
Vol.:(0123456789)

Machine Translation
https://doi.org/10.1007/s10590-021-09261-5

1 3

ThamizhiMorph: A morphological parser for the Tamil
language

Kengatharaiyer Sarveswaran1 · Gihan Dias1 · Miriam Butt2

Received: 26 February 2020 / Accepted: 3 March 2021
© The Author(s) 2021

Abstract
This paper presents an open source and extendable Morphological Analyser cum
Generator (MAG) for Tamil named ThamizhiMorph. Tamil is a low-resource lan-
guage in terms of NLP processing tools and applications. In addition, most of the
available tools are neither open nor extendable. A morphological analyser is a key
resource for the storage and retrieval of morphophonological and morphosyntactic
information, especially for morphologically rich languages, and is also useful for
developing applications within Machine Translation. This paper describes how
ThamizhiMorph is designed using a Finite-State Transducer (FST) and implemented
using Foma. We discuss our design decisions based on the peculiarities of Tamil and
its nominal and verbal paradigms. We specify a high-level meta-language to effi-
ciently characterise the language’s inflectional morphology. We evaluate Thamizhi-
Morph using text from a Tamil textbook and the Tamil Universal Dependency tree-
bank version 2.5. The evaluation and error analysis attest a very high performance
level, with the identified errors being mostly due to out-of-vocabulary items, which
are easily fixable. In order to foster further development, we have made our scripts,
the FST models, lexicons, Meta-Morphological rules, lists of generated verbs and
nouns, and test data sets freely available for others to use and extend upon.

Keywords Morphological analyser · Morphological generator · Finite-State
transducer · Tamil language · Low-resource language · Morphologically rich
language

 * Kengatharaiyer Sarveswaran
 sarvesk@uom.lk

 Gihan Dias
 gihan@uom.lk

 Miriam Butt
 miriam.butt@uni-konstanz.de

1 University of Moratuwa, Moratuwa, Sri Lanka
2 University of Konstanz, Konstanz, Germany

http://orcid.org/0000-0003-1579-0597
http://crossmark.crossref.org/dialog/?doi=10.1007/s10590-021-09261-5&domain=pdf

 K. Sarveswaran et al.

1 3

1 Introduction

The Web contains a large and rapidly-growing textual volume of Tamil, a Southern
Dravidian language of South Asia.1 Several organisations and individuals are work-
ing on Tamil language computing. However, in comparison to some major European
languages as well as Chinese, Japanese, and Korean (CJK), not many natural lan-
guage processing (NLP) tools such as Part of Speech (POS) taggers, morphologi-
cal analysers or syntactic parsers are available for Tamil. In addition, many existing
tools are either not open, or not extendable due to technical or license restrictions.
There are also commercial products such as Google Translate and Google Optical
Character Recognition. However, more work needs to be done to improve their qual-
ity before those can be put to general use. Beyond that, as claimed by Bhattacharyya
et al. (2019), South Asian languages in general lack sufficient language resources in
terms of gold standards or benchmark data needed for supervised machine learning.

A Morphological Analyser and Generator (MAG) is a crucial fundamental tool
for NLP. This is especially so for the processing of Morphologically Rich Languages
(MRL) such as Tamil, in which morphemes are used to mark various types of infor-
mation, including tense, aspect, mood, person, number, and gender. On the other
hand, while there have been several efforts to develop morphological analysers for
Tamil (see Sect. 4.3), no functioning Tamil MAGs of sufficient quality have been
available for public use and extension. In this paper, we describe how we have devel-
oped an openly available morphological analyser cum generator called Thamizhi-
Morph (pronounced morph or Tamili morph)2 and list the resources we have
made available for others to use and extend.

A MAG is a useful resource for language application development and language
learning. It can be used to effectively do word-level translation, especially for MRLs.
Named entity translation is also a task where a MAG can be useful. For instance, in
Moses, a statistical machine translation system, morphological analysers are used
in its factored translation models to improve the results over non-factored models
(Koehn et al. 2007). Further, Passban et al. (2018) found that integrating morphol-
ogy into a neural machine translation pipeline is useful to help overcome out-of-
vocabulary problems, especially in MRLs. Machine translation is a pressing prob-
lem in Sri Lanka, where two major languages—Sinhala and Tamil—are in everyday
use, including their use in official government communications.

1 meta.wikimedia.org/wiki/Growing_Local_Language_Content_on_Wikipedia_(Project_Tiger_2.0)/
Writing_Contest.
2 Thamizhi is an ancient writing system that was used to write the Tamil language.

1 3

ThamizhiMorph: A morphological parser for the Tamil language

We have used ThamizhiMorph to aid our grammar development within the Par-
Gram project3 (Butt and King 2002) to allow for the possibility to work with stems
in the syntactic parser and generator, rather than full-form lexical entries.

A MAG is also useful for language learning purposes so that a learner can ana-
lyse and search for morphs of an inflected word. Our morphological analyser is
designed to give the morphs in addition to the morphemes. This is important for
languages with complex morphology as well as irregular words, where it is difficult
for a learner to identify root words (Seiss 2012).

2 Background

2.1 The Tamil language

Tamil is spoken natively by more than 80 million people across the world. It has
been recognised as a classical language by the government of India since it has more
than 2000 years of continuous and unbroken literary tradition (Hart 2000). It is one
of the official languages of Sri Lanka and Singapore, and has regional official status
in Tamil Nadu and Pondicherry, India. It has also been recognised as a minority or
indigenous language in several countries including Malaysia, Mauritius, and South
Africa, and is taught there as a second language. The spoken forms of Tamil vary
depending on the region, mainly due to language contact, and/or politics (Schiffman
2008). Within Sri Lanka, there are several varieties of Tamil that are spoken, and
at times, one speaker may not understand the other. Further, there is no common
agreement among the different governments on the choice of terminologies. Conse-
quently, terminological variation also exists.

The Tamil language has its own script, which is referred to as Tamil script now,
and follows the Abugida or Alphasyllabary writing system where a pure consonant
and a vowel are written together as one unit or syllable. For instance, a consonant
(t) together with a vowel (u) will form a single unit, a composite character, (tu).
The alphabet has 12 vowel, 18 pure consonant, and 216 composite characters which
are formed when pure consonants and vowels combine together in a single unit.
Tamil also has a special character (ah) which is categorised neither as a vowel nor
as a consonant. In addition to these a total of 247 Tamil letters, some letters from
the Grantha alphabet, which is used to write Sanskrit in South India, are also widely
used with the Tamil alphabet.

3 The Parallel Grammar (ParGram) Project (Butt et al. 1999; Butt and King 2002) aims to develop and
implement large and wide coverage grammars for languages of different families. These parallel gram-
mars are written collaboratively within the linguistic framework of Lexical Funcational Grammar (LFG)
and with an agreed set of grammatical features by the project group members. The Xerox Linguistic
Environment (XLE) (Crouch et al. 2017), which is a parsing and generation implementation of LFG
developed at PARC, is used as a grammar development platform. In addition to putting effort into feature
standardisation, the project also promotes similar analyses for similar phenomena across languages (Butt
and King 2002), a property that is useful for cross-lingual language applications such as machine transla-
tion and information retrieval.

 K. Sarveswaran et al.

1 3

Apart from the information about the alphabet, understanding how these letters
are encoded using Unicode4 is important in order to develop language processing
tools, and to write morphological and orthographical rules. Each syllable in Tamil
has a single code point. For instance, all the vowels and pure consonants in the
Tamil alphabet are each encoded with a single code point. However, all the compos-
ite characters are encoded with two Unicode points; one to represent the consonant
letter, and the other to represent the vowel modifier which is applied to form the
composite. For instance, (tu) will have two Unicode points,5 one for (t) and the
other for the (u)- vowel modifier. Similarly, (tou) also has two Unicode
points corresponding to (t) and (ou). Typing in these vowel modifiers and
handling them as part of computer programming is not a very straightforward task.

2.2 Finite‑State morphology

In the conception of two-level morphology, a word is represented at two levels,
namely the lexical level, or lexical form, and the surface level, or surface form. This
concept can be modelled computationally using Finite-State Transducers (FST)
(Beesley and Karttunen 2003) and is referred to as Finite-State Morphology (FSM).
A FSM approach has been widely used to develop successful early applications for
morphologically rich languages such as Finnish and Russian (Koskenniemi 1983;
Karttunen and Beesley 2001). Subsequently, it has been taken up by researchers
developing morphological analysers for other languages, including South Asian lan-
guages such as Urdu (Bögel et al. 2007), Sindhi (Rahman 2016) and Nepali (Pra-
sain 2011), and also for the morphologically extremely complex Australian language
Murrinh-patha (Seiss 2012).

Several tools have been developed to model FSM. Proprietary tools like the
Xerox Finite-State Transducer (XFST) (Beesley and Karttunen 2003), and the FSM
Library from AT&T (now in OpenFST) have been widely used in the past. Open
source solutions like OpenFST (Allauzen et al. 2007), HFST (Lindén et al. 2009)
and Foma (Hulden 2009) are also employed. XFST has been used widely as an aid
to grammar engineering in the LFG/XLE context (Beesley and Karttunen 2003; Butt
et al. 1999; Rahman 2016) as part of the ParGram effort.

4 https:// home. unico de. org/.
5 https:// unico de. org/ charts/ PDF/ U0B80. pdf.
 Abbreviations used in examples: vpart=Verbal Participle; inf=Infinitive; 3sn=3rd Person Singular
Neuter; 1s = 1st Person, Singular; 3smr=3rd Person, Singular, Masculine and Rational; pass=Passive;
san=Sandhi; rp= Relative Participle; imp=Imperative; caus=Causative; 3se= 3rd person, singular and
epicene, 3seh=3rd person, singular, epicene and honorific; pl=Plural; obl=Oblique; euph=Euphonic;
nom=Nominative; dat=Dative; acc=Accusative; inst=Instrumental.

https://home.unicode.org/
https://unicode.org/charts/PDF/U0B80.pdf

1 3

ThamizhiMorph: A morphological parser for the Tamil language

2.3 Foma

Foma is a C library and a compiler that is used to develop FSTs for various pur-
poses, including the development of language applications such as a MAG. In this
section, we briefly discuss how Foma can be used to model inflectional morphology.

Developing an FST-based morphological analyser generally requires two com-
ponents: (1) list of morphs (morphotactics and lexicon); (2) alteration rules (mor-
phophonological rules and orthographical rules) (Beesley and Karttunen 2003;
Hulden 2009). Foma also has these two components. A lexicon component shows
the ordering restrictions of the root and its morphs, and maps them to an intermedi-
ate or final form. For instance, (1) (a) shows how a plural morpheme can be mapped
to intermediate and final forms respectively, where the morph s is used to mark the
morphemes +Noun and +Pl. However, as shown in (1)(b), it does not yield the final
results for all constructions. This is where the second component, alteration rules,
comes in. In this component, we define the morphophonological or orthographic
changes which take place. In other words, as a first step, we consider the generic
scenario, where root forms take s to mark plural, and then write alternation rules for
the exceptional cases, as in (2). In Foma we can define such a rule, as in (2), where
we define, for example, an eInsertion rule for plural constructions and add a letter e
in front of plural morph s whenever a noun ends with the letters ch. In this way we
can generate the final plural form for watch, as watches. We can define any number
of such rules and can then concatenate them and apply them to the output of the
lexicon component to get the final forms.

The words of a language can be divided into different classes based on their mor-
phophonological behavior. When we develop a morphological analyser we there-
fore need to define different lexicon components for each of the identifiable word
classes. Each of these lexicon components is associated with different sets of altera-
tion rules. This feature is useful for a MRL such as Tamil, where the alteration rules
are complex. In Foma we can define these classes as different lexc files that can then
be concatenated as necessary integrating alteration rules.

3 Tamil morphology

In this section, we provide some basic information about Tamil morphology and
then discuss the paradigms we have used in order to develop the analyser.

 K. Sarveswaran et al.

1 3

The Tamil grammar tradition classifies words in Tamil as either divisible or indi-
visible. A divisible word can have up to six parts, namely: root, suffix, idainilai
(medial particle), chariyai, Sandhi, and vikaram (alteration) (Nuhman 1999; Sena-
varaiyar 1938). The medial particles can be tense markers or negation markers in
divisible verbs as shown in (3). chariyai is a phonological modifier which can be
further divided into a euphonic marker and an oblique marker based on the function
it expresses (Lehmann 1993). The term Sandhi refers to a cluster of morphophono-
logical phenomena, the alteration is also a morphophonological process of assimila-
tion which has orthographic consequences.

The six parts of a Tamil word can be illustrated using the following example in
(4), which is taken from Sarveswaran and Butt (2019, p. 274). Here, an internal San-
dhi t occurs between the root and the tense particle t, and then it becomes n because
of vikaram (alternation).

Tamil is an agglutinative language where a set of morphs is generally suffixed to
the root or base, as shown in (4). However, there are some exceptions, where morphs
are prefixed, especially for negation, and demonstratives. For instance,
(aniyayam) ‘injustice’ involves the prefixation of (a) to express negation. The
words with prefixation can also take suffixes, for instance, (aniyay-
attai) ‘injustice.ACC’ where the (ai) expresses accusative case.

All words in Tamil can be segmented into two parts: (1) the base or root; (2)
grammatical formatives. The grammatical formatives can be either inflectional or
derivational affixes that are added via six morphophonological operations, namely,
affixation, incorporation, compounding, cliticisation, doubling, and stem mutation
(Lehmann 1998). Example in (4), for instance, shows the process of suffixation, and
in association with it, stem mutation where (vaa)→ (va).

Word formation through agglutination exhibits fusional tendencies or morpho-
phonemic alterations between the root word and grammatical formatives. Based on
these alterations, several different conjugational and declinational patterns or para-
digms for verbs and nouns, respectively, can be identified. In Sects. 3.2 and 3.3 we
describe verbal and nominal paradigms that have been considered in order to be able
to develop the morphological analyser.

1 3

ThamizhiMorph: A morphological parser for the Tamil language

3.1 Part of speech

In grammar books written by native grammarians (Thesikar 1957; Senavaraiyar
1938) Tamil words have been primarily divided into four types, namely: nouns,
verbs- intensifiers/attributives, and particles. However, more recently there have
been more granular Part of Speech (POS) analyses proposed by Sarveswaran and
Mahesan (2014); Baskaran et al. (2008); Lehmann (1993). We follow Lehmann
(1993) and Sarveswaran and Mahesan (2014) closely. These are relatively less
granular when compared to others, but we have found that these allow for the
most accurate analysis in our implementation.

3.2 Verbal morphology

The structure of a simple verb in Tamil is <root> + <medial-particle> +
(euphonic-particle) + <terminal-suffix>, where the euphonic particle (an)
is optional—it seems to be used to add a dimension of politeness to the verb in
current usage. The medial particle is used to realise the tense (past, present and
future) or negation of the verb (Pope 1979; Lehmann 1993; Paramasivam 2011).
The terminal-suffix of a finite verb is used to realise multiple types of information
such as number, person, gender, and rationality (or status) (Pope 1979; Lehmann
1993). As for other morphosyntactic features, Tamil has singular and plural
values for number, 1st/2nd/3rd person values, and three gender values, namely
masculine, feminine and neuter. In addition to these three genders, a fourth class
called ‘epicene’ is used to mark the 3rd person plural forms of rational entities
(Lehmann 1993). Entities in Tamil are fundamentally classified into rational or
irrational. Entities are termed rational if they are perceived as being able to think
on their own, whereas the rest are termed irrational. This is different from splits
found otherwise in terms of human vs. non-human, or animacy. For instance,
infants are considered to be irrational like other animals or inanimate objects even
though infants are human and animate. Further, when a human entity behaves
in an insane manner, that entity is morphologically classified as irrational. The
above concepts are used in choosing the correct terminal-suffix.

In addition to simple verbs, Tamil also has complex or compound verbs that
have more than one verbal root within them, which may express mood, aspect,
negation, interrogativity, emphasis, speaker perspective, and conditional and
causal relations (Annamalai et al. 2014). Agesthialingom (1971) claims that
Tamil can have up to four verbal roots in one verb. For instance, there are four
verbal roots in the complex verb in (5): vaa (come), koḷ (hold), iru (be) and iru
(be). The koḷ (hold) and iru (be) in the middle together signal continuous aspect.
Further, as shown in the example in (5), in verbal conjugation, only the last verb
in the sequence takes tenses and person, number and gender (png) marking. All
the preceding verbs appear either in a participial form or an infinitival form.

 K. Sarveswaran et al.

1 3

 A complex verb in Tamil can be written as two tokens, as in (6), or as a single
token as in (7). If a complex verb is written as one word as in (7), then the analyser
should provide a proper analysis, including an identification of all the verbal roots in
it.

In our development of ThamizhiMorph, we have so far only handled instances of
up to two verbs which are written together. We have analyzed those cases in which
the second word in a complex verb functions either as an auxiliary or a light verb.
For instance, Sarveswaran and Butt (2019) show how the verb (koṭu) ‘give’
functions as a light verb when it occurs as the second verb in a complex verb. We
note that more studies along these lines need to be done in order to fully analyse the
functions and structure of complex verbs in Tamil.

As a step towards this goal, we have identified a set of verbs (Boologarambai
1986) which form complex verbs together with the main verb. We have categorised
these according to their structure and function, based on discussions in Boologaram-
bai (1986), and our study, as shown in Table 1.

3.2.1 Verbal paradigm

Tamil verbs can be classified on the basis of criteria that can be either morphologi-
cal, syntactic or semantic (Paramasivam 2011). Many scholars, including Lisker
(1951), Graul (1855), and Arden (1962) have classified verbs based on their mor-
phophonemic changes as part of the conjugations. Graul (1855) has provided an
early classification on which other scholars have built their proposals, including
Irākavaiyaṅkār (1958) and Sithiraputhiran (2004). Graul’s classification was also
adapted for the Tamil lexicon project (Rajaram 1986). This classification of Tamil
verbal lemmas includes 12 categories or classes and is based on the tense markers

1 3

ThamizhiMorph: A morphological parser for the Tamil language

on the verbs. We have also adopted this classification and extended it slightly, as
shown in Table 2. We have furthermore separately incorporated complex and irregu-
lar verbs. As shown in Table 2, when the tense markers conjugate, those are not
just added to the root via concatenation. Many changes or new letters may be intro-
duced, and these constructions are handled using alternation rules. For instance, in
class 12, when the past tense marker is coined, it is not just added to the root (
+ (naṭa+t). Instead, the letter (nt) is inserted: (naṭa+n+t). A similar
behaviour has been observed in other classes as well.

In addition to these classes, we have also identified five irregular verbs that are
processed separately within the paradigm: (kaaṇ) ‘see’, (vaa) ‘come’,
(saa) ‘die’, (taa) ‘give’, (vee) ‘boil’.

3.2.2 Verbal conjugational forms

Annamalai et al. (2014) have identified 254 forms for each Tamil verb after a rigor-
ous analysis of their corpus of contemporary texts. Some verbs may not take all of
the 254 forms. Rajaram (1986) has identified 21 forms for each verb from a peda-
gogical perspective. On the other hand, Kumar et al. (2010b) claim that a Tamil
verb lemma can take up to 8,000 forms although not all are listed or found in the
literature. In our ThamizhiMorph we have implemented 260 inflectional forms.
These forms are the set common to Annamalai et al. (2014) and Rajaram (1986).
For each lemma, these 260 forms are generated and analysed. However, more forms

Table 1 List of complex verb forms used in ThamizhiMorph

 K. Sarveswaran et al.

1 3

can easily be added to the system without the need for any additional programming
using our Meta-Morph rules (Sarveswaran et al. 2019).

3.3 Nominal morphology

Nouns in Tamil are primarily marked for case and number. Number and case suf-
fixes are bound morphemes which are added to stem forms or nouns with an oblique
suffix. In addition, the oblique suffix, euphonic and other phonologically motivated
material also appears on nouns (Caldwell 1875; Shanmugadas 1982; Lehmann
1993). Oblique nouns are formed by doubling of the last consonant, or by adding
oblique suffixes such as (am), (attu), and (aṭṭu). Lehmann (1993)
shows that there are some free morphemes that also mark case.

Tamil noun stems are singular by default. The suffix (kal) expresses plural-
ity on most nouns (Nuhman 1999). The morphology of a Tamil noun is depicted
in the formula (8). Euphonic morphs such as (an) and (in) are purely
phonological increments (Lehmann 1993). (9) shows different ways a noun can

Table 2 The Tamil Verbal Paradigm used for ThamizhiMorph

1 3

ThamizhiMorph: A morphological parser for the Tamil language

be chopped into parts according to the template in (8). A stem can take only one
oblique; however it can take multiple instances of euphonic morphs.

Traditional grammarians have identified 8 cases including a vocative (Sena-
varaiyar 1938; Thesikar 1957). However, modern linguists (Nuhman 1999; Para-
masivam 2011; Lehmann 1993) argue that the instrumental case proposed in tra-
ditional grammar should be treated as two, namely instrumental and sociative. In
our analyser, we adapted this modern classification, and the 9 cases are shown in
Table 3. This table also shows some example case suffixes or markers which we
have handled in our analyser.6

In addition, Tamil also has several free morphemes to mark locative, sociative,
ablative and instrumental cases (Lehmann 1993). For instance, (saavi-
yaal) ‘with key’ can also be written as (saavi muulam). However, these
free morphemes are not always used to mark case. ThamizhiMorph currently does
not identify these free morphemes as case markers. They are so far marked with
their original lexical category, such as noun, e.g. (muulam) ‘origin’, or verbal
participial, e.g. (konṭu) ‘take/hold’. However, one can build a tool on top
of ThamizhiMorph to easily identify the case marking functions of these free mor-
phemes on the basis of the POS tag of the adjacent words.

The plural suffix is a bound morpheme in Tamil that is marked by (kal).
However, this marker is also used as an honorary marker in the present Tamil usage,
especially with the third person pronoun (avar-kal) “he.3seh” (them).

6 Thesikar (1957) lists 28 locative markers and 10 vocative markers that are rarely used in the present
context, therefore, we have not included them in this version of ThamizhiMorph.

 K. Sarveswaran et al.

1 3

The rationality and gender of nouns are important information that will be also
shown in the analysis, because this is valuable information for syntactic and seman-
tic processing.

Tamil does not have a definite marker. The definiteness of nouns is expressed with
demonstrative markers, or by using the accusative case marker in irrational objects
(Lehmann 1993). The object of a sentence is marked by accusative case, however,
the accusative case marking is compulsory only for rational objects (Lehmann 1993;
Nuhman 1999). Therefore, when an irrational noun has an accusative marker, it is
also marked for definiteness.

3.3.1 Nominal paradigm

Rajendran (2009) has proposed a paradigm for noun morphology with 26 classes
based on their morphophonological properties. Among these 26 classes, 9 classes
are used to capture the morphophonological rules pertaining to pronouns. Pronouns
take different forms when inflecting for a case suffix.

In our noun paradigms, we have identified 38 classes for pronouns that include
personal, possessive, and interrogative pronouns. We found that although many
pronouns are subject to the same morphophonological rules, they produce different
analyses or lexical strings. Therefore, these have been sorted into different classes.

The paradigms we used for the nouns other than pronouns is shown in Table 4.
We have picked one word to represent each class, and the classes are named on the
basis of that representative lexical item. We have chosen to differentiate between
classes 6 and 7 even though they have the same last character in the orthography (
(ṭu)).This is because the nouns in these two classes do differ in their conjugational
patterns.

3.3.2 Nominal conjugational forms

We used 36 conjugational forms for Tamil nouns. These cover plural and case con-
jugations, along with external Sandhi markers. Each noun root takes case markers
both in its singular form and plural form. Further, nouns in their dative or accusative
forms can also take one of four external Sandhi markers. Altogether, we have 36

Table 3 Cases considered for ThamizhiMorph

–
Case Morphs/Case marking suffixes Example

1 3

ThamizhiMorph: A morphological parser for the Tamil language

nominal conjugational forms. It is common to suffix postpositions to nouns. We are
in the process of also including such constructions as part of ThamizhiMorph.

4 Related work

4.1 Approaches for developing morphological analysers

There have been rule-based, machine learning and deep learning approaches pro-
posed and developed for morphological analysers of various languages, including
Dravidian ones. However, except for Premjith et al. (2018) for Malayalam, no deep
learning-based attempts have been taken in the development of a morphological
analyser for any Dravidian languages. This may be due to inadequate data available
to train a deep learner, as stated in Bhattacharyya et al. (2019). On the other hand,
rule-based approaches yield immediate and high quality analyses and have therefore
been widely employed for similar languages.

4.2 Morphological analysers for South Asian languages

A number of studies have been done on FSMs for South Asian languages. One of
the earliest was Bögel et al. (2007) for Urdu, which includes a transliteration com-
ponent so that the morphological analyzer and generator can also be used for the
structurally almost identical language, Hindi. In addition to inflectional and deri-
vational morphology, it also tackles complex problems such as reduplication and
compounding. Prasain (2011) has developed an FSM for Nepali. He has identified
different classes of nouns, pronouns, verbs, adjectives, numerals, adverbs, conjunc-
tions, postpositions, and particles for which he then implemented a pilot morpho-
logical analyser and generator using the two-level morphology approach and XFST
tool. Rahman (2016) has developed an analyser and generator for Sindhi as part of
his work on a grammar development for Sindhi. He also used XFST, which he then
integrated within his grammar.

4.3 Tamil morphological analysers

Antony and Soman (2012) carried out a survey on the state of affairs of computa-
tional morphology across Indian languages, and documented 17 efforts of morpho-
logical analysers and/or generators for Tamil. 12 of them were carried out before
2007, and the relevant papers, data sets and/or software are not retrievable via the
Internet. The rest have been carried out since 2010. Among those five efforts, Kumar
et al. (2010a, b) and Menaka et al. (2010) are available for download in binary form
yet without any data sets.

Menaka et al. (2010) and Kumar et al. (2010a) have used rule-based approaches
which only perform morphological generation. On the other hand, Kumar et al.
(2010b) used machine learning for the morphological analysis and generation of

 K. Sarveswaran et al.

1 3

Tamil. They claim that the system was tested using 40,000 verbs and 30,000 nouns,
and that the machine learning system was trained using 130,000 verbs and 70,000
nouns from their corpus. However, neither data sets, sources nor any detailed doc-
umentation are available, except for a sample corpus with 270,000 tokens. The
extendability of this work to aid grammar development is also questionable, and
would need to be researched. An email exchange with the authors has established
that they do not work in this domain anymore.

Parameshwari (2011) has implemented a morphological analyser and generator
for Tamil using a rule-based approach, which covers verbs, nouns, adjectives, pro-
nouns, numerals and non-standard Tamil words with the use of the Apertium tool.
The author claims that the system shows an accuracy of 84%. Only the research
publication could be retrieved, and there are no associated data sets or rules avail-
able in the paper, or online. Lushanthan et al. (2014) have proposed a morphological
analyser and generator for Tamil, which has been implemented using XFST. The
authors have used transliteration to handle the Tamil script, given that the current
version of XFST has rendering issues, although it supports Unicode internally. The
authors have considered 2,000 noun and 96 verb stems as part of their analysis and

Table 4 The Tamil Nominal Paradigm used for ThamizhiMorph
No. Class name Plural

Marker
Sample case markers

1 3

ThamizhiMorph: A morphological parser for the Tamil language

generation. They have tested the system using their own data set consisting of 3,500
nouns and 500 verbs with a success rate of 78%. However, the data sets and XFST
rules have not been made available.

Anna University in India developed a morphological analyser in 2001 called
Atcharam that has recently been added to the GitHub repository.7 It was developed
for TAB (TAmil Bilingual) encoded text as a stand-alone application using Java.
There is, however, no detailed technical documentation or rule set, although some
data in the form of a list of words are available in the repository. These are encoded
using TAB, and an attempt to convert them to Unicode was also not successful.
There are also some morphological tools available in the Github code repository
without corresponding academic publications.

Pranavan8 has provided work on a basic morphological analyser developed as a
stand-alone application using Java. However, as also claimed by the developers, it
is a basic analyser which handles only 20 words with 28 conjugation forms. Yet
another code repository is that by tacola-aucse.9 This is also developed as a stand-
alone application using Java covering the analysis of verbs and nouns. However, no
information about the data set or the rules developed were found. We managed to
run the tool with an older version of Java, but, irregular verbs like (cettān)
‘(he) died’ do not seem to be handled, as no analysis is generated. In some cases,
the given analysis is very confusing, especially when an out-of-vocabulary word is
fed in. For instance, the analysis of (carvēśvara n), a proper noun,
showed that it is made up of the root of (carvē), the future tense marker
(v), and the past tense marker (n). That is, it not only mistakes a proper noun for a
verb, but it also provides a completely wrong analysis with two contradictory tense
markers. Additionally, if the text is not Unicode normalised, then the tool produces
unexpected results. Finally, when there are multiple analyses for a word, only one is
provided. In comparison to the other tools available, we did however manage to run
this tool, yet since there is no proper documentation, it would be difficult for anyone
to extend this stand-alone Java tool to make it usable for a particular need.

There is a Tamil Shallow Parser,10 published in 2009, which also provides mor-
phological information in addition to POS and Chunking. However, there are no
papers which cover the development of the Tamil shallow parser. The authors of this
tool have developed similar tools for Hindi, Telugu and Bengali, as documented in
Avinesh and Karthik (2007). The authors report results for POS and shallow parsing,
but not for the morphological analysis. It is not clear what approach has been used,
particularly for the morphological analysis as this is not discussed or evaluated. The
analysis of this tool comes in a custom version of Shakti Standard Format (SSF)
(Bharati et al. 2007), which is not detailed in any of the literature found online. The
original tool which was published in 2009 is also available for download. The data
and rules in this tool are encrypted. However, we were not successful in executing it.

8 https:// github. com/ Prana van135/ Tamil_ Morph ologi cal_ Analy zer.
9 https:// github. com/ tacola- aucse/ Morph ologi cal- Analy zer- For- Tamil.
10 http:// ltrc. iiit. ac. in/ analy zer/ tamil.

7 https:// github. com/ tacola- auceg/ morpha_ ta.

https://github.com/Pranavan135/Tamil_Morphological_Analyzer
https://github.com/tacola-aucse/Morphological-Analyzer-For-Tamil
http://ltrc.iiit.ac.in/analyzer/tamil
https://github.com/tacola-auceg/morpha_ta

 K. Sarveswaran et al.

1 3

The first author of this tool has now re-implemented it using Python.11 However, the
new version no longer includes morphological parsing. We therefore used the online
demo to do testing, and the results are reported under the evaluation section.

There has also been an attempt to develop a Morphological analyser for Tamil
using a support vector machine (Mokanarangan et al. 2016). Although the writers
have reported an accuracy of 98.73%, their system is not available, and it is not clear
what data sets or analyses have been used for training and testing, as there is no data
available in the paper, or online.

5 Design choices

Our research on existing Tamil morphological analysers has shown that existing
analysers either could not be not found, are incomplete, or not maintained. All of
these tools are dependent on versions of various programming languages, and the
logic seems directly coded in that particular programming language. This makes
these tools difficult to maintain, test or extend. Also, some of these applications pro-
cess text in ASCII (i.e., transliterated) format, and do not support Unicode encoding.
Since Unicode has now become the de-facto method of encoding text, all applica-
tions are expected to have Unicode support. Further, we are in the process of devel-
oping a ParGram style computational grammar for Tamil, which requires a mor-
phological analyser with a good, precision coverage, implemented with the use of a
finite-state approach that interfaces with the grammar.

Therefore, we decided to develop a Finite-State transducer based morphologi-
cal analyser. We wanted to make sure that our tool is technology, or programming
language neutral so that it can be accessed via any programming language without
wrapping it with an API (Applications Programming Interfaces). We also wanted it
to be light-weight, so that it could be run on any commodity hardware, and be open
source so that anyone can take it and extend it as needed or desired.

5.1 Technology stack

The application of Deep Learning in almost every NLP task has become common
in the computational world. However, it has not yet become the state of the art for
morphological analysis. It is essentially the lack of sufficient quality data that is the
bottleneck for the application of deep learning approaches (Marcus 2018) and most
Indic languages, including Tamil, do not have sufficient annotated data needed for
supervised machine learning.

On the other hand, Finite-State Transducers (FST) have shown proven success
in the past for morphologically rich South Asian languages as discussed in Sect. 4.
Moreover, the development of a computational grammar using Lexical Functional
Grammar and XLE for the ParGram project (Butt and King 2002) is also in our

11 https:// github. com/ avine shpvs/ indic_ tagger.

https://github.com/avineshpvs/indic_tagger

1 3

ThamizhiMorph: A morphological parser for the Tamil language

project pipeline, which requires a Finite-State morphological analyser. Therefore, it
was decided to use a FST. In addition to morphological analysis, FST can also be
used for morphological generation; this is an added advantage.

There are several currently available tools with which to implement an FST-based
morphological analyser. These include XFST, OpenFST, HFST, and Foma. Among
these, XFST has been the standard tool for developing morphological analysers.
This is because an XFST-based morphological analyser can easily be integrated
into a computational grammar built using XLE. However, XFST has limited sup-
port for Unicode characters, especially for complex ones like Tamil. Additionally,
it is a closed source, and proprietary tool. Foma, on the other hand, has support for
Unicode, and is an open-source software that can be easily extended to web applica-
tions. For these reasons it was decided to use Foma to implement our morphological
analyser.

5.2 Scope of annotations

We decided to capture and encode all available information that words express via
their form. Apart from POS and morphological information, we have therefore also
represented morphophonological information.

Internal Sandhi refers to a phonological process triggered across two morphs
within a (prosodic) word, external Sandhi is triggered when such a phonological
process happens at the boundary of two words. External Sandhi can occur when
the second word begins with one of the following consonants:
(p). The Sandhi is triggered when further licensing conditions are met — a detailed
description of these lies outside the scope of this paper. While internal Sandhi is
purely morphophonological in nature, external Sandhi is also subject to syntactic
or semantic constraints. Since Tamil orthography closely reflects the phonology of
the language, a Sandhi’s effects on the orthography must necessarily be dealt within
the development of a resource such as a computational grammar and morphological
analyser. For instance, in the clause (kalaiyaip pidittan)
‘he caught the bull’, the first word kalaiyaip can be analysed as in (10), where (p)
is a Sandhi (sandhi-p). Here the sandhi-p comes in via assimilation after the accusa-
tive because the following word begins with a (pi). Similarly, we have also han-
dled sandhi-t) in our analyses.

 Tamil also has two euphonic increments (Lehmann 1993): (an) and
(in), which can be added onto nouns and verbs. These increments are also captured
by our analysis, even though these are purely phonologically motivated.

Apart from the morphological features which are carried by morphs in a word,
we have also included the lexically specified features shown in Table 5 in our anal-
ysis. Since it is not always possible to extract these features orthographically, we

 K. Sarveswaran et al.

1 3

thought that such information should be included additionally in the analysis, as
these are useful for developing applications or resources such as POS taggers and
computational grammars.

5.3 Morpheme labels

We use our own labelling scheme in our morphological analyser though there is an
effort to harmonise morpheme labels across languages and tools, especially with a
cross-lingual morphological transfer in mind, for example, the UniMorph project
(Kirov et al. 2016). However, UniMorph does not capture all our required concepts,
such as rationality of nouns, and the strong/weak nature of verbs, which are neces-
sary for the morphological processing of Tamil. In addition, since we have devel-
oped this analyser having grammar engineering in mind, it is always good to mark
the morpheme information of a single morph together. For instance, person, number,
gender and rationality of a given noun can be marked by a single morph in Tamil.
It is thus easier to mark it as a single morpheme in order to reduce the complexities
in modelling. In contrast, the UniMorph project proposes separate labelling for all
of this morphological information. Taking into account all of this, it was decided to
design a transparent scheme for our morpheme labels, which can then be mapped to
other annotation schemes as required.

Analyses of each word are given the following form in our system:

Apart from the morpheme information, the morph which corresponds to the mor-
pheme is also recorded in the analysis for future use. Additionally, each morpheme
is separated using a morpheme boundary ’|’, similar to what is used by Beesley and
Karttunen (2003) to mark term boundaries (they use ‘TB’). We made our choice
in part because “|” is the symbol used in Universal Dependencies (UD) to separate
features there.12

6 ThamizhiMorph

Based on the design choices outlined in the previous section, we have developed a
morphological analyser and generator for Tamil using a Finite-State approach with
the aid of Foma. This section outlines the architecture of our tool, including the pre-
processing steps, data gathering approaches, compilation of rules, and the develop-
ment of the tool.

root| + morpheme1 = morph| + morpheme2 = morph|...

12 https:// unive rsald epend encies. org/ format. html.

https://universaldependencies.org/format.html

1 3

ThamizhiMorph: A morphological parser for the Tamil language

6.1 Pre‑processing

Due to the nature of the Tamil Unicode encoding and input methods, a character can
be represented by multiple code sequences. For instance, the letter can be rep-
resented by either: . We have, therefore, developed
a script to convert all input to Unicode normalised form before being fed to the sys-
tem for analysis or generation. That ensures that each letter and word is represented
in a unique manner.

6.2 Compilation of Lexicons

Lexicons for Tamil verbs, nouns, and other particles have been compiled from vari-
ous sources as outlined below via books, a dictionary, and corpora. The words were
then classified on the basis of the paradigms outlined in Sects. 3.2 and 3.3. Adjec-
tives, adverbs, and other particles such as conjunctions have been compiled as sepa-
rate lists.

6.2.1 A lexicon of verbs

A lexicon of 3300 lemmata of Tamil verbs have been compiled from the following
two verified sources:

1. Ramakrishnan (2014) has identified 369 of the most frequently used verbs in
Modern Tamil. This analysis is based on a corpus of 7 million tokens compiled
from the web and has taken into account expert advice on linguistic matters.

Table 5 Lexically specified features

Morpheme label Meaning

Fin Finite
Nonfin Non-finite
Weak Weak verb: Paramasivam (2011) discusses how the weak/

strong nature of a verb can be used to determine transitivity,
volitivity, affectedness and ergativity in most cases, even
if he does not agree with this argument. However, for our
purposes, we have also marked this information as it may
be useful morphosyntactic information for our grammar
engineering.

Strong Strong verb
Verb Verb
Noun Noun
Rat Rational
Irra Irrational
Sim Simple verb: it has a single verb root
Complex Complex verb: it has more than one verbal roots, like passives

 K. Sarveswaran et al.

1 3

This list has been included in the contemporary Tamil dictionary Cre-A (Ram-
akrishnan 2014).

2. Irākavaiyaṅkār (1958) surveyed the Tamil classic literature up until 1958, where
he identified 3124 lemmas, and categorised these into 12 classes as per the clas-
sification proposed by Graul (1855) and Sithiraputhiran (2004). However, some
of these forms are not used in the contemporary language. Nevertheless, since
the analysis of these verbs is necessary in order to process historical Tamil texts,
the entire list has been used for the development of our FSM.

In addition, a lexicon of complex verbs has been manually constructed by join-
ing the infinitival form or verbal participial form of verbal roots, together with
secondary verbs (Boologarambai 1986) as identified in Sect. 3.2 and in Table 1.
For instance, all the modal complex verb constructions are done by joining the
infinitival form of the verb together with a modal auxiliary verb, as in (11) (a).
Similarly, aspectual markers are always joined with a verbal participial form of
the root verb, as in (11) (b).

6.2.2 A lexicon of nouns

A lexicon of 80,000 Tamil nouns has been collected from online databases, glos-
saries, and corpora. An initial level of cleaning was additionally conducted in
order to ensure that these are proper words, and that they adhere to Tamil orthog-
raphy and morphology. To ensure this, we developed a Python script to filter out
words that begin and end with letters that are unacceptable according to the Tamil
grammar (Thesikar 1957), and its current usage. According to traditional Tamil
grammar, a word cannot start with the letters (r) and (ṛ), yet these are being
used widely in the present context. We adapted a corpus-based approach to iden-
tify the current usages of this type, and in doing so, we amended our morphologi-
cal analyser.

1 3

ThamizhiMorph: A morphological parser for the Tamil language

6.3 Meta‑Morph rules

We integrate the novel concept of Meta-Morph Rules that we developed and pre-
sented in Sarveswaran et al. (2019). Meta-Morph Rules are lexical rules in the form
of metadata that is fed into the development of our Foma morphological analyser.
As discussed above as part of the review of Tamil morphological analysers, most of
the previous efforts at encoding the morphotactics of Tamil have been deeply cou-
pled with a particular programming logic. Other efforts have relied on heavy manual
effort.

The definition and use of Meta-Morph rules help us to focus upon the analysis
of the language without the distraction of being bound by a particular programming
logic. It additionally allows for the automation of the generation of lexical entries,
which, when done manually, is not only a tedious and time-consuming task, but also
prone to error. This is particularly true for a language like Tamil where each verb
may display several hundred inflections. Therefore, even if a paradigm approach is
used, it is challenging to write rules, maintain them and perform regression testing
without the aid of a meta-grammar.

We initially developed our MAG by entering all of the necessary lexical strings
manually, which is a tedious task that took time and energy. However, this manual
process helped us to understand the overall generalised morphological structure
of Tamil. In evaluating our progress, we found that correcting errors was compli-
cated and time-consuming, since we always had to engage with the details of the
Foma specifications. The frustration with these time-consuming tasks led us to
experiment with Meta-Morph Rules.

The idea was to find a way of stating the morphotactics needed to analyse and
generate Tamil words in a manner that would be transparent, programming lan-
guage independent and easy to maintain. As shown in Snippet-1, we hit upon a
format that contains the following information: (1) The word classes to which the
information applies (Line 1); (2) the inherent lexical specifications for that word,
for instance, the classes here can be finite, simple, and indicative (Line 2); (3)
the order of the morphemes (Line 3); (4) particular patterns, for example, as in
Line 4 where it is stated that verbs (of the classes defined in Line 1) which con-
tain euphonic markers (the material used to fulfill phonological phrasing require-
ments) are constructed only with past tense verbs, and only with a specific png
marker (e.g., pngeuph in Line 4).

We found the writing of rules in the Meta-Morph format illustrated by Snippet-1
to be quick, easy and transparent. In terms of translating these descriptive statements

 K. Sarveswaran et al.

1 3

into an implementation, we found that defining feature-value pairs using JSON13 to
be the most efficient way forward. Adding in the extra step of formuiating Meta-
Morph Rules coupled with the JSON knowledge base helped us to significantly
accelerate the process of developing our FSM for Tamil. Adding a lexical string
or new conjugation form now becomes very straightforward: All that is required is
to list the classes which will take those new forms and then define a generalised
rule for the formation of that word, as shown in Snippet-1. A complete set of Meta-
Morph Rules for finite and indicative verbs are shown in Appendix A: Snippet-4. An
overview of all the system components and processes is shown in Fig. 1.

The JSON files contain detailed morphophonological and orthographic informa-
tion about the values for the labels in the Meta-Morph Rules. As shown in Snip-
pet-2, data are stored in the JSON files as key-value pairs which are also human-
readable. In addition to labels, values corresponding to each morph are also stored
in the JSON files, as shown in Snippet-2. For instance, tense is defined as consisting
of the values past, future (fut) and present (pres) and these values can themselves be
further specified, as demonstrated for past tense, where two different possibilities are
provided. This information becomes part of the lexical analysis. This data structure
provides desirable flexibility for defining different tense markers and labels for dif-
ferent classes, and these data can be referred to at different levels when writing the

Fig. 1 The process outline: shows how actual FST is build from Meta-Morph Rules and other compo-
nents

13 https:// www. json. org/.

https://www.json.org/

1 3

ThamizhiMorph: A morphological parser for the Tamil language

Meta-Morph Rules. For instance, as shown in Snippet-1, both the tense feature or
the past feature can be referred to independently from one another. Furthermore,
in case there was a mistake in the labelling or in the specification of the value of a
marker, corrections can now easily be done directly in the descriptive but hierarchi-
cal JSON text file without needing to engage with the details of the FSM program-
ming logic.

The above rules and JSON entries can be written in a plain text file. For
instance, Snippet-2 shows how tense labels are defined and stored in a JSON file.
As shown here, there can be different past tense markers for different classes of
verbs. For general cases, the tense marking can be done as shown in line 3. How-
ever, if required, a particular tense marker can also be used, as shown in line
number 4 of the above Snippet-1.

Once the Meta-Morph Rules are finalised, they can be parsed to produce actual
lexical strings that are then fed to Foma to compile an FST. A parser has been
developed using Python to parse these Meta-Morph Rules to generate lexical
rules for Foma. A sample of a compiled Meta-Morph Rule is shown in Snippet-3.
As mentioned previously, we use the pipe “|” symbol to mark morpheme bounda-
ries. The % in Snippet-3 is used to allow us to escape special characters in the
lexical string.

 K. Sarveswaran et al.

1 3

Apart from the generation of these intermediate entries, orthographical rules
have been written for each class in the paradigm, as necessary, based on the
description in Sect. 6.4. If a new class needs to be introduced, then a new set of
entries needs to be added to the orthographical file. Otherwise, there is no need
to touch the lexical strings or the orthographical files.

6.4 Orthographical rules

Writing orthographic rules is a complex task for a language like Tamil. In most
cases, the affixation of suffixes is not just a mere addition to a lemma. Rather,
several orthographical changes take place during the affixation process in Tamil,
due to grammatical and phonological reasons. These complicate the process of
writing orthographic rules. The following are common orthographical changes
observed when suffixation occurs. These have been programmed to be handled
by our analyser and generator:

– Morpheme/s can just be suffixed to the lemma. However, when there is a
consonant followed by a vowel these two together become composite. For
instance, ‘past tense marker’ + (aan) ‘third
person, masculine, singular and rational’ = (ceytaan) ‘(he) did’,
where together form the composite character (taa).

– A new letter is introduced in addition to the morpheme. For example
(naṭa) ‘walk’ + - (t) ‘past tense marker’ + (aan) ‘third person, mas-
culine, singular and rational’ = (naṭantāṉ) ‘walked (he)’, where a
letter (n)is introduced. Some researchers consider this as a Sandhi letter,
but some modern linguists consider (nt) as the past tense marker (Nuh-
man 1999).

– Two letters together can form a new letter during suffixation. For example
 (koḷ) ‘take’ + (ṭ) ‘past tense marker’+ (aan) ‘third person,

masculine, singular and rational’ = (koṇṭaan) ‘he took’, where
 (ḷ) becomes (ṇ).

– A new morpheme, called a euphonic morpheme, can be introduced in
addition to the required morphemes. For instance in the word
(ceythanam) ‘(we) did’, (cey) ‘do’ + (t) ‘past tense marker’ + (
an (euphonic marker)) + (am) (first person, neuter, plural and rational).

– Irregular verbs in Tamil may undergo a complete change in their surface
form when they are conjugated. (taa) ‘give’ takes different forms such
as (taa/taru/ta). For instance, in past tense forms, the lemma

1 3

ThamizhiMorph: A morphological parser for the Tamil language

becomes (ta), and in present and future tense forms it becomes (taru).
The imperative form is (taa). The variations in forms yield: (tan-
taan) ‘gave(he)’, (taruvaan) ‘(he) will give’, and (taa) ‘give’.

– A consonantal glide may be introduced when there are two consecutive vow-
els. Tamil has two such consonantal glides: (y) and (v).

6.5 Morphological guesser

We have also implemented a guesser to analyse nouns, verbs, adjectives, and
adverbs that are not part of our lexicons. We identified common suffixes along
with corresponding analyse to develop this guesser. If the guesser does not match
any suffixes which we have listed, then it will recognise the word as a noun
with a nominative case. This is a useful component to tackle out-of-vocabulary
problems.

7 Evaluation

There are currently no benchmark data sets available for Tamil to evaluate language
processing applications, including morphological analysers. Researchers tend to use
their own data sets to evaluate and report results. In Sarveswaran et al. (2019) we
reported an evaluation that we did using a POS tagged corpus found online. In that
evaluation, we checked whether a given word in the corpus could be analysed using
our analyser. This evaluation was useful for us to check the overall coverage. In this
paper, we report on two experiments. In the first instance, we have taken text from
an elementary Tamil text book that is part of the Sri Lankan school curriculum. This
contains 612 unique words, and comprises words with a good sample coverage of
different types of POS, compound words, and foreign words. We have conducted a
comparative evaluation of our ThamizhiMorph and the IIIT’s Tamil shallow parser
with respect to this data set. Secondly, we have used a Tamil text from UD v2.5 to
do a detailed error analysis.

7.1 Comparing ThamizhiMorph and IIIT Parser

We were not successful in running IIIT’s shallow parser locally, and the version
which has been re-implemented using Python does not have a morphological analy-
sis part. Therefore, we relied on the available web interface.14 Since it is a shallow
parser, input has to at least be a phrase. Further, we also found that the analyser
does not provide a morphological analysis based on the context of a given word. It
just generates all analyses in Shakti Standard Format (SSF) annotation (Bharati et al.
2007). For instance, Fig. 2 shows the analysis for - (thambi vanthan)

14 http:// ltrc. iiit. ac. in/ analy zer/ tamil.

http://ltrc.iiit.ac.in/analyzer/tamil

 K. Sarveswaran et al.

1 3

- brother.nom come.past.3rsm - ‘younger brother came’. As shown in Fig. 2, the first
word is always missing in the analysis produced by the IIIT parser for some reason.
Figure 3 shows the analysis for the same clause from ThamizhiMorph. As shown
in Fig. 3, in addition to the regular analysis of ‘brother’, the morphological analyser
also provides a guessed version via the guesser integrated for nouns.

We passed the 612 words taken from the elementary school Tamil text to IIIT
shallow parser, using our script, and to ThamizhiMorph. The results are shown in
Table 6. As shown, out of 612 words, IIIT parser analysed 585 words and Thamizhi-
Morph analysed 571 words. Table 6 also shows how many of those analyses are cor-
rect analyses, and what percentage of lemmas are correctly predicted. While Tham-
izhiMorph gives always correct analysis, it failed to guess lemma associated with 12
words. This is due to the complex nature of the Tamil writing system. However, this
can be corrected by adding more alternation rules.

An error analysis showed that the IIIT parser produces incorrect morphs for some
verbs. For instance, in the verb (teriyum) ‘will know’, the future tense is
marked as (pp), though it is null in this case. Another source of errors is the
dropping of some characters or the introduction of new characters. Examples include
the roots (koṭuppeerkal) ‘(you) will give’ and
(aaccariyappaṭṭatu) ‘(it) was surprised’ become (koṭupeer) and

 (aaccariyampaṭṭaa) instead of (koḍu) ‘give’ and
 (aaccariyappaḍu) ‘be surprised’ respectively. The analyses that are

produced are meaningless. In addition, the analyser always provides one analysis for
a given word, irrespective of the context. That is, it always resolves potential ambi-
guity in only one way. We conclude that even though this tool is available and acces-
sible through the internet, it does not show sufficiently good performance.

The errors found with ThamizhiMorph are instances either of out-of-vocabulary
items or of derivational formations that have not as yet been included in the FSM,
yielding items that are unknown to the analyser. The out-of-vocabulary errors are
easily remedied, as we can simply add the missing vocabulary to our lexicon table.
The derivational formations are more complex and we have begun adding deriva-
tions on a case by case basis. We do note that the initial focus of our work is the
development of a morphological analyser for Tamil inflectional, not derivational
morphology. As such it is not surprising that ThamizhiMorph cannot as yet analyse
instances of derivational morphology. However, we do have the flexibility to now
proceed with necessary corrections and extensions.

7.2 Evaluating ThamizhiMorph using UD Tamil Treebank

In the second experiment, we used the text in the available Tamil Universal Depend-
ency Treebank v2.5 to evaluate ThamizhiMorph. The treebank, in total, consists of
8,635 tokens from 600 sentences. There are 3,567 unique words prior to tokenisa-
tion, and this is increased to 4,055 tokens after multi-word tokenisation. Because
there are inaccuracies in the multi-word annotations, and the UD annotations, we
decided to work with the list before tokenisation, i.e. with the 3,567 unique words.

1 3

ThamizhiMorph: A morphological parser for the Tamil language

Of these, ThamizhiMorph successfully analysed 3,023 words but failed to analyse
544 words, that is 84.7% of the words have been successfully analysed. The follow-
ing are the reasons for the errors:

– 240 words were not present in our lexicon. Most of these are due to the dif-
ferences in Indian Tamil and Sri Lankan Tamil. For instance,
(ṭaasmaak), (DGP) etc. Some of these are acronyms. Further, our lexicons
did not include some proper nouns.

– there are several spelling mistakes in the treebank. In some cases the same
word has been written in multiple wrong forms. For instance,
(aamataabaat) ‘Ahmedabad’ is wrong.
(camyuunisaṭ/ camyuunisṭ) ‘communist’ are two forms, where one is correct and
other one is wrong.

– Noun+Verb compound constructions were not analysed correctly in our tool. An
example is: (kavalappaṭaateerkal) ‘(you) do not worry’.
We have now added this to our lexicon in terms of a complex root, adding the
root N+V as a lexical item.

– analyser and guesser did not parse some Noun+Noun compound constructions
correctly. An example is (iraṇṭarai) ‘two and a half’. These have
now been added as items to our lexicon so that these constructions can be ana-
lysed.

In working with the UD Tamil treebank, we identified numerous annotation prob-
lems with the treebank. One necessary adjustment is the need of extending the

Fig. 2 A sample output from the IIIT shallow parser

Fig. 3 A sample output from ThamizhiMorph

 K. Sarveswaran et al.

1 3

current UD morphological labels to reflect all of the actual morphological informa-
tion we have in Tamil. This can be done via the language-specific features proposed
in the UD guidelines themselves.15 For example, we found that the current version
of the UD morphological feature inventory does not have labels to mark rationality,
euphonic markers, and Sandhi effects.

We have also developed a tool to populate the ThamizhiMorph morphological
annotations to the CoNLL-U format16 which is used in UD treebanks annotation
as well. We believe that our extension could be a useful resource for the creators of
Tamil UD treebank.

8 Conclusion

In this paper, we described the design and performance of a Tamil Morphological
Analyser cum Generator, ThamizhiMorph. Tamil continues to be a low-resource lan-
guage in terms of the processing tools/applications available for others to use and
extend. We have contributed to ameliorating this situation by developing a set of
resources, including lexicons of verbs and nouns, Meta-Morph rules, and a list of
1M words which are generated from ThamizhiMorph that are all available for oth-
ers to use and extend.17 ,18 The FST models published are programming language
independent resources that can further be used for language processing applications.
We are currently mainly using them in the context of Tamil grammar development,
but we are seeking to also integrate them into the development of machine transla-
tion applications (Ranathunga et al. 2018) and spell checkers (Uthayamoorthy et al.
2019). Since we have also made our rules and lexicons openly available, our work
can be easily extended to other similar languages. The Meta-Morph Rules which we
have published are simple to modify and to extend and can be used as a basis for the
development of a morphological analyser for other Dravidian languages.

Table 6 ThamizhiMorph vs IIIT
Tamil Shallow parser using a
corpus of 612 words

IIIT parser (%) Thamizhi-
Morph
(%)

Analysis found 95.6 93.3
Right analysis found (out of

successful analyses)
96.2 100

Right Lemma predic-
tion (out of successful
analyses)

94.4 97.9

17 http:// nlp- tools. uom. lk/ thami zhi- morph/.
18 https:// github. com/ sarves/ thami zhi- morph.

15 https:// unive rsald epend encies. org/ docs/ ext- feat- index. html.
16 https:// unive rsald epend encies. org/ docs/ format. html.

http://nlp-tools.uom.lk/thamizhi-morph/
https://github.com/sarves/thamizhi-morph
https://universaldependencies.org/docs/ext-feat-index.html
https://universaldependencies.org/docs/format.html

1 3

ThamizhiMorph: A morphological parser for the Tamil language

Although no benchmark resources exist for an evaluation of NLP applications
developed for Tamil, we designed two evaluation experiments to test the coverage
and accuracy of ThamizhiMorph. The results are very good in that identified errors
are either due to out-of-vocabulary items or derivational formations that have not as
yet been implemented.

In future work, since we can generate a large amount of morphologically parsed
data using ThamizhiMorph, we can perform several experiments. In particular we
will experiment how morphological embedding will perform compared to Byte-
Pair Encoding (BPE) in the context of Neural Machine Translation (NMT) specially
in the context of Tamil translation. We will also explore the possibilities of using
the current rule-based inflectional morphological analyser to develop a deep learn-
ing based analyser for both inflectional and derivational morphology. Further, the
current analyser gives us all possible analyses for a given surface form. As a next
step, we will also develop a contextual morphological analyser by merging Tham-
izhiMorph and a Part of Speech tagger. In addition, we intend to explore whether
the Meta-Morph Rule interface can be further generalised and used for other South
Asian Languages. We also create a benchmark data set with quality data as part of
our future work. We have furthermore identified the need for more in-depth linguis-
tic studies of verbal constructions, especially complex verbal predication so as to
identify and implement the right approach in ThamizhiMorph.

 K. Sarveswaran et al.

1 3

Appendix A: A sample meta‑morph rules for finite verbs

Appendix B: Screen capture of an analysis from ThamizhiMorph

ThamizhiMorph will provide all possible analyses for a given word. For instance,
 (ceyyum) can be analysed as do.adjpart or do.fut.3sgn or do.fut.3pln. As

shown in Fig. 4, ThamizhiMorph will show all these possible analyses.

1 3

ThamizhiMorph: A morphological parser for the Tamil language

Acknowledgements We would like to thank Lauri Karttunen from Stanford University, Rajendran
Sankaravelayuthan from Amrita University, and Mans Hulden from the University of Colorado Boulder
for their thoughts and technical support in making this work possible. We would also like express our
appreciation to Maris Camilleri from the University of Essex for her support in language editing, and two
anonymous reviewers for their valuable comments and inputs to improve this menu script. This research
was supported by the Accelerating Higher Education Expansion and Development (AHEAD) Operation
of the Ministry of Higher Education, Sri Lanka funded by the World Bank, and also supported by the
DAAD (German Academic Exchange Office).

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

Fig. 4 ThamizhiMorph: Screen
capture of an analysis

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 K. Sarveswaran et al.

1 3

References

Agesthialingom S (1971) A note on Tamil verbs. Anthropol Linguist 13:21–125
Allauzen C, Riley M, Schalkwyk J, Skut W, Mohri M (2007) OpenFst: a general and efficient weighted

finite-state transducer library. International conference on implementation and application of autom-
ata. Springer, Berlin, pp 11–23

Annamalai E, Dhamotharan A, Ramakrishnan A (2014) Akarātiyiṉ putiya patippil taṟkālat tamiḻ ilakkaṇa
viḷakkam (in Tamil), pages xxxi-xlvii. Crea-A Publishers, India

Antony PJ, Soman KP (2012) Computational morphology and natural language parsing for Indian lan-
guages: a literature survey. Int J Sci Eng Res 3:1

Arden AH(1962) A progressive grammar of common Tamil. Christian Literature Society, Chennai
Avinesh PVS, Karthik G (2007) Part-of-speech tagging and chunking using conditional random fields

and transformation based learning. Shallow Parsing South Asian Lang 21:21–24
Balaram P (2011) Computational analysis of Nepali morphology: a model for natural language process-

ing. Ph.D. thesis, Faculty of Humanities and Social Sciences of Tribhuvan University, Nepal
Baskaran S, Bali K, Choudhury M, Bhattacharya T, Bhattacharyya P, Jha GN, Rajendran S, Saravanan K,

Sobha L, Subbarao KV (2008) A common parts-of-speech tagset framework for Indian languages.
In: Proceedings of the sixth international language resources and evaluation. LREC, Morocco

Beesley KR, Karttunen L (2003) Finite-state morphology: xerox tools and techniques. CSLI, Stanford
Bharati A, Sangal R, Sharma DM (2007) SSF: Shakti standard format guide. Language Technologies

Research Centre, International Institute of Information Technology, Hyderabad, India, pp 1–25.
http:// sampa rk. org. in/ sampa rk/ web/ ssf- guide- 4oct07. pdf

Bhattacharyya Pushpak, Murthy Hema, Ranathunga Surangika, Munasinghe Ranjiva (2019) Indic lan-
guage computing. Commun ACM 62(11):70–75

Boologarambai A (1986) A study of auxiliaries in the old and the middle Tamil. Ph.D. thesis, Centre of
Advanced study in linguistics, Annamalai University, India

Butt M, King TH, Nino M-E, Segond F (1999) A grammar writer’s cookbook. CSLI, Stanford
Bögel T, Butt M, Hautli A, Sulger S (2007) Developing a finite-state morphological analyzer for Urdu

and Hindi. In: Hanneforth T, Würzner K-M (eds) Finite-state methods and natural language process-
ing. Potsdam University Press, Potsdam, pp 86–96 (Revised Papers of the Sixth International Work-
shop on Finite-State Methods and Natural Language Processing)

Caldwell R (1875) A comparative grammar of the Dravidian or South-Indian family of languages. Trüb-
ner, Stuttgart

Christo K, John S-G, Roger Q, David Y (2016) Very-large Scale Parsing and Normalization of Wiktion-
ary Morphological Paradigms. In: Chair) NCC, Choukri K, Declerck T, Goggi S, Grobelnik M,
Maegaard B, Mariani J, Mazo H, Moreno A, Odijk J, Piperidis S (eds) Proceedings of the tenth
international conference on language resources and evaluation (LREC 2016). European Language
Resources Association (ELRA), Paris, France. ISBN 978-2-9517408-9-1

Crouch R, Dalrymple M, Kaplan RM, King TH, Maxwell III JT, Newman P (2017) XLE documentation.
Palo Alto Research Center, Palo Alto

Gary M (2018) Deep learning: a critical appraisal. arXiv preprint arXiv: 1801. 00631
George LH (2000) Statement on the status of Tamil as a classical language
Graul K (1855) Outline of Tamil grammar. Leipzig University, Leipzig
Irākavaiyaṅkār M (1958) ’Viṉaittiripu viḷakkam’ (conjugation of Tamil verbs) (in Tamil). Eighty year

anniversary publication
Kimmo K (1983) Two-level morphology. Ph.D. thesis, University of Helsinki
Krister L, Miikka S, Tommi P (2009) HFST tools for morphology-an efficient open-source package for

construction of morphological analyzers. International workshop on systems and frameworks for
computational morphology. Springer, Berlin, pp 28–47

Kumar M, Anand V. Dhanalakshmi, Rajendran S (2010a) A novel data driven algorithm for Tamil mor-
phological generator. Int J Comput Appl 6:52–56

Kumar M, Anand V. Dhanalakshmi, Soman KP, Rajendran S (2010b) A sequence labeling approach to
morphological analyzer for Tamil language. Int J Comput Sci Eng 2(06):1944–1995

Lauri K, Kenneth RB (2001) A short history of two-level morphology. ESSLLI-2001 Special Event
titled—Twenty Years of Finite-State Morphology. http:// www. helsi nki. fi/ esslli/

Lehmann T (1993) A grammar of modern Tamil. Pondicherry Institute of Linguistics and Culture,
Pondicherry

http://sampark.org.in/sampark/web/ssf-guide-4oct07.pdf
http://arxiv.org/abs/1801.00631
http://www.helsinki.fi/esslli/

1 3

ThamizhiMorph: A morphological parser for the Tamil language

Lehmann T (1998) Old Tamil. In: Stanford BS (ed) The Dravidian languages. Routledge, London, pp
75–99

Lisker L (1951) Tamil verb classification. J Am Orient Soc 71(2):111–114
Mans H (2009) Foma: a finite-state compiler and library. In: Proceedings of the 12th conference of the

European chapter of the association for computational linguistics: demonstrations session. Associa-
tion for Computational Linguistics, pp 29–32

Melanie S (2012) A rule-based morphological analyzer for Murrinh-Patha. In: Proceedings of the 8th
international conference on language resources and evaluation (LREC 2012). European Language
Resources Association (ELRA), Istanbul, Turkey, pp 751–758

Menaka S, Sundar RV, Lalitha DS (2010) Morphological generator for Tamil. In: Proceedings of the
knowledge sharing event on morphological analysers and generators (March 22–23, 2010) p 82–96

Miriam B, Holloway KT (2002) Urdu and the Parallel Grammar project. In: Proceedings of the 3rd work-
shop on Asian language resources and international standardization, COLING. Association for
Computational Linguistics, pp 39–45

Mokanarangan T, Pranavan T, Megala U, Nilusija N, Gihan D, Sanath J, Surangika R (2016) Tamil mor-
phological analyzer using support vector machines. International conference on applications of nat-
ural language to information systems. Springer, Berlin, pp 15–23

Nuhman MA (1999) Basic Tamil Grammar (In Tamil). Readers’ Association, Sri Lanka
Paramasivam K (2011) Contemporary Tamil Grammar. Adaiyaalam, Trichy
Parameshwari K (2011) An implementation of APERTIUM morphological analyzer and generator for

Tamil. Parsing Indian Lang 41
Peyman P, Qun L, Andy W (2018) Improving character-based decoding using target-side morphological

information for neural machine translation. arXiv preprint arXiv: 1804. 06506
Philipp K, Hieu H, Alexandra B, Chris C-B, Marcello F, Nicola VB, Brooke C, Wade S, Christine M,

Richard Z et al (2007) Moses: Open source toolkit for statistical machine translation. In: Proceed-
ings of the 45th annual meeting of the association for computational linguistics companion volume
proceedings of the demo and poster sessions. pp 177–180

Pope GU (1979) A handbook of the Tamil language. Asian Educational Services, New Delhi
Premjith B, Soman KP, Anand Kumar M (2018) A deep learning approach for Malayalam morphological

analysis at character level. Proc Comput Sci 132:47–54
Rahman Mutee U (2016) Developing a Sindhi computational resource grammar in lexical functional

grammar framework. Ph.D. thesis, Faculty of Engineering Science and Technology, Isra University,
Hyderabad

Rajaram S (1986) English–Tamil pedagogical dictionary. Tamil University, Thanjavur
Rajendran S (2009) Preliminaries to the preparation of a spell and grammar checker for Tamil. https://

www. acade mia. edu/ 12504 639. Accessed on 3 Feb 2018
Ramakrishnan S (ed) (2014) Cre-A: dictionary of contemporary Tamil. Cre-A, Chennai
Ranathunga S, Farhath F, Thayasivam U, Jayasena S, Dias G (2018) Si-Ta: machine tanslation of Sinhala

and Tamil official documents. In: 2018 National Information Technology Conference (NITC), pp
1–6

Sarveswaran K, Butt M (2019) Computational challenges with Tamil complex predicates. In: Butt M,
King TH, Toivonen I (eds) Proceedings of the LFG19 conference, Australian National University.
CSLI, Stanford, pp 272–292

Sarveswaran K, Mahesan S (2014) Hierarchical tag-set for rule-based processing of Tamil language. Int J
Multidiscip Stud 1(2):67–74

Sarveswaran K, Gihan D, Miriam B (2019) Using meta-morph rules to develop morphological analysers:
a case study concerning Tamil. In: Proceedings of the 14th international conference on finite-state
methods and natural language processing. Association for Computational Linguistics, Dresden, Ger-
many, pp 76–86

Schiffman HF (2008) The Ausbau issue in the Dravidian languages: the case of Tamil and the problem of
purism. Int J Soc Lang 2008(191):45–63

Senavaraiyar (1938) Tholkappiyam–Eluththathikaram. Thirumahal, Chunnakam
Shanmugadas A (1982) Aspects of Tamil Language and Grammar (in Tamil). Muttamiḻ veḷiyīṭṭuk

kalakam, Sri Lanka
Sithiraputhiran H (2004) Viṉaittiripu viḷakkamum moḻiyiyal kōṭpāṭum. International Institute of Tamil

Studies

http://arxiv.org/abs/1804.06506
https://www.academia.edu/12504639
https://www.academia.edu/12504639

 K. Sarveswaran et al.

1 3

Sivaneasharajah L, Weerasinghe A R, Herath DL (2014) Morphological analyzer and generator for Tamil
language. In: International conference on advances in ICT for emerging regions (ICTer), 2014.
IEEE, pp 190–196

Thesikar SN (1957) Nannool Viruthiyurai. Vithiyanubalana Press, Chennai
Uthayamoorthy K, Kanthasamy K, Senthaalan T, Sarveswaran K, Dias G (2019) DDSpell: a data driven

spell checker and suggestion generator for the Tamil language. In: 2019 19th international confer-
ence on advances in ICT for emerging regions (ICTer), pp 1–6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	ThamizhiMorph: A morphological parser for the Tamil language
	Abstract
	1 Introduction
	2 Background
	2.1 The Tamil language
	2.2 Finite-State morphology
	2.3 Foma

	3 Tamil morphology
	3.1 Part of speech
	3.2 Verbal morphology
	3.2.1 Verbal paradigm
	3.2.2 Verbal conjugational forms

	3.3 Nominal morphology
	3.3.1 Nominal paradigm
	3.3.2 Nominal conjugational forms

	4 Related work
	4.1 Approaches for developing morphological analysers
	4.2 Morphological analysers for South Asian languages
	4.3 Tamil morphological analysers

	5 Design choices
	5.1 Technology stack
	5.2 Scope of annotations
	5.3 Morpheme labels

	6 ThamizhiMorph
	6.1 Pre-processing
	6.2 Compilation of Lexicons
	6.2.1 A lexicon of verbs
	6.2.2 A lexicon of nouns

	6.3 Meta-Morph rules
	6.4 Orthographical rules
	6.5 Morphological guesser

	7 Evaluation
	7.1 Comparing ThamizhiMorph and IIIT Parser
	7.2 Evaluating ThamizhiMorph using UD Tamil Treebank

	8 Conclusion
	Acknowledgements
	References

