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Abstract
Recent research has produced efficient algorithms based on deep learning for text-based 
analytics. Such architectures could be readily applied to text-based social media content 
analysis. The deep learning techniques, which require comparatively fewer resources  
for language modeling, can be effectively used to process social media content data that 
change regularly. Convolutional Neural networks and recurrent neural networks based 
approaches have reported prominent performance in this domain, yet their limitations make 
them sub-optimal. Capsule networks sufficiently warrant their applicability in language 
modelling tasks as a promising technique beyond their initial usage of image classification. 
This study proposes an approach based on capsule networks for social media content analy-
sis, especially for Twitter. We empirically show that our approach is optimal even without 
the use of any linguistic resources. The proposed architectures produced an accuracy of 
86.87% for the Twitter Sentiment Gold dataset and an accuracy of 82.04% for the Crowd-
Flower US Airline dataset, indicating state-of-the-art performance. Hence, the research 
findings indicate noteworthy accuracy enhancement for text processing within social media 
content analysis.

Keywords  Deep learning · Capsule networks · Twitter · Sentiment analysis · Social media 
content analysis

1  Introduction

With the recent rapid growth in information and communication technologies, social media 
has become a major form of human interaction. This has created a large pool of data col-
lection for researchers to analyze data, infer trends, and make suggestions. Sentiment anal-
ysis is a process of systematic computational analysis of opinions, sentiments, and expres-
sions in the text, and plays a vital role in analyzing user opinions [20]. Twitter is one of the 
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growing social media networks with over 330 million users. Tweets are uniquely suited for 
sentiment analysis to infer further knowledge because of their brevity and precise nature. 
Tweets are limited to a maximum length of 280 characters though statistically, only 1% of 
the tweets reach this prescribed limit [26].

Recent research in text processing and sentiment analysis using deep learning has reported 
state-of-the-art results considering many aspects of language modeling through neural lan-
guage representation [40]. Such techniques include Convolutional neural network (CNN) 
and Recurrent neural network (RNN) such as Long Short-Term Memory (LSTM) networks 
and Bi-LSTMs [35]. However, these techniques have inherent limitations that degrade per-
formance in social media content analysis [15]. In contrast, CNNs that have produced better 
performance, are also have issues of information loss due to the max-pooling operation used 
between the convolutional layers [31]. In addition, recently introduced attention-based mod-
els such as Transformer-based strategies show better performance. However, these techniques 
require more language resources and computational power, which hinders their ability to be 
readily used in many language modeling tasks [2, 6, 9, 23, 43].

In this research, we have explored capsule networks. Capsule networks were originally 
invented for image analysis [28, 31] and recently introduced for natural language process-
ing tasks [37]. We use capsule network based approach for social media analysis to extract 
sentiments present in the textual content. Capsules-based architectures have produced com-
petitive results [14, 37], especially compared to CNN-based approaches [39]. Capsules 
within capsule networks encode information about the objects within the data as a vec-
tor representation. This elevates the ability of the capsules to capture the exact order pose 
of the information for the background information in many natural language processing 
(NLP) tasks. Moreover, routing procedures introduced under capsule networks [31] miti-
gate the information loss seen in pooling strategies in CNNs. Therefore, we empirically 
evaluate shallow capsules, capsules with static routing, and capsules with dynamic routing 
against the CNN-based Twitter sentiment classification procedures to set a new benchmark 
for Twitter sentiment analysis using capsule networks. Furthermore, the capsule networks 
presented in this study show improved accuracies compared to the baseline models for all 
datasets used for the experiment. Also, the capsule networks are lightweight and easy to 
train. Shallow capsule networks with static routing produce optimal performances consid-
ering the short sequential nature of the Twitter text.

The rest of the paper is structured as follows. Section 2 discusses the related work and 
the usage of capsule networks in NLP. The capsule networks based architectures are dis-
cussed in detail under the model architectures in Sect. 3 along with the static routing and 
dynamic routing algorithms. Sections 4 and 5 describe the implementation process and the 
result analysis, respectively. Section 6 discusses the lessons learned with the novel contri-
bution of the proposed study and Sect. 7 concludes the paper.

2 � Related work

Apart from the traditional statistical methods, many tools and solutions of social media 
content analysis, particularly in Twitter data, incorporate machine learning techniques. 
Advanced techniques for Twitter data classification utilize n-gram features as local spa-
tial patterns and sequential information to achieve sophisticated language modeling pro-
cedures. Such strategies include CNNs and RNNs such as LSTM [40], which model the 
text classification tasks beyond the boundaries of the meaning of words. Therefore, low 
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dimensional features such as word embeddings [24, 25] are favorably used to extract con-
voluted syntactic and semantic features of the text content from social media.

Among the related studies, Liao et al. have used a basic form of CNNs, with a single 
hidden layer, for sentiment analysis of Twitter data [19]. Jianqiang et al. have proposed the 
use of convolutional neural networks for Twitter sentiment analysis using their Global Vec-
tors for word representation (GloVe) Deep Convolutional Neural Network (DCNN) model 
[11]. This GloVe-DCNN model has shown improvements over Bag of Words (BoW) with 
Support vector machines (SVM), BoW with Logistic Regression (LR), and GloVe with LR 
models. In addition, Johnson and Zang have proposed the use of CNNs for high dimen-
sional text classifications in the broader topic of sentiment analysis [12] prior to Jianqian 
et al. Although they have achieved significant improvements, their models were complex 
and expensive to train. The study by Cai has compared the performance of very deep con-
volutional neural networks (VD-CNN) [5] with Google’s pre-trained Bidirectional Encoder 
Representations from Transformers (BERT) architecture [8]. The results have placed the 
VD-CNNs below BERT’s state-of-the-art performance; however, the VD-CNN’s architec-
ture is comparatively simpler and cheaper to train than BERT [8, 29] and BERT variants 
such as RoBERTa (A Robustly Optimized BERT Pretraining Approach) [21], Albert (A 
Lite Bert) [17] and DistilBERT (distilled version of BERT) [34].

Successively, the possibility of using ensemble architectures for Twitter sentiment anal-
ysis has been researched with a range of techniques. Twitter sentiment analysis using an 
ensemble of several traditional approaches like Naive Bayes, Random Forest, SVM and 
Logistic Regression has proven more accurate than the models that have used individu-
ally [33]. Ensembles of traditional machine learning approaches and novel deep learning 
techniques have also been proposed by Araque et al. [3]. They have tried both an ensemble 
of several sentiment classifiers trained with different kinds of features and an ensemble of 
features, where the combination is made at the feature level.

The multimodality of Twitter presents a new dimension to the challenges in sentiment 
analysis. Twitter enables users to express themselves using images and GIF videos, which 
are combined with text. While most studies tackle sentiment analysis with one modal-
ity, Kumar and Garg’s have attempted to analyze tweets consisting of both infographic 
and typographic data [16]. Their study has addressed the multimodal sentiment analysis 
of tweets. For textual sentiment analysis, they have applied a hybrid approach of lexicon 
and machine learning techniques. Various other neural networks such as Skip-grams and 
denoising autoencoders have also been tested for multimodal Twitter data for sentiment 
analysis [4].

Sentiment analysis of Twitter data has been harnessed in several research studies 
showcasing its applications. For instance, recent research on COVID-19 related tweets 
and social media content harvested by filtering #COVID related keywords produced 
some intriguing insights into the reactions of the masses to pandemic-related restrictions 
and government interventions [10, 18]. The study by Imran et al. [10], has addressed how 
countries from the same region show high correlations among them except for Norway 
and Sweden, mainly due to the different approaches taken by their respective govern-
ments. The Stanford CoreNLP [22] tool has also been used in building a system that 
analyses tweets in real-time to predict stock market fluctuations [7]. The proposed system 
attempts to predict the stock market prices of several reputed companies by the senti-
ments of the tweets that have mentioned the company names. Signal or spike detection 
in Twitter data is another interesting area of research in Social media analysis. Spikes in 
tweets in the form of hashtags, frequently mentioned keywords, sentiments of tweets and 
volume of tweets can be used to infer trends and make useful predictions into the future. 

8667Multimedia Tools and Applications (2023) 82:8665–8690



1 3

As a related study, Nazir et al. [27], have proposed the use of three viable algorithms to 
detect spikes in tweets. They have assessed the spikes in tweets, while showing the use of 
integrating a Gaussian algorithm and a threshold algorithm that provides better results on 
the real-time data.

When considering the domain of text classifications and language modeling tasks, 
regardless of certain advancements that were produced by the LSTMs and Bi-LSTMs in 
neural language representation, their intrinsically sequential nature of modeling strate-
gies has led to several limitations. While vanishing gradient problem hinders encoding 
longer sequences within the learning approach [13], LSTMS and Bi-LSTMs also endure 
from a computational bottleneck with the sequential information processing [41]. CNNs 
overcome this computational bottleneck by providing parallelization within convolu-
tional filters. While the CNNs produced better results compared to LSTMs in text clas-
sification [39] yet endure the information loss due to the pooling strategy when repre-
senting deep neural language representation [31].

Table 1 summarizes the techniques used by some of the related studies. Most of the 
studies have used techniques such as Artificial recurrent neural network (RNN), Deep 
LSTM, and different embedding methods such as BoW, GloVe and Embeddings pro-
posed from language model (ELMo) and BERT. Among these, several studies have used 
GloVe word embedding.

The capsule networks have produced state-of-the-art results with the dynamic rout-
ing procedure proposed by Sabour et al. [31]. The intention behind the capsule strategy 
was to represent the features of objects within the data as vector representation to iden-
tify the exact order or pose of the information. The dynamic routing procedure reduces 
the information loss of CNNs due to max-pooling and elevates the advancement of the 
part-to-whole relationship between capsules for deeper capsule representation in classi-
fication tasks. Rajasegaran et al. [30], have proposed an optimized strategy to eliminate 
high computation cost and vanishing gradient problem of deeper capsules by applying 
3D convolution with capsule strategy. This method reduced 68% of parameters while 
producing state-of-the-art results in the domain of capsules.

Inspired by the capsule network architecture, Wang et  al. [36] have applied cap-
sules for sentiment classifications with the combination of RNNs, which produced the 
best results at that time. In another study, Yang et  al. [37] have conducted an empiri-
cal experiment of capsule networks with dynamic routing to validate the utilization of 
capsule networks for text classification. The implementation of different variations of 
capsule architectures as capsule-A and capsule-B for binary and multi-class text catego-
rization with a dynamic routing process, have produced optimal performances in text 
classification. Another, dynamic routing based Siamese architecture with a twin capsule 
network and a fully connected network has proposed by Abeysinghe et  al. [1]. They 
have shown that the use of capsule layers-based Siamese network reduces the infor-
mation loss in CNNs and allows train the model with a smaller number of parameters 
and datasets, while achieving on par performance with CNNs. With even deeper analy-
sis, Kim et  al. [14] have produced an approach based on static routing between cap-
sules depicting the use of capsules for text classification. This method has addressed 
the limitations of capsule networks with dynamic routing due to the variations of text 
with background noise, as opposed to the corresponding image classification tasks. We 
explore the use of capsule networks with static and dynamic routing methods to obtain 
higher accuracies for the sentiment extractions from social media text content. Thereby, 
setting a new standard for benchmark in sentiment analysis of Twitter data using deep 
learning architectures with low resource setting.
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3 � Model architectures

The proposed model in this study uses shallow capsule networks, deep capsule networks 
and ensemble deep capsule networks on top of the CNNs intending to enhance the clas-
sification strategy. The scalar representation of CNNs based language modeling tasks is 
replaced with vector representation of capsules to identify the exact order or pose of the 
information. Penetrating deeper with capsules, an additional routing mechanism is intro-
duced to map the low-level capsules to the high-level capsules. This technique was used to 
enhance the pooling strategy in CNNs [31], which results in information loss. This section 
describes the baseline CNN structure, main capsule-based layers on top of the CNN struc-
ture, dynamic routing and static routing strategies between capsules, and the task of Twitter 
sentiment analysis with the proposed capsule architecture.

3.1 � Convolutional neural network (CNN)

For the sentiment analysis tasks using CNN-based techniques, the text representation 
of Twitter data content is fed into the CNN using pre-trained word vectors. Therefore, 
each word in tweets is considered as a word vector. Let, a tweet consist of n words with 
k-dimensional word vectors. The feature map specific for a tweet could be considered as a 
map obtained through the concatenation of word vectors governed by Eq. (1). Here, xi ∈ Rk 
refers to the word vector of the i-th word of the input tweet and ⊕ refers to the concatenation 
operator of the word vectors. Therefore, the concatenated word-vectors form a n× d dimen-
sional feature map which will be used as the input features for the CNN.

The convolution operations extract n-gram features from a context window, where a fil-
ter is applied on top of the context window. Let the context window be xi∶i+l∈ R l × k , where 
the context window consists of l number of word-vectors concatenated with each other and 
i is the starting index of the context window. A filter H∈ R l × k is applied on top of the cor-
responding context window to extract a feature fi ∈ R . This process is governed by Eq. (2), 
where ◦ represents the element-wise matrix multiplication, b denotes a biased term and g 
represents an activation function (ReLU or tanh) for extracted features.

The considered filter convolves with each possible context window,CW ∈ {x1∶1+l ,

x2∶l+1, ........., , xn−l+1∶ n} . This extracts the number of features governed by Eq. (3). Here, din 
is the input dimension for the convolution operation (concatenated word vectors) and dout is 
the resulting number of features after the convolution. The padding is kept as 0 and strides 
as 1 for the convolution process in our experiments.

This procedure generates (n − l + 1) sized feature column. We can use the max-pooling 
operation on top of the extracted features to highlight the most significant feature in the 
extracted feature set as, fmax = max{fi} . Consequently, the N number of features could be 
generated with N number of filters. For Twitter sentiment analysis tasks, these extracted 

(1)feature map consisted of word vectors = x1 ⊕ x2⊕⋯⊕ xi ⊕ ...⊕ xn

(2)fi = g(H◦xi∶i+l + b)

(3)dout =
din − Kernel Size + (2 × Padding)

Stride
+ 1
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features could be combined with a fully connected neural network using the softmax or 
sigmoid activated dense layers based on the requirements of the task.

3.2 � Capsule layers and routing algorithms

Vanilla capsule networks, built solely upon convolutions [37], mainly include three 
varieties of layers based on the task specificity, namely primary capsules, convolutional 
capsules and text capsules. We have evaluated combinations of different variations of 
these layers. Moreover, we used both dynamic and static routing between capsules. 
These routing procedures are established instead of pooling operations in CNNs, to 
obtain better performances in feature extraction and computational processing. Com-
pared to the pooling operations in CNNs such as max-pooling and average pooling, the 
dynamic routing procedure does not discard the information of a specific region that 
describes the precise position of an entity within the considered region [1, 31]. As per 
the intuition behind pooling, the most significant and average feature of a given region 
represents that the considered region in max-pooling and average pooling, respectively. 
Thus, pooling does not encode the exact order or pose of the information that explains 
the precise position of an entity within the data. The dynamic routing algorithm pro-
poses a novel strategy to map low-level capsules to high-level capsules in a hierarchical 
manner based on a matrix multiplication operation, where the exact pose or order of 
information within the capsules are preserved.

3.2.1 � Primary capsules

We represent the objects within the data as the vector representation of capsules instead 
of the scalar representation of the CNNs using the following process. The generated fea-
ture columns are concatenated to obtain a feature map as in Eq. (4), instead of applying 
pooling operations on the extracted features by N filters. The feature map M∈ R(n−l+1) × N 
includes feature columns extracted by N filters and mi∈ R(n−l+1) represents the feature 
column extracted by i − th filter.

In order to obtain the primary capsules based on the extracted features by the CNN, 
a matrix multiplication operation is carried out. We instantiate a capsule ci ∈ Rd as d
-dimensional vectors. A matrix filter Wi ∈ R N × d is multiplied with concatenated fea-
ture columns M , given in Eq. (4). This procedure results in a column list of capsules 
c∈ R(n−l+1) × d computed as given in Eq. (5), where b1 represents the bias term and f  rep-
resents the squash function.

Moreover, with p number of matrix filters, a map of capsules C∈ R(n−l+1) × p × d gener-
ated with (n − l + 1) × p number of capsules. The squash function is stated in Eq. 11, which 
converts each capsule’s length between a value 0 and 1. Therefore, the length of a capsule 
could be considered as the probability of the existence of an entity within capsules such as 
syntactic and semantic information of text or sentiment category of given data.

(4)Feature map (M) = {m1,m2,m3, ..., mi , ..., mN}

(5)c = f (WiM + b1)
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3.2.2 � Convolutional capsules

In this layer, the capsules are mapped to a local region of the layer below to facilitate the 
ability of capsules to identify local spatial patterns quite effectively. We assume that a local 
region with size (m × p) in the layer below (primary capsule layer) is mapped to the con-
volutional capsule layer. Therefore, capsules in that region compute matrix multiplication  
operations to learn child-to-parent relations between low-level capsules and high-level cap-
sules. For the matrix multiplication operation, a weight matrix Wc∈ R E × d × d is used, where,  
E denotes the number of capsules in a convolutional capsule layer. Given a child capsule, 
a parent capsule is generated according to Eq. (6). Here, ûj|i is the convolution capsule 
generated, ui is the local region (m × p) for a given child capsule in lower-layer, Wj

c is the 
j − th matrix in the matrix tensor Wc and b̂j|i is the bias term for ûj|i convolution capsule 
generation for a given lower layer capsule ui . Consequently, (n − l − m + 2) × E number of 
d-dimensional convolutional capsules are generated using this procedure.

3.2.3 � Sentiment capsules

The sentiment capsule layer is designed as the final layers of capsule architectures. This 
layer mainly consists of capsules for each target sentiment category to represent classifica-
tion tasks. Therefore, the capsules in this layer are generated based on the matrix multipli-
cation to learn child-to-parent relationships. To obtain the sentiment capsules based on the 
layer below, all capsules in that layer are flattened into the list of capsules and multiplied 
by the transformation matrix Wd∈ R U × d × d as in Eq. (6), where U denotes the number of 
sentiment capsules for the corresponding task and d is the instantiated parameter for the 
dimension of capsules. The capsules in the sentiment capsule layers have the length or the 
norm of the vector representation denoting the probability of the existence of the target 
sentiment category. Thus, these probabilities were used to extract the sentiment of a given 
sequence of text.

3.2.4 � Child‑to‑parent relationship

Routing by agreement algorithms is initially designed as a strategy to learn the child-to-
parent relationship between capsules incrementally, by mitigating the issues of the pooling 
strategies used in CNNs, to map low-level features to high-level features in Deep CNNs 
[31]. Also, Kim et al. [14] have suggested that static routing procedures are better at han-
dling variability of background information of text than the dynamic routing procedures 
that are proposed by Yang et al. [37]. In this study, we empirically evaluated these routing 
algorithms for capsule networks for Twitter sentiment analysis.

3.2.5 � Dynamic routing between capsules

The main purpose of the dynamic routing algorithm is to establish a non-linear map 
between child capsules to parent capsules iteratively, to send child capsules to its most 
relevant parent capsules by ensuring that the child-to-parent relationship is correctly 

(6)ûj|i = Wj
cui + b̂j|i
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established. Therefore, using this process each child-capsule can learn its potential 
parent to be mapped incrementally varying the connection strength between child-to-
parent. This procedure elevates the issues due to the pooling strategy used in CNNs. 
Generally, pooling strategies result in information loss due to the neglect of surrounding 
features of the most significant features [1]. Dynamic routing further elevates vector 
representation of capsules considering essential background information, especially for 
text-based classification tasks [31]. Algorithm 1 describes the dynamic routing between 
two capsule layers. First, we initialize the log prior probabilities bij , between each cap-
sule i in the layer below and each capsule j in the layer above, as stated in Eq. (7) that 
corresponds to line-3 of Algorithm  1. These log prior probabilities bij , represent the 
connection strength between a pair of child and parent capsules.

Secondly, the log prior probabilities are learnt incrementally within the iterative 
learning procedure as shown in line-4 of Algorithm  1. The connection strength of a 
child-capsule for all parent-capsules in the layer above is calculated based on the soft-
max function to indicate the probability of sending the information represented in the 
child-capsule to each of the parent capsules as shown in line-6 of Algorithm 1. This pro-
cess is governed by Eq. (8). Here, cij represents the coupling coefficient between capsule 
i in the layer below and capsule j in the layer above, and exp denotes the exponentiation 
function. The proposed strategy based on the softmax function calculates all coupling 
coefficients between a capsule in the layer below and every capsule in the layer above 
for routing purposes.

(7)bij ← 0
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Moreover, the routing procedure computes the capsules in the layer above using cou-
pling coefficients and predicted capsules, which are retrieved during the matrix transfor-
mation process as described in Sects. 3.2.2 and 3.2.3. This process represents by line-8 of 
Algorithm 1 and governs by Eq. (9). Here, sj denotes the computed capsules for the layer 
above. The connection strength cij represents the coupling coefficient between capsule i in 
the layer below and capsule j in the layer above. As mentioned in Eq. (6), ûj|i is the gener-
ated convolution capsule.

Also, as shown in line-10 of Algorithm 1 and Eq. (10), the log prior probabilities bij , 
between capsule i in the layer below and capsule j in the layer above are updated iteratively 
by considering the similarity between the predicted capsule ûj|i and computed capsule sj 
within the routing procedure.

In our proposed model, the squash non-linearity is applied for each computed capsule sj 
after the iterative updating process, which hinders the degradation of instantiated param-
eters of capsules within the iterative process [31]. The squash function is applied to each 
computed capsule sj as in Eq. (11), which corresponds to line-12 of Algorithm 1. Here, 
||sj|| denotes the standard norm for capsule sj . The length vector vj represents the prob-
ability of the existence of objects with a capsule. Therefore, the final layers of the capsule 
architectures are designed to represent the tweet category existence probability within the 
length of the capsules.

3.2.6 � Static routing between capsules

The text-based classification tasks have higher variability of background information com-
pared to image processing tasks [14]. As suggested by Kim et al. [14], the text-based tasks 
are considered under a static routing process that eliminates different variations of routing 
between child-to-parent based on spatial patterns, without considering the whole context 
of the text. Thus, the capsules in the layer below will only be mapped to their parent’s 
capsules in the layer above, using a matrix transformation governed by Eqs. (12) and (13).

Here, Wij∈ R M × N is the transformation matrix that transforms the capsules i in the layer 
below to capsules j in the layer above. M is the dimension of the capsules to be generated  
in the layer above and N is the number of capsules in hi that denotes the capsules in the  

(8)cij ←
exp (bij)∑
k exp (bik)

(9)sj ←
∑

i
cij ∗ ûj|i

(10)bij ← bij + (ûj|i ∗ sj)

(11)vj ←
||sj||2sj

(1 + ||sj|2)||sj ||2

(12)sj =
∑

i
Wij hi

(13)vj = squash (sj)
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layer below. Then, the squash function shown in Eq. (11) is applied to obtain the vectors 
with the length of the vector vj , as the probability of the existence of an entity within a 
capsule.

3.2.7 � Loss function

We classify Twitter data using a separate margin loss function to identify the location of 
a given category in each sentiment capsule. Here, we utilize the length of the capsule to 
represent the probability of the existence of a given sentiment category with a sentiment 
capsule. Equation (14) is used to derive the marginal loss for sentiment capsules [31]. If 
the tweet category exists within the text capsule, then Ts = 1 , otherwise it is set to 0. The 
values m+ and m− are set as 0.9 and 0.1 accordingly. After several experiments, we have set 
the down-weighting coefficient λ to 0.25 that gives the optimal performance. This down-
weighting coefficient reduces the initial learning of sentiment capsules for tweet sentiment 
categories that are not present within those sentiment capsules. The total loss is simply 
taken as the sum of the losses for all sentiment capsules.

3.3 � Capsule network architectures

3.3.1 � Shallow capsule network

The proposed solution uses two types of shallow capsule networks as illustrated in Fig. 1. 
These capsule networks include two capsule layers namely, primary capsules and senti-
ment capsules followed by the word embedding layer and the convolutional layer. The 
convolutional layer is employed specifically to extract n-gram information from the text. 
Primary capsules are generated by considering the feature maps obtained through the CNN 
layer. The number of capsules in the final capsule layer or the sentiment capsule layer is 
equal to the target number of sentiment categories. Thus, sentiment capsules represent the 
sentimental features of the text that are utilized to classify the text into sentiment classes. 
As the routing procedure between capsules, both dynamic routing and static routing have 
experimented.

In a neural network perspective, the word embedding layer consists of n number  
of k-dimensional vectors where the ultimate input feature map represents n × k dimen-
sionality. For shallow capsule networks, this feature map is fed to a CNN layer, where  

(14)Margin Loss = Ts max(0,m+ − ||vs ||)2 + �(1 − Ts) max (0, ||vs|| −m−)
2

Fig. 1   Shallow capsule Network
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N  number of l × k filters are utilized to extract n-gram features from the text. Thus, the  
CNN layer generates N  number of feature columns that are (n − l + 1) in size. Further-
more, considering the procedure in Sect. 3.2.1, a map of capsules C∈ R(n−l+1) × p × d gen-
erated as the primary capsules. These capsules with routing procedures described in  
Sects. 3.2.5 and 3.2.6 generate sentiment capsules with u × d in dimensionality, where 
u is the number of target sentiment categories and d indicates the dimensionality of 
sentiment capsules.

3.3.2 � Deep capsule network

The deep capsule network architecture combines all three capsule layers: primary cap-
sule layer, convolutional capsule layer, and sentiment capsule layer followed by the 
word embedding layer and the convolutional layer,  as shown in Fig. 2. The convolu-
tional layer is employed to extract n-gram information from the text as in the shal-
low capsule networks. Primary capsules are generated by considering the feature maps 
generated through the CNN layer. The convolutional capsules are generated by consid-
ering the dynamic routing procedure in Sect. 3.2.5. The significance of convolutional 
capsules can elaborate as the ability to relate local features within the text since the 
local regions of primary capsules are mapped to the convolutional capsules as indi-
cated in Sect. 3.2.2. Moreover, as in the shallow capsule networks, the number of cap-
sules in the final capsule layer or the sentiment capsule layer is equal to the target 
number of sentiment categories. These sentiment capsules are generated based on con-
volutional capsules and the dynamic routing procedure.

From an architectural perspective, deep capsule networks only have one additional cap-
sule layer namely the convolutional capsule layer. The word embedding layer, which is the 
initial layer of the network consists of a feature map that represents n × k dimensionality. 
This feature map is fed to a CNN layer where N number of l × k filters was utilized to extract 
n-gram features from the text as in shallow capsule networks. The resultant N × (n − l + 1) 
feature map is utilized to generate primary capsules as indicated in Sect. 3.2.1. Ultimately 
a map of capsules C∈ R(n−l+1)×p×d generated as the primary capsules. These capsules with 
dynamic routing procedures as described in Sect.  3.2.5 generate convolutional capsules  
with (n − l − m + 2) × E × d in dimensionality. As the final capsule layer, sentiment cap-
sules are generated for the sentiment classification purpose. The dynamic routing proce-
dure with convolutional capsules was utilized to construct the sentiment capsules. These  
capsules are  u × d in dimensionality, where u is the number of target sentiment categories 
and d represents the dimensionality of sentiment capsules.

Fig. 2   Deep capsule Network
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3.3.3 � Ensemble capsule network

Generally, the ensemble capsule networks have produced prominent performances in 
text classification tasks [37]. Therefore, we evaluated an ensemble capsule network for 
Twitter data sentiment classification with the dynamic routing algorithm. As illustrated 
in Fig. 3, the ensemble capsule network consists of three layers namely the primary cap-
sule layer, convolutional capsule layer, and sentiment capsule layer. Three separate deep 
capsule networks consisting of these layers were utilized to extract different variations 
of n-grams features from Twitter data. In the final sentiment capsule layer, the generated 
capsules were average pooled considering three capsule networks for the classification 
purpose.

4 � System Methodology

4.1 � Datasets

We used two widely used and publicly available Twitter datasets as follows:

lower-alpha	 CrowdFlower US Airline dataset - this dataset is released by Crowd-
Flower and has a total of 14,640 tweets related to six major US Airlines: American 
airline, United airline, US Airways, Southwest airline, Delta airline, and Virgin airline. 
Each of these tweets is tagged as positive, negative, or neutral tweets.

1	 The Stanford Twitter Sentiment Gold (STSGd) dataset – this dataset is created by Saif 
et al. [32]. There are 2034 tweets and manually annotated as negative or positive on  
the agreement of three annotators.

Fig. 3   Ensemble capsule Network
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The summary statistics of each dataset are shown in Table 2. For the experiment with 
the CrowdFlower US Airline dataset, the vocabulary |V| is consisted of 26841 tokens and 
the maximum tweet length was 36. For the STSGd dataset, the vocabulary size |V| was set 
to 8470 and the maximum tweet length was set to 31.

4.2 � Model implementation

4.2.1 � Word‑embeddings

In the deep learning era, the models trained using pre-trained word-embeddings have 
reported state-of-the-art performance even without using linguistic resources. This is 
because the pre-trained word-embeddings can extract syntactic and semantic information 
of a given token in a language-independent manner. The proposed Twitter sentiment analy-
sis task uses two types of word-embeddings models as follows. We empirically evaluate 
the usage of the two embeddings based on the task specificity on Twitter data sentiment 
analysis.

•	 GloVe 300-dimensional word-vectors trained Common Crawl corpus with 840 billion 
tokens with a vocabulary of 2.2 million tokens.

•	 Glove Twitter 200-dimensional word-vectors pre-trained on 2 billion tweets, 27 billion 
tokens and vocabulary of 1.2 million tokens that are Twitter specific.

4.2.2 � Baseline models

The baseline model for the STSGd dataset is derived from the study presented by Jianqiang 
et al. [11]. They have used a radial basis function (RBF) kernel SVM and an LR model 
using unigram and bigram features consists of BoW. In addition, they have used the same 
models with additional word sentiment polarity features, Twitter-specific features and word 
vector features with GloVe. The DCNN using GloVe word embeddings is considered as a 
basis for the proposed capsule network in our study. Further, we have used 10-fold cross-
validation as the evaluation metrics of our approach using the CrowdFlower US Airline 
dataset.

4.2.3 � Data pre‑processing

Generally, Twitter content includes high noise due to non-dictionary terms, ill-formed lan-
guage structure, and grammatical mistakes. Therefore, the following procedures are used to 
reduce the noise within the data.

Table 2   Statistics for datasets used under experiments

Dataset Positive Negative Neutral Total tweets |V| Max tweet-length

CrowdFlower US Airline 2363 9178 3099 14640 26841 36
Stanford Twitter Sentiment 

Gold (STSGd)
632 1402 - 2034 8470 31
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•	 Removed the special characters within the tweets that do not carry any specific infor-
mation about the tweet category.

•	 Removed the URLs and links within the tweets as they do not carry any sentiment-
specific information.

4.2.4 � Sentiment extraction

Generally, the activities of the neurons within capsules in a capsule network represent an 
entity within data in its exact order or pose and with certain other properties, using a vec-
tor representation of capsules. As the final layer of our deep learning architecture, we use 
sentiment capsules to represent the sentiment categories in a sentiment analysis task. Since 
this considers the number of sentiment categories, we use three and two sentiment capsules 
for the CrowdFlower US Airline dataset and the Stanford Twitter Sentiment Gold dataset, 
respectively, which correspond to the number of sentiment classes in each dataset. Further-
more, the length of a sentiment capsule or the norm of vector representation of the capsule 
represents the probability of the existence of sentiment category within the capsule. Thus, 
these probabilities are used to extract the sentiment of a given sequence of text.

4.2.5 � Classification model

We evaluated the Twitter-based sentiment classification model for each dataset by varying 
the components of the models as follows. This process enables to measure model perfor-
mance empirically, by showing the effectiveness of capsule-based architectures for Twitter 
analysis.

•	 Four main model architectures are used as shallow capsule network with static routing, 
shallow capsule network with dynamic routing, deep capsule network with dynamic 
routing, and ensemble capsule network with dynamic routing.

•	 Each model is fed with both Twitter-specific 200-dimensional word-embeddings and 
300-dimensional common crawl corpus-based GloVe word-embeddings.

We have used the Adam optimizer for the optimization process with exponential learn-
ing rate decay. The models are trained on Google Colab with Tensorflow as the imple-
mentation platform. The optimal hyperparameters for the models in the STSGd dataset are 
indicated in Table 3. For each model training, the learning rate was set to 1e − 3 , and the 
learning rate decay was set to 0.95. Max tweet length is defined as the tweet length to be 
fed to the models as input embedding dimension, considering the variations of the datasets. 
The evaluation is based on the 10-fold cross-validation approach.

As given in Table 3, each capsule architecture with dynamic routing processes utilizes 
three iterations for dynamic routing procedure to enhance the child-to-parent relationship 
between capsules. The number of convolutional filters in the initial layer of each model is 
indicated in the column of the number of filters. The ensemble capsule network utilizes 
three filter sizes in the initial convolutional layers to structure ensemble architecture as 
shown in the filter sizes column of Table 3. All other models use the filter size of three 
to extract n-gram features from the convolutional layer. Additionally, the dimension of 
capsules for each layer is indicated layer-wise. While shallow capsule networks have two 
layers, deep capsule layers networks have three layers of capsules, respectively. Here, |C| 
indicates the number of capsules in layer-wise for each layer of the network. Further, the 
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same hyper-parameters are used for the CrowdFlower US Airline dataset, where the final 
sentiment capsule layer is configured with three capsules by considering the sentiment cat-
egories namely positive, negative, and neutral.

5 � Result evaluation and analysis

We used accuracy, precision, recall, and F1 score as the evaluation metrics for the STSGd 
dataset. Since the CrowdFlower US Airline dataset includes multi-class classification 
tasks, weighted evaluation metrics are used for the evaluation. The 10-fold cross-validation 
is used for each experiment. The classification results for the STSGd dataset and Crowd-
Flower US Airline dataset are given in Tables 4 and 5, respectively.

For the results obtained for the STSGd dataset, all the trials with capsule networks out-
performed existing baseline techniques. This could be justified as the ability of capsule 
networks to handle language syntactic and semantic information quite effectively utilizing 

Table 4   Experimental results for Twitter Sentiment Gold (STSGd) dataset

Model Accuracy (%) Precision (%) Recall (%) F1(%)

BoW + SVM [11] 68.79 74.68 55.76 44.05
BoW + LR [11] 75.86 72.36 74.64 65.34
GloVe + SVM [11] 80.07 75.09 78.08 69.21
GloVe + DCNN [11] 85.97 82.75 82.61 82.65
GloVe Twitter + shallow capsule network with static 

routing
86.53 86.45 86.51 86.19

GloVe Twitter + shallow capsule network with dynamic 
routing

86.12 85.96 86.12 85.85

GloVe Twitter + deep capsule network 78.76 76.67 78.76 75.87
GloVe Twitter + ensemble deep capsule network 80.60 80.83 80.60 80.36
GloVe + shallow capsule network with static routing 86.74 87.11 86.87 86.79
GloVe + shallow capsule network with dynamic routing 86.87 86.86 86.87 86.70
GloVe + deep capsule network 83.18 83.21 83.18 82.45
GloVe + ensemble deep capsule network 83.30 83.32 83.50 82.64

Table 5   Experimental results for CrowdFlower US Airline dataset

Model Accuracy (%) Precision (%) Recall (%) F1(%)

GloVe Twitter + shallow capsule network with static 
routing

80.19 79.62 80.19 79.78

GloVe Twitter + shallow capsule network with dynamic 
routing

80.53 80.27 80.53 78.82

GloVe Twitter + deep capsule network 72.27 69.30 72.27 70.80
GloVe Twitter + ensemble deep capsule network 74.11 73.07 74.11 72.17
GloVe + shallow capsule network with static routing 82.04 81.31 82.04 81.11
GloVe + shallow capsule network with dynamic routing 80.26 79.56 80.26 79.79
GloVe + deep capsule network 76.16 75.34 76.16 75.60
GloVe + ensemble deep capsule network 76.76 76.39 76.76 76.35
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vector representation of the capsules. Capsules-based strategies further demonstrate the 
capability of handling background information of text which validates the optimal results 
in text-based sentiment analysis tasks. Since tweets are based on short texts, shallow cap-
sule networks reported optimal performance for deep capsule-based architectures. Shallow 
capsule networks with static and dynamic routing have produced competitive results, while 
static routing based technique has slightly higher performance. Therefore, as stated by Kim 
et al. [14], this could be elaborated as the ability to identify the variability of background 
information of text using static routing. Compared to the image classification task, text-
based classification tasks do not depend on the exact order of words like the objects within 
images. Thus, the static routing can be optimistic when using child-to-parent links among 
layers of the capsule network.

Moreover, the experiments were conducted with two varieties of input embeddings 
obtained through the Stanford GloVe project. The 300-dimensional GloVe embeddings 
trained on large common crawl corpus reported better performance compared to the 
200-dimensional GloVe embeddings trained on Twitter-specific data. This observation 
could be justified by the fact that generic GloVe embeddings have learned deep seman-
tic structure compared to the Twitter-specific GloVe embeddings, which carry information 
only for a specific domain.

In particular, the deep capsule architectures perform slightly lower compared to shal-
low capsule networks. This observation could be expected because the tweets are based on 
text with shorter sequences, hence lesser information contained with the text-based tweets. 
Since the number of the learnable parameters in deep capsule network-based architectures 
are much higher than shallow capsule networks, short sequences of text prevent proper 
language modeling with deep capsule architectures compared to shallow capsule architec-
tures. To further validate our proposed architecture, the models were evaluated against the 
CrowdFlower US Airline dataset.

As shown by the results for the CrowdFlower US Airline dataset in Table 5, the perfor-
mance of the shallow capsule network with static routing guarantees optimal performance. 
Therefore, for Twitter-based sentiment analysis tasks, shallow capsule networks could be 
effectively employed to capture Twitter-specific syntactic and semantic relations for senti-
ment analysis tasks. Since the existing approaches for the CrowdFlower US Airline dataset 
do not validate the performance based on 10-fold cross-validation, they are not reported 
under this experiment. Optimistically, shallow capsule networks could be introduced as 
a lightweight model compared to BERT-like models, which are more resource-intensive 
of both linguistic resources and computational power. Therefore, capsule-networks-based 
models could be used as a replacement for BERT-like models with competitive results for 
Twitter-based content analysis.

Moreover, to evaluate the model performance with respect to the number of training 
epochs for the STSGd dataset, a separate experiment was carried out. The dataset was 
divided into train, validation, and test set based on the 8:1:1 ratio. The performance was 
evaluated using the accuracy metric and the results are illustrated in Fig. 4. Here, four shal-
low capsule networks were experimented with based on Twitter-specific GloVe embed-
dings and GloVe embeddings trained on common crawl corpus. The shallow capsule net-
works trained on GloVe embeddings with common crawl corpus consistently outperformed 
the shallow capsule networks trained on Twitter-specific GloVe embeddings. Interestingly, 
these shallow capsule networks produce the best accuracy within three or four iterations, 
indicating the effectiveness of the model architecture for low resource consumption in neu-
ral language modeling tasks.
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Furthermore, to understand the intuition behind the capsule network as a lightweight 
model compared to existing highly resource-intensive BERT-like language models, the 
number of total parameters and trainable parameters used for each learning model are 
shown in Tables 6 and 7, respectively.

Accordingly, compared to the BERT-Base model with 110M parameters and the BERT-
Large model with 340M parameters [8], the largest model under this experiment only had 
38M total number of parameters with only 14M trainable parameters. Therefore, the cap-
sule networks could be effectively utilized for tasks with low language resources, competi-
tively compared to BERT-like models with less computational resource setups. Further-
more, the tests conducted using BERT pre-training tasks for low resourced languages such 
as Romanian [9, 23], Arabic [2, 43] and Filipino [6], have shown sub-optimal results com-
pared to the large corpus of English pre-trained data used for BERT-like models with pre-
training procedures. Thus, the ideology behind capsule networks could increase the usage 
of capsule networks in low-resource language domains, where the language resources are 
not sufficient for the pretraining procedure of BERT-like models.

6 � Discussion

6.1 � Study contributions and lessons learned

The research findings indicate that capsule networks cab be effectively used for text classi-
fication tasks without using any linguistic resources. This would enable the research explo-
ration of text processing and classification under a low resource setup without compro-
mising the accuracy or effectiveness of the task. Therefore, it is evident that the capsule 
networks provide equal or better results as per the current state-of-the-art. The outcome 
of this research based on capsule networks under limited resources with fewer parameters 
and computational power still demonstrates sufficiently competitive results against highly 
resource-intensive BERT-like models [8]. The increased training and inference costs asso-
ciated with the transformer models can limit the applicability of BERT-like models for a 

Fig. 4   Epoch wise model results for shallow capsule networks STSGd dataset
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given text analysis task. Although BERT-like models give more context, their processing 
capabilities gets compromised in situations where these models are difficult to apply.

According to the obtained results, our proposed capsule network-based approach is 
reasonably accurate and contextually rich at comparable levels, though it does not require 
more resources due to the lightweight architecture with fewer parameters. This is useful for 
processing tasks that require model re-training with shorter lead times to release new infer-
ence, such as edge or real-time sentiment extraction. The pre-trained GloVe word-vectors 
based on a Twitter-specific corpus, which contains 27 billion tokens and a vocabulary of 
1.2 million tokens, were tested with our proposed architectures. Although Twitter-specific 
word-vectors could capture syntactic and semantic relationships in tweets by consider-
ing the context of the domain, the models trained with more generic GloVe word-vectors 
from common crawl corpus outperformed the models with Twitter-specific pre-trained 
word-embeddings. This is because of the deep feature extraction of generic GloVe word-
vectors, which were trained with the largest common crawl corpus of 840 billion tokens 
and vocabulary of 2.2 million tokens. Therefore, the GloVe word-vectors trained on com-
mon crawl corpus could be effectively used to identify sentiment categories within tweets. 
The variability of the tokens within the Twitter data could be effectively managed with 
generic GloVe embeddings since the common crawl corpus includes data from most of the 
domains within the Twitter-based textual representations.

Moreover, it is possible to have numerous variations of models as shallow capsules with 
static and dynamic routing methods. Also, the use of deep capsule networks with dynamic 
routing and ensemble capsule networks could be recommended for better accuracy in the 
Twitter data processing. Shallow capsule networks with static routing produced promising 
results for the datasets used in this research. The effectiveness of shallow capsule networks 
could be described as the ability to capture syntactic and semantic relationships of tweets 
as short sequences of text. The static routing algorithm elevates child-to-parent relation-
ships in a specific way for text-based classification tasks. It handles background informa-
tion of text quite effectively, preventing the drawbacks caused by the background noise of 
text.

6.2 � Comparison with the existing studies

Table 8 shows a comparison of the proposed solution with the existing studies in terms of 
the used datasets, techniques, and the obtained accuracies. The existing studies are based 
on several Twitter databases such as Obama-McCain Debate (OMD), Sentiment Strength 
Twitter Dataset (SS-Tweet), Stanford Twitter Sentiment Test (STSTd), SemEval2014 
Task9 (SE2014), Stanford Twitter Sentiment Gold (STSGd), Sentiment Evaluation (SED), 
Sentiment Strength Twitter (SSTd) and STS-Gold Twitter dataset. Accordingly, the pro-
posed approach has shown the highest accuracy of 86.87% for the STSGd dataset using 
300-dimensional common crawl Glove word-embeddings and shallow capsule network with 
dynamic routing. The highest accuracy of 82.04% was reported utilizing 300-dimensional  
common crawl Glove word-embeddings and shallow capsule network with static routing 
for the CrowdFlower US Airline dataset.

The novel contribution and usefulness of the proposed approach compared to the exist-
ing studies based on capsule networks can be highlighted. The capsule-based architectures 
could be effectively used as a replacement for CNN-based deep learning architectures due 
to the vector representations of features instead of scalar feature representation of CNNs. 
The vector representation of features in capsules effectively handles the background 
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information of the text. Moreover, highly resource-intensive models like BERT could be 
replaced with capsule-based techniques, since capsule architectures could produce com-
petitive results in low resource domains for BERT models as suggested in Sect. 5.

6.3 � Open challenges and future research directions

It is challenging to process short sequences of social media text content with varying con-
text and background information. Static routing could be more effective over dynamic rout-
ing algorithms for short sequences when handling the variability of background informa-
tion. Pre-processing of Tweets can be applied to improve the model’s performance due to 
the noise of special characters and web URLs, which do not carry any sentiment informa-
tion within a tweet. A possible future research extension would be to explore the use of 
Attention-based capsule networks with dynamic routing for relation extraction as part of 
sentiment analysis and text content processing with social media data. Moreover, contex-
tual embeddings could be integrated with capsule-based techniques, since most of the deep 
learning techniques have reported promising performances utilizing this strategy.

7 � Conclusion

This research explored the use of capsule networks in social media text content analysis 
with natural language processing. The proposed strategy aimed at sentiment analysis of 
Twitter-based data utilizing a variety of capsule networks. Twitter-specific and generic 
GloVe embeddings were used in shallow and deep capsule networks together with static 
and dynamic routing for sentiment analysis of tweets. A notable achievement in this 
research is the higher level of accuracy over the existing sentiment analysis methods used 
in social media content, thereby setting a new benchmark standard for Twitter data analysis 
with capsule networks. The classification results support the use of shallow capsule net-
works with static routing for optimal performance. Moreover, it produced state-of-the-art 
results considering the relatively shorter sequences of texts in tweets. For the CrowdFlower 
US Airline dataset, the shallow capsule network with static routing produced an optimal 
accuracy of 82.04%, while the highest accuracy of 86.67% for the Stanford Twitter Senti-
ment Gold dataset was reported by shallow capsule networks with dynamic routing.

Furthermore, considering the lightweight nature of the capsule networks, they are use-
ful for low resource languages where the BERT-like models could not be utilized due to 
a lack of language resources for pre-training procedures. Thus, we have proven a novel 
methodology to analyze social media text content in resource-constrained setups such as 
edge processing, where the capsule networks of the analysis model can be deployed. This 
will revolutionize social media content analysis as the proposed capsule network-based dis-
tributed processing architecture can easily rely upon portable devices and nodes, which 
can open the pathway to real-time sentiment analysis at the edge of the processing channel. 
This study concludes that the introduction of capsule networks into state-of-the-art text 
processing and natural language processing methods has shown impressive performance 
and potential in the research area of Twitter sentiment analysis.

Funding  The research is not funded.

Availability of data and material  Public dataset

8688 Multimedia Tools and Applications (2023) 82:8665–8690



1 3

Declarations 

Conflicts of interest  There are no conflicts of interests

References

	 1.	 Abeysinghe C, Perera I, Meedeniya, DA (2021) Capsule networks for character recognition in low 
resource languages. In Machine Vision Inspection Systems, Volume 2: Machine Learning‐Based 
Approaches, Malarvel, M., Nayak, S. R., Pattnaik, P. K., & Panda, S. N. (Eds.), Ch.2, 23–46, John 
Wiley & Sons Inc

	 2.	 Abuzayed A, Al-Khalifa H (2021) Sarcasm and sentiment detection in Arabic tweets using BERT-
based models and data augmentation. In Proceedings of the 6th Arabic Natural Language Processing 
Workshop 312–317

	 3.	 Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment 
analysis with ensemble techniques in social applications. Expert Syst Appl 77:236–246

	 4.	 Baecchi C, Uricchio T, Bertini M, Del Bimbo A (2016) A multimodal feature learning approach for 
sentiment analysis of social network multimedia. Multimed Tools and Appl 75(5):2507–2525

	 5.	 Cai M (2018) Sentiment analysis of tweets using deep neural architectures. In Proceedings of the 32nd 
Conference on Neural Information Processing Systems 1–8

	 6.	 Cruz JCB, Cheng C (2020) Establishing baselines for text classification in low-resource languages. 
arXiv preprint arXiv:2005.02068

	 7.	 Das S, Behera RK, Rath SK (2018) Real-time sentiment analysis of Twitter streaming data for stock 
prediction. Proc Comput Sci 132:956–964

	 8.	 Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transform-
ers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter 
of the Association for Computational Linguistics: Human Language Technologies 1:4171–4186

	 9.	 Dumitrescu SD, Avram AM, Pyysalo S (2020) The birth of Romanian BERT. arXiv preprint 
arXiv:2009.08712

	10.	 Imran AS, Daudpota SM, Kastrati Z, Batra R (2020) Cross-cultural polarity and emotion detection using 
sentiment analysis and deep learning on COVID-19 related tweets. IEEE Access 8:181074–181090

	11.	 Jianqiang Z, Xiaolin G, Xuejun Z (2018) Deep convolution neural networks for Twitter sentiment anal-
ysis. IEEE Access 6:23253–23260

	12.	 Johnson R, Zhang T (2015) Effective use of word order for text categorization with convolutional neu-
ral networks. In Proceedings of the 2015 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies 103–112

	13.	 Kag A, Zhang Z, Saligrama V (2019) RNNs incrementally evolving on an equilibrium manifold: A 
panacea for vanishing and exploding gradients?. In Proceedings of the International Conference on 
Learning Representations 1–24

	14.	 Kim J, Jang S, Park E, Choi S (2020) Text classification using capsules. Neurocomputing 376:214–221
	15.	 Koehn P, Knowles R (2017) Six challenges for neural machine translation. In Proceedings of the First 

Workshop on Neural Machine Translation 28–39
	16.	 Kumar A, Garg G (2019) Sentiment analysis of multimodal Twitter data. Multimed Tools Appl 

78(17):24103–24119
	17.	 Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2019) ALBERT: A lite BERT for self-

supervised learning of language representations. In International Conference on Learning Representa-
tions 1–17

	18.	 Lenadora DS, Gamage GSW, Haputhanthri HDI, Meedeniya D, Perera I (2020) Exploratory Analysis of a 
cocial media network in Sri Lanka during the COVID-19 virus outbreak. arXiv preprint arXiv:2006.07855

	19.	 Liao S, Wang J, Yu R, Sato K, Cheng Z (2017) CNN for situations understanding based on sentiment 
analysis of Twitter data. Proc Comput Sci 111:376–381

	20.	 Liu B (2010) Sentiment analysis and subjectivity. Handb Nat Lang Process 2:627–666
	21.	 Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2020) 

Roberta: A robustly optimized BERT pretraining approach. In Proceedings of the 28th International 
Conference on Computational Linguistics 6626–6637

8689Multimedia Tools and Applications (2023) 82:8665–8690



1 3

	22.	 Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D (2014) The Stanford CoreNLP 
natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for 
Computational Linguistics: System Demonstrations 55–60

	23.	 Masala M, Ruseti S, Dascalu M (2020) RoBERT–A Romanian BERT model. In Proceedings of the 
28th International Conference on Computational Linguistics 6626–6637

	24.	 Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and 
phrases and their compositionality. In Proceedings of the Advances in neural information processing 
systems 3111–3119

	25.	 Mikolov T, Grave É, Bojanowski P, Puhrsch C, Joulin A (2018) Advances in pre-training distributed 
word representations. In Proceedings of the Eleventh International Conference on Language Resources 
and Evaluation 1–4

	26.	 Naseem U, Razzak I, Musial K, Imran M (2020) Transformer based deep intelligent contextual embed-
ding for Twitter sentiment analysis. Future Gener Comput Syst 113:58–69

	27.	 Nazir F, Ghazanfar MA, Maqsood M, Aadil F, Rho S, Mehmood I (2019) Social media signal detec-
tion using tweets volume, hashtag, and sentiment analysis. Multimed Tools Appl 78(3):3553–3586

	28.	 Patrick MK, Adekoya AF, Mighty AA, Edward BY (2019) Capsule networks–a survey. J King Saud 
Univ Comput Inf Sci 1–16

	29.	 Pires T, Schlinger E, Garrette D (2019) How multilingual is multilingual BERT?. In Proceedings of 
the 57th Annual Meeting of the Association for Computational Linguistics 4996–5001

	30.	 Rajasegaran J, Jayasundara V, Jayasekara S, Jayasekara H, Seneviratne S, Rodrigo R (2019) Deepcaps: 
Going deeper with capsule networks. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition 10725–10733

	31.	 Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In Proceedings of the 31st 
Conference on Neural Information Processing Systems 3856–3866

	32.	 Saif H, Fernandez M, He Y, Alani H (2013) Evaluation datasets for Twitter sentiment analysis: a sur-
vey and a new dataset, the STS-Gold. In Proceedings of the 1st International Workshop on Emotion 
and Sentiment in Social and Expressive Media: Approaches and Perspectives from AI 1–13

	33.	 Saleena N (2018) An ensemble classification system for Twitter sentiment analysis. Proc Comput Sci 
132:937–946

	34.	 Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a distilled version of BERT: smaller, faster, 
cheaper and lighter. arXiv preprint arXiv:1910.01108

	35.	 Wang X, Jiang W, Luo Z (2016) Combination of convolutional and recurrent neural network for senti-
ment analysis of short texts. In Proceedings of the 26th International Conference on Computational 
Linguistics 2428–2437

	36.	 Wang Y, Sun A, Han J, Liu Y, Zhu X (2018) Sentiment analysis by capsules. In Proceedings of the 
2018 World Wide Web Conference 1165–1174

	37.	 Yang M, Zhao W, Ye J, Lei Z, Zhao Z, Zhang S (2018) Investigating capsule networks with dynamic 
routing for text classification. In Proceedings of the 2018 Conference on Empirical Methods in Natural 
Language Processing 3110–3119

	38.	 Zhang Y, Song D, Zhang P, Li X, Wang P (2019) A quantum-inspired sentiment representation model 
for Twitter sentiment analysis. Appl Intell 49(8):3093–3108

	39.	 Zhang Y, Wallace BC (2017) A sensitivity analysis of (and practitioners’ guide to) convolutional neu-
ral networks for sentence classification. In Proceedings of the Eighth International Joint Conference on 
Natural Language Processing 253–263

	40.	 Zhang L, Wang S, Liu B (2018a) Deep learning for sentiment analysis: A survey. Wiley Interdiscipli-
nary Reviews: Data Mining and Knowledge Discovery 8(4):e1253

	41.	 Zhang Y, Liu Q, Song L (2018b) Sentence-state LSTM for text representation. In Proceedings of the 
56th Annual Meeting of the Association for Computational Linguistics 1:317–327

	42.	 Zhang Y, Song D, Li X, Zhang P (2018c) Unsupervised sentiment analysis of Twitter posts using 
density matrix representation. In Proceedings of the European Conference on Information Retrieval 
316–329

	43.	 Zhang C, Abdul-Mageed M (2019) BERT-based Arabic social media author profiling. arXiv preprint 
arXiv:1909.04181

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

8690 Multimedia Tools and Applications (2023) 82:8665–8690


	Enhanced sentiment extraction architecture for social media content analysis using capsule networks
	Abstract
	1 Introduction
	2 Related work
	3 Model architectures
	3.1 Convolutional neural network (CNN)
	3.2 Capsule layers and routing algorithms
	3.2.1 Primary capsules
	3.2.2 Convolutional capsules
	3.2.3 Sentiment capsules
	3.2.4 Child-to-parent relationship
	3.2.5 Dynamic routing between capsules
	3.2.6 Static routing between capsules
	3.2.7 Loss function

	3.3 Capsule network architectures
	3.3.1 Shallow capsule network
	3.3.2 Deep capsule network
	3.3.3 Ensemble capsule network


	4 System Methodology
	4.1 Datasets
	4.2 Model implementation
	4.2.1 Word-embeddings
	4.2.2 Baseline models
	4.2.3 Data pre-processing
	4.2.4 Sentiment extraction
	4.2.5 Classification model


	5 Result evaluation and analysis
	6 Discussion
	6.1 Study contributions and lessons learned
	6.2 Comparison with the existing studies
	6.3 Open challenges and future research directions

	7 Conclusion
	References


