opposite side. If the surface point is the majority
point, αtrunc will be assigned with a negative value from
−1 to 0. Similarly, a positive value will be assigned when
a minority sample is selected as the surface point where the
opposite side will be pruned.

Safe zone sample is when almost all the k-nearest
neighbors are minority samples. Borderline SMOTE [35]
claims that sampling minority data leads to overfitting and
discourages subcluster wise oversampling. G-SMOTE has
evangelized about data synthesizing in vast spread areas or
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synthesizing data of different minority samples all over. This
method is efficient in addressing the issues of imbalanced
binary classification. As Bartosz Krawczyk addressed in [53],
each minority sample should be considered for this interpre-
tation. However, G-SMOTE has not considered the effect of
over-fitting (Fig.4).

FIGURE 4. Synthesizing samples based on clusters.

FIGURE 5. Elbow graph for number of clusters vs accuracy with different
classifiers.

G-SMOTE arbitrarily allows minority points to be synthe-
sized in abundance such that minority, majority ratio be 1:1.
When considering a larger dataset, the number of synthetic
points is more significant, leading to overfitting. Hence in the
EG-SMOTE algorithm, an upper limit was set for sampling
every other minority sub-clusters, as expressed in (2). The
algorithm sets up a maximum value for several synthetic
samples per each subcluster, where the number of subclusters
is decided after Elbow testing. In cluster analysis, the elbow
method is a heuristic used in determining the number of
clusters in a data set. The Elbow- method consists of plotting
the explained variation as a function of the number of clusters
and picking the elbow of the curve as the number of clusters
to identify the optimal number of clusters. For safe sam-
ples, while applying EG-SMOTE to prevent intra-clustering
imbalance, if resampling is applied without identifying the
optimal number of subclusters, there are possibilities for one
sub-cluster to be given less representation.

This will again introduce an intra-cluster imbalance
than addressing it. Fig.5. represents experiments done with
BoT-IoT dataset and results do explain that all classifiers tend
to performwell in their optimal cluster number than any other
cluster number manually chosen.

Algorithm 2
Parameters:
Nodemap 8 is the Dictionary of assigned labels to nodes.
Li - List of all assigned labels to a node
0i - List of modes and i runs from 1 to n
γi - One of the modes of labels of the node and

0i is the set of all modes in that node
X - Inputs corresponding to all the labels

assigned to a node
8i - ith node
Wi - weights of ith node
Yi - Label of ith dataset
BMN - Best Matching Node (winner node)
Start
1. Growing _Self_Organizing_Map ()
8 = {‘0:0’:L1, ‘0:1’: L2 . . . . . . .’x:y’: Ln}

2. Finalize_labels (ϕi):
0i = mode (l1, l2, l1, l1 . . . ) and γi ( γi ∈ 0i )
• If ∃! γi (γi ∈ 0i)

Update_node_label(ϕi, γi)
• If n(0i) > 1.

di = ||xi(t)− w||2; (x ∈ X) (3)

BMN(t) = argmini{di} (4)

γi <= Yi(xi(t))

Update_node_label(ϕi, γi)

3. End

B. GSOM ALGORITHM BASED ON HD COMPUTING
As noted earlier, the GSOM algorithm based on HD com-
puting has been demonstrated to be effective in low energy
settings for unsupervised learning from unlabeled data. The
topological mapping of the GSOM algorithm encapsulates
both original and synthesized samples into a structure that
can be utilized for threat detection.

The workings of the GSOM algorithm are deliberated as
follows. It consists of two phases: first, the growing phase in
which the unsupervised learning process grows new nodes
and adjusts the neuronal weights to accurately reflect the
input space; and the second phase which is the smoothing
phase in which the weights are finely adjusted and calibrated
to for generalized learning across the input space.

Algorithm 2 is proposed as a post-processing step to
GSOM algorithm [40] where a majority-voting label is
assigned to each node, unlike the learning phase where
multiple labels are associated with each input sample x(t).
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Two important steps are defined by the algorithm following
the execution of GSOM.

Step 1: The step involves assigning the node with the mode
of the labels. This is shown as the transition from subfigure A
to B (Fig.6). The imbalance of anomalies in the input samples
is mitigated by incorporating EG-SMOTE which synthesized
more anomalous samples, thus balancing the data. This will
ensure the nodes that represent the anomalies will not be
ignored.

Step 2: Given that X contains all the input samples whose
labels are associated with a particular node. The second step
involves a tie breaker by assigning the label associated with
the input x (x ∈ X) which has the minimal distance to that
neuron as calculated using (3) and (4). This is shown by the
transition from the subfigure B to C (Fig.6.), assuming that
the label associated with the closest inputs for nodes B and D
are 1 and 0 respectively.

Algorithm 3
Parameters:
W - Weights of all nodes in node map
wi - Weights of ith node
Start

1. αi = ||x(t)− wi||
2
; (w ∈ W ), (5)

2. BMN (t) = argmini{αi}, (6)

3. γi <= Yi(BMN (t))

4. Return(γ i)

End

C. CLASSIFICATION
After finalizing of the labels in all the nodes, classification
will be carried out for each of the new unknown inputs x1(t),
as depicted in Algorithm 3.

When there is new data to be classified as whether it is
normal or an anomaly, the distance is calculated between the
weights of the input vector and the weights of each node.
Thereby BMN is determined as the node with the minimum
distance by using equations (5) and (6). Then the label asso-
ciated with that particular node will be given as the predic-
tion for that input sample. For instance, consider the right
subfigure C of Fig.6, suppose that node A is the one with
the minimum distance to that new unseen input, then the
predicted value is 1. This process is repeated until all the
values are predicted for the entire test dataset.

IV. EXPERIMENTS
This section provides the details of the results of the exper-
imentation that was conducted to evaluate the EG-SMOTE
in handling imbalanced data. We have compared the perfor-
mance of EG-SMOTE with SMOTE and G-SMOTE across
all datasets for the following classifiers, Logistic Regressor
(LR), Gradient Boosting Classifier (GBC), K-Nearest Neigh-
bours (KNN), Decision Tree (DT), XGBoost and GSOM

FIGURE 6. Nodes under self-organizing map.

classifier. A variety of hyper-parameters were selected based
on grid-search and k-fold cross-validation for result compar-
ison and optimization.

We have evaluated the performance of the classifiers and
the oversampling techniques using k-fold cross validation
with k= 5. In order to solve the data imbalance in the training
set, we applied the oversampling techniques in the k-1 folds
of the k-fold cross validation procedure to generate synthetic
data and to obtain a balanced training set. The models which
are trained on this data are validated on the remaining fold
along with performance evaluations. We have tried a number
of different hyperparameters for the over samplers and the
classifiers. For SMOTE, we have used k ∈ {5, 3} for the
parameter k nearest neighbors, for GSMOTE we have used
nearest neighbors k ∈ {5, 3}, the deformation factor α def ∈
{1.0, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0} and truncation factor α
trunc ∈ {1.0, 0.75, 0.5, 0.25, 0.0,−0.5,−1.0} and finally for
EG-SMOTE we have used the same set of hyper parameters
that were used for G-SMOTE.

Then for the hyperparameters of the GBC we have tried
max depth ∈ {6, 3}, learning rate ∈ {0.1, 0.01, 0.001} and the
number of estimators ∈ {100, 50}, and for the KNN we tried
the number of nearest neighbors k∈ {5, 3} and p∈ {2, 1}, and
for the DT we tried max depth ∈ {6, 3} and for the XGBoost
we have tried number of estimators ∈ {800, 600, 400, 200,
100, 50}, learning rate ∈ {0.1, 0.01, 0.001}, max depth ∈ {7,
6, 5, 4, 3}, min_child_weight ∈ {5, 3, 1}, gamma ∈ {5, 2,
1.5, 1, 0.5} and col_sample_by_tree ∈ {1.0, 0.8, 0.6}. From
the above hyperparameters, we have collected the highest
evaluation metrics from the cross validation for different over
samplers and classifiers for each dataset. We have carried out
the experiments 3 times and reported the average values of
the results obtained from the experiments.

A. DATASETS
The proposed approach was empirically evaluated using
three benchmark datasets: KDD99 [54], NSL-KDD [55],
CICIDS2017 [56] and Bot-Iot Dataset [57]. All four datasets
exhibit the challenges of imbalanced or skewed data sampling
as well as unlabeled data streams in an IoT Edge setting.
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TABLE 1. Details of datasets.

Datasets with more than two classes were modified to rep-
resent binary classes, and the datasets were pruned to reduce
dimensionality after feature ranking. Table 1 shows the details
of each dataset (IR represents the imbalanced ratio). Vari-
ous performance metrics can be used to evaluate a model:
F-Score, g-mean, and Area Under the ROC Curve (AUC).

• F-Score: Harmonic means of precision and recall and,
therefore, balances a model in terms of precision

TABLE 2. Results for NSL-KDD dataset.

TABLE 3. Results for KDD dataset.

TABLE 4. Results for CICID dataset.

and recall.

Precision = TP/(TP+ FP), (7)

Recall = TP/(TP+ FN), (8)

F-Score = 2∗((Precision∗Recall))/((Precision

+Recall)), (9)

• Area Under the ROC Curve (AUC): ROC curve
results from varying the decision threshold and plotting
the true positive rate against the false positive rate.

• G-mean: Defined as the geometric mean of Sensitivity
and Specificity.

Sensitivity = TP/(TP+ FN), (10)

Specificity = TN/(TN+ FP), (11)

G-mean =
√
(TP/(TP+ FN)+ TN/(FP+ TN)),

(12)

TABLE 5. Results for Bot-IoT dataset.
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B. RESULTS
The following tables, TABLE 2, TABLE 3, and TABLE 4
present the mean cross-validation scores for each combina-
tion of over samplers, evaluation metrics, and classifiers for
NSL-KDD, KDD99, and CICIDS2017 dataset, respectively.

The above experiments were conducted to demonstrate
the performance of the EG-SMOTE sampling approach. The
results for EG-SMOTE demonstrate a significant improve-
ment for the prediction of anomalous samples in imbalanced
datasets as compared with other resampling techniques such
as SMOTE and G-SMOTE.

The F-Score reflects the harmonic mean between preci-
sion and recall and is considered as a reliable metric for
imbalanced classification tasks. G-SMOTE claims that it
outperforms Random oversampling SMOTE and borderline
SMOTE [35]. The results presented in Table 2, Table 3, and
Table 4 suggest that the proposed approach achieves a higher
F-Score for most of the classifiers than other over samplers.
The classifier based on GSOM performs considerably well,
compared to existing classifiers, which confirms its utility in
IoT Edge applications. The experiment conducted with the
CICID datasets suggest that EG-SMOTE algorithm outper-
formed all the compared oversampling methods. In addition,
EG-SMOTE performs equally well for the newGSOMclassi-
fier. Results from the Bot-IoT dataset are presented in Table 5,
here again it can be seen that the proposed machine learning
approach performs better than the other techniques.

V. CONCLUSION
In this paper, we proposed a novel machine learning method
for effective, efficient and secure cyber threat detection at the
IoT Edge. The method was empirically evaluated using three
benchmark datasets, KDD99, NSL-KDD, CICIDS2017, and
an industry-focused botnet IoT traffic dataset, BoT-IoT. Its
effectiveness is demonstrated in addressing the challenge of
high volume, high velocity unlabeled data streams gener-
ated at the IoT Edge. Its efficiency is based on the GSOM
algorithm that utilizes HD computing for sparse distributed
feature representation and learning from unlabeled data in
low-energy settings such as Edge layers. It is secure as it
is boosted by minority resampling of imbalanced data gen-
erated by cybersecurity threats and attacks at the IoT Edge.
Furthermore, the EG-SMOTE algorithm addresses the chal-
lenges of synthesizing noisy minority samples, overfitting
due to extreme synthesis of minority samples, and improper
synthesis along the borderlines due class imbalanced datasets.
The GSOM algorithm transforms high-dimensional data
into low-dimensional data while preserving the underlying
topology representation of the minority resampling boosted
datasets generated by the EG-SMOTE algorithm. The latent
representation generated by the GSOM algorithm is effec-
tive in detecting cyber-physical attacks of varying origins.
As future work, we intend to evaluate the proposed approach
on a large-scale IoT Edge application, and second, we intend
to explore multi-label classification and a safe zone for point
generation based on the k-nearest neighbors than relying

on the category to improve the efficiency of cyber threat
detection at the IoT Edge.
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