BATCH ADSORPTION STUDY FOR THE REMOVAL OF TEXTILE DYES FROM AQUEOUS SOLUTIONS USING Pandanus Amaryllifolius (RAMPE) LEAVES.

Sasiri Lakshitha Gamage Haththotuwa

(169158R)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

April 2022

BATCH ADSORPTION STUDY FOR THE REMOVAL OF TEXTILE DYES FROM AQUEOUS SOLUTIONS USING Pandanus Amaryllifolius (RAMPE) LEAVES.

Sasiri Lakshitha Gamage Haththotuwa

(169158R)

Thesis Submitted in Partial Fulfilment of The Requirements for The Degree Master of Science in Environmental Engineering and Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

April 2022

DECLARATION

"I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

The above candidate has carried out research for the Masters under my supervision.

Name of the supervisor : Prof. B. M. W. P. K. Amarasinghe

Signature of the supervisor :

Date:

DEDICATION

This thesis is dedicated to my loving parents, who were the strength to carry on this research experiment from beginning to end by supporting me in every way possible.

ACKNOWLEDGEMENTS

I like to extend my heartfelt gratitude to my supervisor Prof. B. M. W. P. K. Amarasinghe, Senior professor Department of Chemical and Process Engineering, for allowing me to complete the research. Madam, your guide, and encouragement helped me to achieve this success. Your support was immense, and it was fortunate to designate you as my supervisor.

I express my heartiest gratitude to my course coordinator Prof. Jagath Manatunge for encouraging me to complete the research component by obtaining time extensions due to Covid 19 pandemic situation. Sir' Your support is immense and if not, I'll not able to complete this research. I would thank Prof. M. Jayaweera and Prof. B. Gunawardana for directing me to choose the proper research area with practical feasibility.

I would thank Prof. S. Walpalage, Head of the Department of Chemical and Process Engineering for the permission to access laboratories during the Covid pandemic movement restriction situation.

I wish to express my sincere thanks to Mr H. P. Mahendra Technical officer and Mr V. Somarathna Lab attendant of Transport Phenomena Laboratory, Ms D. Rodrigo Technical officer of Environmental Engineering Laboratory, Mr J. D. Wijegunarathna Technical officer of the Instrument Centre and Ms W. S. M. Silva Technical officer of Latex Technology Laboratory of Department of Chemical and Process Engineering, Mr M. Jayaweera Technical officer Analytical laboratory, Mr P. Gunawardana Technical officer Polymer laboratory of Department of Material Science and Engineering University of Moratuwa for their invaluable support to experiments.

I appreciate Mr K. Keerthirathna, Assistant General Manager Manufacturing, and Mr Palitha Indrajith, Factory Manager of Royal Ceramics Lanka PLC for supporting my research experiment by arranging my work accordingly. I would be grateful to my parents and wife for giving their unconditional love and support to fulfil my aims.

Abstract

With the development of the manufacturing industry in recent days, there are obvious advantages and some disadvantages to human beings. One of the leading disadvantages is environmental pollution. Water pollution continues due to the continual uncontrolled largescale release of dyes to water bodies mainly from the textile industry effluents. These dyes can threaten directly and indirectly human, plant and animal life.

This research is focused on removal of selected textile dyes methylene blue, crystal violet, congo red, reactive red and reactive black B via adsorption. The adsorbent was dried leaf powder of flavouring plant *Pandanus amaryllifolius*, widely famous as *'rampe'*. Rampe leaves powder was chosen as the adsorbent due to its wide availability, simplicity in preparation and mainly due to its ability to remove poisonous substances.

Batch adsorption experiments were carried out at room temperature to investigate the adsorption capacity, kinetics of adsorption and equilibrium data. The analytical instrument UV-Visible Spectrophotometer was used to determine the dye concentrations.

Batch test results showed that the adsorbent removes Methylene blue, Crystal violet, Congo red up to 95%, 90%, and 81%. However, reactive red and reactive black B dyes did not show significant removal. Kinetic studies showed that the adsorption followed the pseudo-second order kinetic model. According to the intraparticle diffusion model, adsorption happened with two steps for all three dyes. The equilibrium data comply with Langmuir isotherm with maximum adsorption capacities of 38.46, and 20.33 mg g⁻¹ for methylene blue and crystal violet respectively. Congo red complied with Temkin isotherm. FTIR and SEM analysis of the adsorbent before and after adsorption revealed MB, CV, and CR were adsorbed to PALP with chemisorption by creating hydrogen bonds and significant amount of the mass transfer were happened through papillose cells on the leave surface.

Keywords: Batch adsorption; Pandanus amaryllifolius leaves; Textile dye

TABLE OF CONTENT

Declaration	i
Dedication	ii
Acknowledgements	iii
Abstract	v
Table of Content	vi
List of Figures	X
List of Tables	xii
List of Abbreviations	xiv
List of Appendices	xvi
1. Introduction	1
2. Literature Review	3
2.1. Sources of Dyes in Past	3
2.2. Natural Dyes	3
2.3. Dye Classification	4
2.4. Impacts of Textile Dye in Wastewater	6
2.4.1. Environmental impacts	6
2.4.2. Health impacts	8
2.5. Physical Remediation Techniques for Textile Dye in Wastewater	9
2.5.1. Adsorption	9
2.5.2. Filtration	10
2.5.3. Irradiation	10
2.6. Chemical Remediation Techniques for Textile Dye in Wastewater	10
2.6.1. Oxidation	10
2.6.2. Coagulation and precipitation	11
2.7. Biological Remediation Techniques for Textile Dye in Wastewater	12
2.7.1. Phytoremediation	12

2.7.2.	Bioremediation by microorganisms	14
2.7.3.	Bioremediation by enzymes	16
2.8. Ad	sorption Isotherm Studies	16
2.8.1.	Langmuir isotherm	17
2.8.2.	Freundlich isotherm	17
2.8.3.	Temkin isotherm	18
2.9. Ad	sorption Kinetic Studies	18
2.9.1.	Lagergren's pseudo-first order equation	18
2.9.2.	Pseudo-second order equation	19
2.9.3.	Intra-particle diffusion studies	19
2.10. F	Further Studies for Evaluate behaviour of Adsorption	20
2.11. 0	Congo Red Dye	20
2.11.1.	Removal of congo red via adsorption	21
2.11.2.	Removal of congo red via biosorption	22
2.11.3.	Removal of congo red by other methods	23
2.12. F	Reactive Black B Dye	23
2.12.1.	Removal of reactive black b via adsorption	25
2.12.2.	Removal of reactive black b via biosorption	26
2.12.3.	Removal of reactive black b by other methods	27
2.13. N	Aethylene Blue Dye	28
2.13.1.	Removal of methylene blue via adsorption	29
2.13.2.	Removal of methylene blue via biosorption	30
2.13.3.	Removal of methylene blue by other methods	31
2.14. F	Reactive Red Dye	31
2.14.1.	Removal of reactive red via adsorption	32
2.14.2.	Removal of reactive red via biosorption	33

2.14.3. Removal of reactive red by other methods	33
2.15. Crystal Violet Dye	34
2.15.1. Removal of crystal violet via adsorption	35
2.15.2. Removal of crystal violet via biosorption	36
2.15.3. Removal of crystal violet by other methods	37
2.16. Comparison of Different Removal Methods for Different Dye	es 37
3. Material and Methods	38
3.1. Preparation of Biosorbent (Adsorbent)	38
3.2. Preparation of Dye Solutions (Adsorbate)	40
3.3. Analysing Using UV Visible Spectrophotometer	41
3.4. Calibration Curves	42
3.5. Batch Adsorption Experiment	43
3.6. Collecting Samples	44
3.7. FTIR Spectroscopy and SEM Imaging	45
4. Results and Discussion	46
4.1. Adsorbent Characterization	46
4.2. Absorbance Spectrum Analysis	46
4.3. Calibration Curves	47
4.4. Selecting of Best Adsorbing Dye for Further Studies	48
4.5. Effect of Dye Concentration for Adsorption onto PALP	51
4.6. Dye Adsorption Per Unit Weight of Adsorbent	53
4.7. Adsorption Isotherm Model Studies	55
4.7.1. Langmuir adsorption isotherm model fit	55
4.7.2. Freundlich adsorption isotherm model fit	56
4.7.3. Temkin adsorption isotherm model fit	57
4.7.4. Isotherm model fit data comparison	57

4.8.Adsorption Kinetics Studies58			
4.8.1. Pseudo-first order kinetic model fit 58			
4.8.2. Pseudo-second order kinetic model fit 60			
4.8.3.Kinetic parameter comparison61			
4.8.4. Intra-particle diffusion study 62			
4.9. FTIR Spectroscopy of PALP 65			
4.10. SEM Analysis 68			
4.10.1. Images of raw PALP 68			
4.10.2. Images of PALP after adsorption of dye 70			
5. Conclusions and Recommendations 72			
References 73			
Appendix A: absorbance spectrum values for MB, CV, CR, RR, and RBB dye			
solutions 97			
Appendix B: Calibration curve data106			
Appendix C: Absorbance values readings given by UV-VIS Spectrophotometer for			
all five dyes 107			
Appendix D: Concentration values obtained by conversion of absorbance value			
readings using calibration curves 108			

LIST OF FIGURES

Figure	Description	Page
Figure 2.1	Molecular structure of Congo Red	20
Figure 2.2	Molecular structure of Reactive Black B	24
Figure 2.3	Molecular structure of Methylene Blue	28
Figure 2.4	Molecular structure of Reactive Red	31
Figure 2.5	Molecular structure of Crystal Violet	35
Figure 3.1	Heating leaves in the oven	38
Figure 3.2	Sieve Shaker	39
Figure 3.3	Drying PALP by laboratory drier	40
Figure 3.4	UV Visible Spectrophotometer	41
Figure 3.5	Concentration vs. absorbance linear fit of selected dyes	42
Figure 3.6	Variable speed mechanical stirrer	43
Figure 4.1	Absorbance spectra of selected dyes	46
Figure 4.2	are 4.2 Percentage removed of dyes at the equilibrium after 300 min with 5.0	
	of PALP for an initial dye concentration of MB, CV, CR and R	R 0.03 g
	L^{-1} and RBB 0.025 g L^{-1}	48
Figure 4.3	(A) - Reactive Red, (B) - Reactive black B	49
Figure 4.4	4 Fraction of remaining dye in the solution as a function of time at 5.0 g	
	PALP dose, 315 RPM agitator speed, 7.0 pH, 27 °C with initia	1
	concentrations for MB, CV, CR, RR, and RBB 0.03, 0.03, 0.03	3, 0.03,
	and 0.025 g L ⁻¹ respectively	50
Figure 4.5	Percentage removal of MB for different initial concentrations a	ıt 5.0 g
	PALP dose, 315 RPM agitator speed, 7.0 pH and 27 ^{0}C	51
Figure 4.6	Percentage removal of CV for different initial concentrations a	t 5.0 g
	PALP dose, 315 RPM agitator speed, 7.0 pH and 27 ^{0}C	52
Figure 4.7	Percentage removal of CR for different initial concentrations a	ıt 5.0 g
	PALP dose, 315 RPM agitator speed, 7.0 pH and 27 ^{0}C	52
Figure 4.8	Different initial concentrations of MB adsorbed per 1.0 g of PA	ALP, 315
	RPM agitator speed, 7.0 pH and 27 ⁰ C	53

Figure 4.9	Different initial concentrations of CV adsorbed per 1.0 g of PALP, 315	
	RPM agitator speed, 7.0 pH and 27 0 C	54
Figure 4.10	Different initial concentrations of CR adsorbed per 1.0 g of PALF	9, 315
	RPM agitator speed, 7.0 pH and 27 ^{0}C	54
Figure 4.11	Langmuir isotherm model fit	56
Figure 4.12	Freundlich isotherm model fit	56
Figure 4.13	Temkin isotherm model fit	57
Figure 4.14	Pseudo-first order model fit for MB	58
Figure 4.15	Pseudo-first order model fit for CV	59
Figure 4.16	Pseudo-first order model fit for CR	59
Figure 4.17	Pseudo-second order model fit for MB	60
Figure 4.18	Pseudo-second order model fit for CV	60
Figure 4.19	Pseudo-second order model fit for CR	61
Figure 4.20	Morris and weber diagram for intra-particle diffusion of MB	63
Figure 4.21	Morris and weber diagram for intra-particle diffusion of CV	63
Figure 4.22	Morris and weber diagram for intra-particle diffusion of CR	64
Figure 4.23	FTIR spectrum of PALP before and after adsorption of MB	66
Figure 4.24	FTIR spectrum of PALP before and after adsorption of CV	66
Figure 4.25	FTIR spectrum of PALP before and after adsorption of CR	67
Figure 4.26	SEM image of raw PALP with 2500 magnification	69
Figure 4.27 X: SEM image of raw PALP with 500 magnification, Y: SEM in		age of
	raw PALP with 1000 magnification	69
Figure 4.28	a: SEM image of raw PALP with 2500 magnification, b: SEM im	age of
	MB adsorbed PALP with 2500 magnification, c: SEM image of C	ĽV
	adsorbed PALP with 2500 magnification, d: SEM image of CR	
	adsorbed PALP with 2500 magnification	70

LIST OF TABLES

Table	Description P	age
Table 2.1	Hydroponic plants for phytoremediation	12
Table 2.2	Root culture plants for phytoremediation	13
Table 2.3	Callus and cell suspension cultures for phytoremediation	13
Table 2.4	Plant consortia for phytoremediation	13
Table 2.5	Engineered bacteria to remove dye pollutants	14
Table 2.6	Biodegradation by bioaugmentation of activated sludge	15
Table 2.7	Biodegradation by biostimulation	15
Table 2.8	Co-culture bacteria for biodegradation	15
Table 2.9	Bacteria works in saline water	15
Table 2.10	Sorption fungi for degrading pollutants	16
Table 2.11	Congo red removal by adsorbents	21
Table 2.12	Congo red removal by biosorbents	22
Table 2.13	Reactive black B removal by adsorbents	25
Table 2.14	Reactive black B removal by biosorbent	26
Table 2.15	Methylene blue removal by adsorbents	29
Table 2.16	Methylene blue removal by biosorbents	30
Table 2.17	Reactive red removal by adsorbents	32
Table 2.18	Reactive red removal by biosorbents	33
Table 2.19	Crystal violet removal by adsorbents	35
Table 2.20	Crystal violet removal by biosorbents	36
Table 3.1	Experimental setup details	43
Table 3.2	Nomenclature for samples	44
Table 4.1	Maximum absorbance values of selected dyes	47
Table 4.2	Calibration curves data of selected dyes	47
Table 4.3	Percentage removed of dyes at the equilibrium	48
Table 4.4	Comparison of dye molecule size, weight, and nature	49
Table 4.5	Fraction of remaining dye in the solution as a function of time	50
Table 4.6	qe and ce of MB, CV, and CR for different initial dye concentrations	s 55

Table 4.7	Comparison for Langmuir, Freundlich, and Temkin isotherms fitting	57
Table 4.8	Kinetic parameters for PSO and PFO obtained by adsorption of MB,	
	CV, and CR	61
Table 4.9	qe experimental vs calculated	62
Table 4.10	Morris and weber model fit parameters of Intra-particle diffusion	64
Table 4.11	Functional groups related to increasing intensity after adsorbing of M	1B,
	CV and CR obtained by FTIR spectroscopy	67

LIST OF ABBREVIATIONS

Abbreviation	Description
AC	Activated Carbon
AFO	Avrami factionary Order
ATR	Attenuated Total Reflection
BET	Brunauer Emmett Teller
BOD	Biochemical Oxygen Demand
CL ₅₀	Limited Concentration
COD	Chemical Oxygen Demand
CR	Congo Red
CV	Crystal Violet
EDTR	Endothermic Reaction
ELM	Elovich Model
EXTR	Exothermic Reaction
FIM	Freundlich Isotherm Model
FSIM	Fritz Schlunder Isotherm Model
FTIR	Fourier Transform Infrared
HIM	Hill Isotherm Model
IMR	Impregnation Ratio
IR	Infra-Red
KCIM	Koble-Corrigan Isotherm Model
LC ₅₀	Lethal Concentration for kill 50% of population
LIM	Langmuir Isotherm Model
MB	Methylene Blue
MBR	Membrane Bio Reactor
MWCNT	Multi Walled Carbon Nanotubes
NSP	Non-Spontaneous Process
PALP	Pandanus Amaryllifolius Leaves Powder
PFO	Pseudo First Order

PSO	Pseudo Second Order
PTFE	Poly Tetrafluoroethylene
RBB	Reactive Black B
RPIM	Redlich Peterson Isotherm Model
RPM	Rounds Per Minute
RR	Reactive Red
SEM	Scanning Electron Microscope
SIM	Sips Isotherm Model
SP	Spontaneous Process
TIM	Temkin Isotherm Model
TOC	Total Organic Carbon
TSS	Total Suspended Solids
UV	Ultraviolet

LIST OF APPENDICES

Appendix	Description	Page
Appendix: A	Absorbance spectrum values for MB, CV, CR, RR	
	and RBB dye solutions	97
Appendix: B	Calibration curve data	106
Appendix: C	Absorbance values readings given by UV-Vis	
	spectrophotometer for all five dyes	107
Appendix: D	Concentration values obtained by conversion of	
	absorbance value readings using calibration	
	curves	108