COMPARISON OF EUROCODE 2 AND BS 8110 RECOMMENDATIONS FOR THE DESIGN OF BENDING AND DEFLECTION IN SIMPLY SUPPORTED ONE WAY SLABS

Ashraf Ali Hafeel Ahamed

(168902L)

Degree of Master Science in Structural Engineering Design

University of Moratuwa Sri Lanka

NOVEMBER 2021

COMPARISON OF EUROCODE 2 AND BS 8110 RECOMMENDATIONS FOR THE DESIGN OF BENDING AND DEFLECTION IN SIMPLY SUPPORTED ONE WAY SLABS

Ashraf Ali Hafeel Ahamed

(168902L)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

November 2021

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor: Date:

Specially dedicated to my beloved family, teachers and friends...

Acknowledgements

I would first like to express my sincere appreciation to the supervisors, Prof. W.P.S. Dias for his valuable advices and guidance given during this research study. I would like to express my gratitude to Dr.K.Baskan, the research coordinator, for the motivation and guidance he gave me to complete the thesis. Also, I thank the staff members of civil engineering department of University of Moratuwa for their kind assistances.

I wish to acknowledge my friends and colleagues for their feedback, cooperation and encouragement. Also, my most heartfelt appreciation goes to my family who give me invaluable support as always.

Finally, I am grateful to everyone who helped me in various ways to complete this research.

Abstract

Recently in Sri Lanka, design of the civil structures is adopted by Eurocodes superseded by the British code of practices. For reinforced concrete structures the Eurocode 2 will became of paramount importance to the design of the structural members. Bending and deflections are most important governing criteria in designs of slabs. Both standards for reinforced concrete design to check the deflection control by mean of minimum member thickness requirement and a direct computation method. This research covers an analytical study that compared maximum span to depth ratios on deflection on different influence factors in simplified method and rigorous method. One-way slab on simply supported slab was considered to compare the parameter to compare in the research.

Further the deflections were compared with an experimental result produce by Gilbert (2004) with numerical calculation with respect to both code recommendation and its reliability was discussed. The influence factors on deflection and bending were analyzed in term of sensitivity factors to understand the variation on results. The results indicated the EC2 predict less area requirement for the flexure and a very thin slab can be used to control deflection if the applied moment not induced any crack in the element and the increased in tensile strength and Elasticity of concrete provide more sophisticated deflection control compared to the BS 8110.

Contents

CHAPTER 01 1		
INTROD	UCTION	1
1.1.	Background	2
1.2.	Problem Statement	5
1.3.	Research Objective	6
1.4.	Scope of Research	7
1.5.	Methods and Scientific Approach	8
1.6.	Thesis Arrangement.	9
CHAPTE	R 02	10
LITERAT	URE REVIEW	10
2. De	evelopment of Eurocodes	10
2.1.1	. Concrete Grade	11
2.1.2	. Modulus of Elasticity	12
2.1.3	. Tensile Strength	13
2.1.4	Stress Strain- Behavior of Concrete	14
2.1.5	. Steel Reinforcement	17
2.1.6	Stress- Strain relationship of Steel	19
2.1.7	Partial Safety Factor for material.	21
2.2.	DESIGN OF BENDING	22
2.3.	Deflection	29
2.3.1	. Simplified method to limit the deflection	30
2.3.2	. Rigorous Method of Deflection calculation proposed in the Codes	32
2.4.	Numerical Integration	36
2.6.	Span/depth ratio of deflection control	43
CHAPTE	R 03	50
METHOI	DOLOGY	50
3.1.	Parametric Study	50
3.2.	Numerical Integration.	55
3.3.	Sensitivity Analysis	58
3.4.	Comparison with Experimental test data	58
3.5.	Maximum span to depth ratio.	58
CHAPTE	R – 04	61
ANALYS	IS AND RESULTS	61
4.1. Pa	rametric Studies on Bending	61
4.1.1	. Comparison of Cross-Sectional Moment Capacity	61
4.1.2	. Limiting x/d ratio	65
4.1.3	. The tensile strain on reinforcement	68
4.1.4	. Minimum reinforcement ratio	69
4.1.5	. Limiting Neutral axis depth and maximum amount of reinforcement	70
4.1.6	. Load Safety Factor/Strength reduction factor	72
4.2.	Parametric Studies on Deflection	76
4.2.1	. Minimum thickness of the slab to satisfy the deflection limit by simplified	
appr	pach.76	
4.2.2	. Span/min thickness from a simplified method for various span	78
4.2.3	. Span to actual deflection of the element by a rigorous method	79
4.2.4	. Span/thickness to limit the deflection for the span/250 limit	82
4.2.5	. Effect of imposed loading on the deflection.	85

4.3.	Numerical integration method.	89
4.4.	Sensitivity Analysis of deflection and flexure	
4.4.	I. Sensitivity on Deflection	
4.4.2	2. The sensitivity of flexure	
4.5.	Experimental test data	102
4.5.	Experimental test results. From Literature	102
4.5.2	2. Comparison of calculated deflection as per BS & EC methods with	
expe	rimental values	105
4.6.	Maximum Span – to – depth ratio	107
4.6.	Parametric influence on deflection and its variation	109
4.6.2	2. Effect of the yield stress of reinforcement	109
4.6.3	3. Span Length	111
4.6.4	4. Compressive strength of Concrete	113
4.6.5	5. Super-imposed dead load	114
4.6.0	5. Live Load factor	116
CHAPTE	R 05	119
DISCUS	SION & CONCLUSION	119
5.1 Comp	parison of bending capacity	119
5.2 Pa	ametric studies on deflection	120
5.3 Nu	merical integration	122
5.4 Sensitivity analysis1		
5.5 Comparison of deflection with test data		
5.6 Influence of Parameter on maximum L/d limits		
REFERENCES 12		

LIST OF FIGURES

Figure 2.1(a)	Actual stress-strain curve for the concrete in compression
Figure 2.1(b)	Design stress-strain curve for concrete in compression
Figure 2.2(a)	Parabolic – rectangular and bilinear stress-strain diagram for EC2.
	(a) Schematic representation.
Figure 2.2(b)	Parabolic – rectangular and bilinear stress-strain diagram for EC2.
-	(b) Parabolic rectangular diagram
Figure 2.2(c)	Parabolic – Rectangular and bilinear stress-strain diagram for EC2.
Eiguro 2.2	(C) DI-LINEAR Diagram
Figure 2.5	Actual stress- strain curve for reinforcement (DS8110).
Figure 2.4	Design stress-strain curve for het willed exetion (EC2)
Figure 2.5	Real stress – strain diagram for not folled section (EC2).
Figure 2.6	Idealized stress – strain diagram for not rolled section (EC2)
Figure 2.7	Simply supported element subjected to uniform loading.
Figure 2.8	Strain diagram for a cross section
Figure 2.9	Stress and strain distribution at section A-A: (a). Section; (b)
	Strains; (c) Triangular (low Strain); (d) Rectangular parabolic (large
-	strain); (e). Equivalent rectangular
Figure 2.10	Singly reinforced section with rectangular stress blocks (a) Section;
	(b) Strains (c) Stress Block (BS 8110); (d) Stress block (EC2).
Figure 2.11	Strain diagram for the section subjected to pure bending.
Figure 2.12	Curvature of beam for deflection.
Figure 2.13	Moment-Curvature response.
Figure 2.14	Deflected shape of beam and cracking effect along the span.
Figure 2.15	Calculated L/d limits for $f_{cu} = 30N/mm^2$ (simply supported beam)
	for cracked and uncracked sections compared with the BS 8110 and EC2 limits.
Figure 2.16	Calculated L/d limits for $f_{cn} = 60$ N/mm ² (simply supported beam)
U	for cracked and uncracked sections compared with the BS 8110 and
	EC2 limits.
Figure 3.1	Steps to find the minimum thickness to satisfy the flexural and
0	deflection of slab using simplified method.
Figure 3.2	Step to find the deflection of slab using rigorous method proposed in
8	the code
Figure 3.3	Step to find the thickness that to limit the deflection at span/250
Figure 3.4	Step to find the deflection using Numerical Integration.
Figure 4.1	Stress and Strain approximation in BS 8110 for member in flexure
Figure 4.2	Stress and Strain approximation in EC2 for member in flexure
Figure 4.3	Variation of M/bd^2 with the percentage of tensile reinforcement for
i iguio 1.5	concrete grade C20/25
Figure 4.4	Variation of M/bd^2 with the percentage of tensile reinforcement for
i iguie i.i	concrete grade C25/30
Figure 4.5	M/bd^2 variation with the percentage of tensile reinforcement for
riguie 4.5	concrete grade C30/37
Figure 16	M/bd^2 variation with the percentage of tensile reinforcement for
1 15ult 7.0	concrete grade C35//5
Figure 17	Concrete grade $CJJ/4J$ M/bd ² variation with the percentage of tensile rainforcement
Figure 4.7	Comparison of y/d ratio for different values of rainforcement ratio
1 iguie 4.0	and f_{cu}

Figure 4.9	Comparison of tensile strains on steel for different values of reinforcement ratio o and f
Figure 4.10	Comparison of minimum reinforcement ratio for varying concrete
0	grade
Figure 4.11	Comparison of maximum reinforcement ratio for varying concrete
Figure 4.12	grade Comparison of EC2 load sofaty factor for yorking tangila
Figure 4.12	reinforcement movided
Figure 4 13	Comparison of BS 8110 Load safety factor for verying tensile
Figure 4.15	rainforcement provided
Figure 1 11	L oad safety factor for varying tensile reinforcement for concrete
11guit 4.14	grade C25/30
Figure 4.15	Load safety factor for varying tensile reinforcement for concrete grade C30/37
Figure 4.16	Minimum thickness required for each span for the different
0	reinforcement ratios by the simplified method proposed in the codes
Figure 4.17	Span/thickness for each span that the thickness calculated from the
C	simplified method for the imposed load of 3 kPa.
Figure 4.18	Span/thickness for each span that the thickness calculated from the
-	simplified method for the imposed load of 5 kPa
Figure 4.19	Span/thickness for each span that the thickness calculated from the
	simplified method for the imposed load of 10 kpa.
Figure 4.20	Span/deflection calculated from the rigorous method for $A_{sreq} = A_{sprov}$
Figure 4.21	Span/deflection calculated from the rigorous method for imposed
	load of 3 kPa
Figure 4.22	Span/ thickness that required limiting the deflection calculated by
	the rigorous method by span/250 for the imposed load of 3 kPa.
Figure 4.23	Span/ thickness that required limiting the deflection calculated by
F : (A (the rigorous method by span/250 for the imposed load of 3 kPa
Figure 4.24	Span/ thickness that required limiting the deflection calculated by
E'	the rigorous method by span/250 for the imposed load of 3 kpa
Figure 4.25	Span/Inickness to limit the deflection by the rigorous method in
Figure 1.26	Span/250. Span/deflection varies with the span of one way slab for the live
Figure 4.20	load of 5 kPa
Figure 1 27	10du 01 5 Kr a. Span/deflection varies with the span of one way slab for the live
11guie 4.27	load of 10 kPa
Figure 4 28	Span/deflection ratio from rigorous method for different load
1 iguie 1.20	intensity by providing $A_{array} = A_{array}$
Figure 4.29	Span/thickness ratio from a simplified method for different load
1.8010	intensity by providing A _{creav} =A _{crea}
Figure 4.30	Comparison of deflection profile along the span
Figure 4.31	Deflection profile along span for same parametric slab.
Figure 4.32	Effect of deflection with the reinforcement area provided
Figure 4.33	L/d ratio to control the deflection using numerical integration
Figure 4.34	Sensitivity analyses for factor influencing the deflection of slab
-	panel w.r.t BS 8110-2 method.
Figure 4.35	Sensitivity analysis for factor influencing the deflection of slab
	panel w.r.t EC2 method.
Figure 4.36	Sensitivity analysis of factor influencing the moment of resistance
	of reinforced concretes slab w.r.t to BS 8110-1.

Figure 4.37	Sensitivity analysis of factor influencing the moment of resistance
	of reinforced concretes slab by Dias (1997)
Figure 4.38	Sensitivity analysis of factor influencing the Moment of Resistance
-	of reinforced concretes slab w.r.t to EC2
Figure 4.39	Sketch of Slab section and Reinforcement arrangement (Gilbert
-	2004)
Figure 4.40	Mid span deflection variation with age of concrete. (Gilbert 2004)
Figure 4.41	Maximum span/depth ratio for a particular slab thickness
Figure 4.42	Maximum span/depth ratio for a different slab thickness
Figure 4.43	Maximum I/d Vs Reinforcement yield strength
Figure 4.44	Maximum l/d Vs span length for BS 8110
Figure 4.45	Maximum I/d Vs span length for EC2
Figure 4.46	Maximum I/d Vs concrete compressive strength for BS 8110
Figure 4.47	Maximum I/d Vs concrete compressive strength for EC2
Figure 4.48:	Maximum I/d Vs Super imposed dead load for BS 8110
Figure 4.49	Maximum I/d Vs Super Imposed dead load for EC2
Figure 4.50	Maximum 1/d Vs fraction of sustained live load.

LIST OF TABLES

- Table 2.1Cylinder strength, Cube strength and Tensile strength of concrete in EC2
- Table 1.2
 Formulas for Modulus of Elasticity and Tensile Strength of Concrete
- Table 2.3Strength and deformation characteristic of Concrete. (EN1992)
- Table 2.4
 Characteristic tensile properties of steel
- Table 2.5Partial safety factor proposed in EC2
- Table 2.6Stress block approximation
- Table 2.7Comparison of Flexure requirement in Both Codes (BS 8110-1, EC 2)
- Table 2.8
 Maximum deflection limit given in various codes and Standards
- Table 2.9Deflection Limits given in ISO 4356
- Table 2.10Recommended basic Span/depth value in Codes.
- Table 2.11
 Simplified method to check the deflection limit
- Table 2.12Curvature of bending
- Table 2.13Calculation of deflection using rigorous method
- Table 3.1Assumed parameter in the Numerical Integration
- Table 3.2Portion of Integral Spread sheet
- Table 4.1Ultimate Moment Capacity for respective Concrete Grade varies with the
tensile reinforcement.
- Table 4.2Common Parameter used in the Analysis
- Table 4.3Data considered for parametric studies
- Table 4.4Thickness to limit the deflection for span/250 for different reinforcement
ratio
- Table 4.5Thickness in mm to limit the defection in various limit.
- Table 4.6Thickness required to satisfying the deflection and flexure requirement when
the imposed load varies.
- Table 4.7Data used for Numerical integration in BS 8110
- Table 4.8Numerical integration for BS approach for segments
- Table 4.9Data used for Numerical integration in EC2
- Table 4.10Numerical integration in EC2
- Table 4.11Data used in the Numerical integration
- Table 4.12Details of Slab Reinforcement arrangement (Gilbert 2004)
- Table 4.13Details of moments (Gilbert 2004)
- Table 4.14Tabulation of experimental and mathematically calculated mid span long
term deflection for the slab sample
- Table 4.15Mathematical approach to estimate the deviation
- Table 5.1Comparison of flexural parameter
- Table 5.2Comparison of deflection methods
- Table 5.3Summary of Numerical integration of deflection
- Table 5.4Comparison of L/d ratio influencing factors

LIST OF ABBREVIATIONS

Notation is commonly in accordance with Eurocode 2 and the principal List of Acronyms and Abbreviations are presented below.

The common system of subscripts such that the first subscript refers to the material, such as (c - concrete and s - steel), and the second subscript refers to the form of stress, such as (c - compression and t - tension).

Abbreviation	Description
Ε	Modulus of elasticity
F	Load (action)
G	Permanent load
Ι	Second moment of area
М	Moment (bending moment)
Q	Variable load
a	Deflection
b	Breadth (width)
d	Effective depth
d'	Depth to compression reinforcement
h	Overall depth of section in plan of bending
i	Radius of gyration
k	Coefficient
l	Length (Span)
n	Ultimate load per unite area
1/ <i>r</i>	Curvature of a section/bending
t	Thickness
x	Neutral axis depth
Ζ	Lever arm
$A_{ m c}$	Concrete cross-section area
A _s	Cross-section area of tension reinforcement
A _s '	Cross-section area of compression reinforcement
A _{sreq}	Cross-section area of tension reinforcement required at the ultimate limit state
A	Cross-section area of tension reinforcement provided at
	ultimate limit state
E _{cm}	Secant modulus of elasticity of concrete
Es	Modulus of elasticity of reinforcing (prestressing steel)
G _k	Characteristic permanent load
I _c	Second moment of area of concrete
M _{bal}	Moment on a column corresponding to the balanced condition
	design value of moment
M_{Ed}	Design value of moment

M_u	Ultimate moment of resistance
Q_k	Characteristic variable load
\mathbf{b}_{w}	Minimum width of section
f_{ck}	Characteristic cylinder strength of concrete
f_{cm}	Mean cylinder strength of concrete
f _{ctm}	Mean tensile strength of concrete
f_{vk}	Characteristic yield strength of reinforcement
$\mathbf{g}_{\mathbf{k}}$	Characteristic permanent load per unit area
k ₁	Average compressive stress in the concrete for a rectangular
	parabolic stress section
\mathbf{k}_2	A factor that relates the depth to the centroid of the
	rectangular parabolic stress section and the depth to the
	neutral axial
la	Lever arm factor = z/d
q _k	Characteristic variable load per unit area
n	Modular ratio
ψ	Action combination factor
$\gamma_{\rm c}$	Partial safety factor for concrete strength
γ _G	Partial safety factor for permanent loads, G
γο	Partial safety factor for variable loads, Q
γ_{s}	Partial safety factor for steel strength
δ	Moment redistribution factor
Е	Strain
σ	Stress
Ø	Bar diameter
b _{eff}	Effective width of the concrete flange
Es	Modulus of elasticity of steel
E _{c,eff}	Effective modulus of elasticity of concrete
E _{cm}	Secant modulus of elasticity of concrete
F _{cm}	Mean value of the axial tensile strength of concrete
h	Overall depth (thickness)
$\mathbf{h}_{\mathbf{f}}$	Thickness of the concrete flange
δ	Deflection at mid span
γ	Factor of safety

LIST OF APPENDICES

Annex	Description
Annex A	Support documents for Mean Curvature
Annex B	Related to Chapter 4.1
Annex C	Related to Chapter 4.2
Annex D	Related to Chapter 4.3
Annex E	Related to Chapter 4.4
Annex F	Related to Chapter 4.5
Annex G	Mid Span Instantaneous deflection
Annex H	Related to Chapter 4.6
Annex J	Related to Chapter 4.6.3
Annex K	Related to Chapter 4.6.4
Annex L	Related to Chapter 4.6.5
Annex M	Related to Chapter 4.6.6