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Abstract—Geometric information of scenes available with four-
dimensional (4-D) light fields (LFs) paves the way for post-
capture refocusing. Light field refocusing methods proposed
so far have been limited to a single planar or a volumetric
region of a scene. In this paper, we demonstrate simultaneous
refocusing of multiple volumetric regions in LFs. To this end, we
employ a 4-D sparse finite-extent impulse response (FIR) filter
consisting of multiple hyperfan-shaped passbands. We design the
4-D sparse FIR filter as an optimal filter in the least-squares
sense. Experimental results confirm that the proposed filter
provides 63% average reduction in computational complexity
with negligible degradation in the fidelity of multi-volumetric
refocused LFs compared to a 4-D nonsparse FIR filter.

Index Terms—Light fields, volumetric refocusing, multi-
dimensional FIR filters, sparse filters, low complexity.

I. INTRODUCTION

A four-dimensional (4-D) light field (LF) captures both

textural and geometrical information of a scene whereas a

two-dimensional (2-D) image captures only the textural infor-

mation [1], [2]. We can exploit the geometrical information

available with LFs to accomplish novel tasks which are not

possible with 2-D images, e.g., depth estimation [3]–[6] and

occlusion suppression [7]–[14].

Post-capture refocusing is another novel task that can be

achieved with LFs. Ng et al. [15] first demonstrated this feature

employing a hand-held LF camera. They achieved refocusing

by shifting and averaging the sub-aperture images (SAIs)

of a LF. Furthermore, Ng [16] developed a computation-

ally efficient algorithm using multi-dimensional fast Fourier

transform algorithms. In [17], Fiss et al. employed depth-

adaptive splatting to achieve refocusing of LFs. All of these

approaches achieved refocusing for a narrow-depth range.

In [18], Dansereau et al. demonstrate post-capture refocusing

over a wide-depth range, which they denote as volumetric re-

focusing. They employed a 4-D linear filter having a hyperfan-

shaped passband to achieve volumetric refocusing. Dansereau

et al. [19] and Premaratne et al. [20] employed similar 4-D

linear hyperfan filters for LF denoising. In [21], Premaratne et

al. proposed a 4-D sparse finite-extent impulse response (FIR)

filter having a hyperfan-shaped passband, designed using the

windowing technique and hard thresholding, for volumetric
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Fig. 1: Refocusing of the ”Bush” LF; (a) refocused for a

single volumetric region [21]; (b) refocused for two volumetric

regions using the proposed 4-D sparse FIR filter.

refocusing. This sparse filter provides significant reduction in

computational complexity with negligible degradation in the

fidelity of refocused LFs compared to that proposed in [18].

Recently, Wang et al. [22] employed depth-based anisotropic

filter and superresolution approach for LF refocusing. Further-

more, Yang et al. [23] and Pei et al. [24] proposed spatial-

domain optimization techniques for all-in-focus refocusing

methods, mainly for attenuating occlusions. The computational

complexity of these methods are considerably high compared

to 4-D-FIR-filter based methods. All of these prior works are

predominantly limited to LF refocusing over a single planar

or a single volumetric region.

In this paper, we demonstrate simultaneous refocusing of

multiple volumetric regions in LFs albeit at lower computa-

tional complexity. To this end, we employ a 4-D sparse FIR

filter having multiple hyperfan-shaped passbands. Fig. 1 shows

refocusing of a single volumetric region obtained with the 4-D

sparse FIR filter proposed in [21] and simultaneous refocusing

of two volumetric regions using the proposed 4-D sparse FIR

filter. It is evident that multi-volumetric refocusing can em-

phasize multiple objects or regions occupying different depth-

ranges in an LF simultaneously. This feature may open new

avenues, in particular, in LF photography [15] and cinematog-

raphy [25]. In addition, our method can achieve refocusing of

a single volumetric or a planar region as well because these

are special cases of multi-volumetric refocusing. We design

the 4-D sparse FIR filter by employing a two-step sparse filter

design method proposed in [26], which considers the design of

filters having quadrantally-symmetric impulse responses. Our

4-D sparse FIR filter has a centro-symmetric impulse response,

and we adapt the two-step method in [26] appropriately to

design our filter. Our 4-D sparse FIR filter is optimal in the

least-squares sense. Experimental results obtained with the LFs

in the EPFL data set [27], Stanford dataset [28] and the 4-D
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Fig. 2: Two plane parameterization of a Lambertian point

source located at a constant depth z0.

benchmark dataset [29] confirm that the proposed 4-D sparse

FIR filter provides 63% average reduction in computational

complexity with negligible degradation in the fidelity of two-

volumetric-region refocused LFs compared to an equivalent 4-

D non-sparse FIR filter. Furthermore, our sparse filter provides

13% reduction in computational complexity compared to that

proposed in [21] with similar fidelity for refocusing of a single

volumetric region.

II. REVIEW OF THE SPECTRUM OF A LIGHT FIELD

The spectrum of a LF is briefly reviewed in this section.

To this end, we first consider standard two-plane paramater-

ization, with the globally defined image-plane coordinates,

of a Lambertian point source as shown in Fig. 2. Note

that (nx, ny) ∈ Z
2 and (nu, nv) ∈ Z

2 denote the 2-D

discrete-domain camera-plane and image-plane coordinates,

respectively, and D is the constant distance between the

camera and image planes. The 4-D LF lp(n), where n =
(nx, ny, nu, nv) ∈ Z

4, corresponding to the Lambertian point

source located at (x0, y0, z0) ∈ R
2 × R

+ and having an

intensity l0 can be modeled as [30], [31]

lp(n) =

⎧⎪⎨
⎪⎩
l0 when

Pxu ≡ mnxΔx + nuΔu − (m+ 1)x0 = 0

Pyv ≡ mnyΔy + nvΔv − (m+ 1)y0 = 0

0 elsewhere,

where m = D
z0

− 1 and Δi, i = x, y, u, v is the sampling

interval along the dimension i. Note that the LF consists of

a plane having a constant value l0 given by the intersection

two hyperplanes Pxu and Pyv . In this case, the region of

support (ROS) Rp of the spectrum Lp(ω), where ω =
(ωx, ωy, ωu, ωv) ∈ R

4, inside the principal Nyquist hypercube

N (� {ω ∈ R
4 | − π ≤ ωi < π, i = x, y, u, v}) is given by

Rp = Hxu ∩Hyv [30], [31], where

Hxu =

{
ω ∈ R

4 | ωx −
(
mΔx

Δu

)
ωu = 0

}
(1a)

Hyv =

{
ω ∈ R

4 | ωy −
(
mΔy

Δv

)
ωv = 0

}
(1b)

The ROS Rp is a plane through the origin of ω inside N ,

of which the orientation depends only on the depth z0 of the

Lambertian point source. Note that we do not consider the

finite sizes of the camera and image planes in presenting the

spectral ROS for simplicity. However, even with these con-

straints, the spectral ROS predominantly occupies the region

defined by the ROS Rp [32], [33].
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Fig. 3: (a) The hyperfan-shaped spectral ROS Ro correspond-

ing to a Lambertian object in the ωxωu subspace; (b) The

passband of Hxu(zx, zu) for M = 2.

In order to obtain the ROS Ro of the spectrum of a LF corre-

sponding to a Lambertian object, we can consider the Lamber-

tian object as collection of Lambertian point sources located in

a volumetric region with a depth range z0 ∈ [dmin, dmax]. In

this case, Ro is given by Ro =
⋃
z0

Rp =
⋃
z0

(Hxu∩Hyv) [11],

[30], and corresponds to a hyperfan inside N [18] (shown in

Fig. 3(a) in the ωxωu subspace). In the case of multiple objects

located in M volumetric regions, the spectral ROS RM
o can

be obtained as

RM
o =

M⋃
i=1

Ri
o =

M⋃
i=1

⋃
zi
0

(Hi
xu ∩Hi

yv

)
. (2)

The spectral ROS RM
o thus contains M hyperfans inside N .

Therefore, we can refocus M volumetric regions in a LF

simultaneously by employing a 4-D filter having M hyperfan-

shaped passbands inside N .

III. PROPOSED 4-D SPARSE FIR FILTER

The proposed 4-D sparse FIR filter H(z), (zx, zy, zu, zv) ∈
C

4, is designed as a cascade of two 2-D filters Hxu(zx, zu),
(zx, zu) ∈ C

2 and Hyv(zy, zv), (zy, zv) ∈ C
2. This struc-

ture is motivated by the partial separability of the spectral

ROS of a Lambertian point source and leads to an ex-

tremely low computational complexity of O(NxNu +NyNv)
to process a sample, compared to that of a nonseparable

4-D filter, which is O(NxNyNuNv) [21], where (Nx, Nu)
(∈ Z

2
+) and (Ny, Nv) (∈ Z

2
+) are the orders of Hxu(zx, zu)

and Hyv(zy, zv), respectively. We select the passbands of

Hxu(zx, zu) and Hyv(zy, zv) to enclose M hyperfan regions

Bxu =
⋃M

i=1

⋃
zi
0
Hi

xu and Byv =
⋃M

i=1

⋃
zi
0
Hi

yv , respectively.

Note that the passband of B of the 4-D FIR filter H(z)
given by Bxu∩Byv completely encompasses the spectral ROS

given by (2). Fig. 3(b) shows the passband of Hxu(zx, zu) for

M = 2. Our 4-D FIR filter H(z) sharpens (i.e., focuses) the

depth ranges in an LF corresponding to these M hyperfans

and blurs other depth ranges corresponding to the stopband.

Fig. 3(b) shows the parameters that specify the ith hyperfan

of the passband of Hxu(zx, zu). Here, αi, θi and Bi determine

the orientation, angular-width and the length of the ith hyper-

fan, respectively, and Ti determines the width of the guard

band employed to achieve an improved accuracy near the

origin of ω [34]. The passband and the specifications of the ith
hyperfan is the same for Hyv(zy, zv) in the ωyωv subspace.
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Therefore, the design of Hxu(zx, zu) and Hyv(zy, zv) reduces

to a single 2-D FIR filter design. We next present the design

of Hxu(zx, zu) in detail.

A. Weighted Least-Square Design of Hxu(zx, zu)

We adapt the 2-D sparse FIR filter design method proposed

in [26] to design Hxu(zx, zu). To this end, we express the

frequency response of Hxu(zx, zu) as Hxu

(
ejωx , ejωu

)
=∑Nx

2

nx=
−Nx

2

∑Nu
2

nu=
−Nu

2

hxu(nx, nu)e
−j(nxωx+nuωu), where

hxu(nx, nu) is the impulse response of size (Nx+1)×(Nu+1)
(order = Nx × Nu). We design Hxu(zx, zu) as a zero-phase

filter [35, ch.3]. In this case, the impulse response of the filter

is centro-symmetric, i.e., hxu(nx, nu) = hxu(−nx,−nu).
Therefore, we can simplify Hxu(e

jωx , ejωu) considering the

centro-symmetric property as Hxu

(
ejωx , ejωu

)
= hxu(0, 0)+∑Nx

2
nx=12hxu(nx,0)cos(nxωx)+

∑Nx
2

nx=
−Nx

2

∑Ny
2

nu=12hxu(nx,nu)

cos(nxωx + nuωu), which we represent in the vector-form as

Hxu

(
ejωx , ejωu

)
= c(ωx, ωu)

Thxu. (3)

Here, hxu =
[
hxu(0, 0), 2hxu(1, 0), · · · , 2hxu

(
Nx

2 , 1
)
,

2hxu

(−Nx

2 ,1
)
,· · ·, 2h(Nx

2 ,Nu

2

)]T
, and c(ωx, ωu)=[1, cos(ωx),

· · ·, cos (Nx

2 ωx

)
, cos

(−Nx

2 ωx+ωu

)
,· · ·, cos (Nx

2 ωx+
Nx

2 ωu

)]T
.

Lu and Hinamoto proposed two-step weighted least-square

approach in [26] to design 2-D sparse FIR filter having

quadrantally-symmetric impulse responses. With (3), we can

use this approach to design Hxu(zx, zu) despite its centro-

symmetric impulse response. In the first step, we obtain an in-

termediate sparse impulse response in the least-squares sense.

We express the objective function J(hxu) to be minimized as

J(hxu) =

[ ∫∫
F
W (ωx, ωu)

[
HI

xu

(
ejωx , ejωu

)

−Hxu

(
ejωx , ejωu

) ]2
dωx dωu

] 1
2

+ μ||hxu||1, (4)

where HI
xu

(
ejωx , ejωu

)
is the ideal frequency response of

Hxu(zx, zu) having 1 in the passband and 0 in the stopband,

Hxu

(
ejωx , ejωu

)
is given in (3), W (ωx, ωu) is a weighting

function that we use to control the stopband attenuation, μ is

a small positive number (typically between 0.01 and 1), and F
is the region corresponding to the passband and stopband, i.e.

without the transition band [26]. Because, Hxu

(
ejωx , ejωu

)
is

centro-symmetric, we consider only the region [−π, π]× [0, π]
in the 2-D frequency domain (ωx, ωu) to define F . By consid-

ering finite set of frequency grid points in F and introducing

upper bounds for the first and second terms in the right hand

side of (4), we can convert the optimization problem as an

�1-�2 minimization problem, which can be converted as a

second-order cone programming problem [26]. Due to the

limited space, we do not present the detailed steps, and the

reader is referred to [26]. The solution hi
xu of the second-

order cone programming problem is an approximately sparse

impulse response [26], and we employ hard thresholding in

order to obtain a sparse impulse response hi,s
xu, i.e.,

hi,s
xu(i) =

{
hi
xu(i), if |hi

xu, (i)| ≥ εth

0, otherwise,
(5)

where εth (∈ [10−4, 10−2], typically) is the threshold value.

In the second step, we again optimize hi,s
xu in the least-

squares sense in order to further improve the accuracy. We

express this optimization problem as

min
hi,s

xu

[ ∫∫
F
W (ωx, ωu)

[
c(ωx, ωu)

Thi,s
xu−

HI
xu

(
ejωx , ejωu

) ]2
dωx dωu

] 1
2

subject to: hi,s
xu(i) = 0 for i ∈ I∞, (6)

where I∞ is the set containing indices i for which hi,s
xu(i) = 0.

This optimization problem is a quadratic program. We obtain

the sparse impulse response hs
xu as hs

xu = γ hq,s
xu , where hq,s

xu

is the solution of (6), and γ (∈ [1, 1.5], typically) is a constant

used to compensate the intensity reduction of a refocused LF

due to the small number of SAIs.

IV. EXPERIMENTAL RESULTS

We employ three LF datasets, the EPFL data set [27],

Stanford dataset [28] and the 4-D benchmark dataset [29],

to evaluate the performance of the proposed 4-D sparse

FIR filter. We present the experimental results obtained for

LFs in the EPFL dataset for M = 2 in this section and

those obtained for the LFs in the Stanford dataset and 4-D

benchmark dataset for M = 2 and in the EPFL dataset for

M = 3 in supplementary results 1. Furthermore, we compare

the performance of the the proposed filter compared to a 4-D

nonsparse FIR filter in multi-volumetric refocusing. Next, we

compare the performance and computational complexity of the

proposed filter with those of [18] and [21].

A. Performance of the Proposed 4-D Sparse FIR Filter in
Multi-Volumetric Refocusing

We process five LFs, ”Parc du Luxembourg”, ”Bush”,

”Books”, ”Sphynx”, and ”University” in the EPFL dataset

using the proposed 4-D sparse FIR filter and a 4-D nonsparse

FIR filter. Here, we select only the middle 11 × 11 SAIs

for each LF and discard SAIs affected by vignetting. For

the ”Parc du Luxembourg” LF, we design Hxu(zx, zu) and

Hyv(zy, zv) with α1 = 50◦ and α2 = 120◦, θ1, θ2 = 10◦,

B1, B2 = 0.9π rad/sample, T1, T2 = 0.08π rad/sample,

μ = 0.1, εth = 0.004, γ = 1.4, and W (ωx, ωu) = 1 for the

passband and W (ωx, ωu) = 2 for the stopband. We present

the specifications of Hxu(zx, zu) or Hyv(zy, zv) employed for

the other four LFs in the supplementary results1. We select the

order of Hxu(zx, zu) and Hyv(zy, zv) as 10 × 40 for all the

five cases. Note that the order of the resulting 4-D sparse FIR

filter H(z) is 10×10×40×40. We employ the CVX [36], [37]

optimization toolbox to obtain the sparse impulse responses.

The sparse impulse responses of Hxu(zx, zu) and Hyv(zy, zv)
designed for the ”Parc du Luxembourg” LF have 153 nonzero

coefficients whereas an equivalent 2-D nonsparse FIR filter,

designed with εth = 0 in (5), has 451 nonzero coefficients.

Consequently, the proposed 4-D sparse FIR filter provides

approximately 66% reduction in computational complexity

1The supplementary results are available at https://bit.ly/3oi7j5D.
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(a) (b)

Fig. 4: Magnitude response of Hxu(z) (a) with sparse coeffi-

cients; (b) with nonsparse coefficients.

compared to an equivalent 4-D nonsparse FIR filter. Fig. 4

shows the magnitude responses of Hxu(zx, zu) for the sparse

and nonsparse cases, and the normalized root mean square

error between the two frequency responses 4.41%. For all the

considered LFs in the three datasets, the proposed 4-D sparse

FIR filter provides 63% average reduction of computational

complexity with an average normalized root mean square error

of 3.68% compared to nonsparse counterparts. This indicates

the frequency response of the sparse filter is approximately

equal to that of the nonsparse filter despite having considerably

less coefficients.

Fig. 5 shows the central SAI obtained with the 4-D sparse

and nonsparse FIR filters for the ”Parc du Luxembourg” LF.

The structure similarity (SSIM) index [38] between the central

SAIs of the two refocused LFs is 0.9900. Furthermore, the

blind/referenceless image spatial quality evaluator (BRISQUE)

score [39] of the refocused SAIs corresponding to the 4-

D sparse and nonsparse FIR filters are 45.03 and 47.75,

respectively. We present the refocused central SAIs, BRISQUE

scores and the SSIM indices for the other four LFs in the

supplementary results1. The average SSIM index between the

two refocused LFs is 0.9854, and the average BRISQUE

scores corresponding to 4-D sparse and nonsparse FIR filters

are 43.95 and 44.97, respectively. These results verify that the

proposed 4-D sparse FIR filter provides negligible degrada-
tion in fidelity in multi-volumetric refocusing compared to a

nonsparse counterpart.

B. Comparison of the Proposed 4-D Sparse FIR Filter with
Single-Volumetric-Region Refocusing Filters

Refocusing of a single volumetric region is a special case of

the proposed multi-volumetric refocusing. In this subsection,

we compare the performance of the proposed filter with those

proposed in [18] and [21]. To this end, we consider refocusing

of LFs employed in [21]. We design the proposed 4-D sparse

FIR filter with α1 = 50◦, θ1 = 10◦, B1 = 0.9π rad/sample,

and T1 = 0.08π rad/sample, μ = 0.1, εth = 0.005, γ = 1.4,

and W (ωx, ωu) = 1 for the passband and W (ωx, ωu) = 2
for the stopband. We also design the 4-D sparse FIR filters

proposed in [21] with the same specifications for α1, θ1, B1

and T1 whereas the hard-thresholding parameter is selected

as 0.03 (hth in [21, eq. (5)]). We design the equivalent 4-D

nonsparse FIR filters [18] with the same parameters except

the hard-thresholding parameter, which is zero. We process

the ”Books”, ”Flower”, ”Mirabelle Prune Tree”, ”Sophie &

Vincent 1” and ”Gravel Garden” LFs with the proposed filter,

(a) (b)

Fig. 5: ”Parc du Luxembourg” LF refocused for two volumet-

ric regions; (a) using the proposed 4-D sparse FIR filter; (b)

using a 4-D nonsparse FIR filter.

TABLE I: The average BRISQUE scores, SSIM indices ob-

tained for refocusing of a single volumetric region with dif-

ferent 4-D FIR filters and the number of nonzero coefficients.

FIR Filter BRISQUE
score

SSIM
index

Nonzero
coefficients

4-D nonsparse [18] 36.99 1.0000 902

4-D sparse [21] 40.83 0.9985 238

Proposed 4-D sparse 37.44 0.9979 206

the filter proposed in [21], and their equivalent nonsparse

filters [18]. We present the average BRISQUE scores, average

SSIM indices and the number of nonzero coefficients of the

filters in Table I. The central SAIs of the refocused LFs are

presented in the supplementary results1. According to Table I,

it is evident that the proposed 4-D sparse FIR filter provides

a better average BRISQUE-score and a similar average-SSIM

index compared to the 4-D sparse FIR filter proposed in [21]

while providing 13% reduction in computational complexity.

The proposed 4-D sparse FIR filter achieves a lower computa-

tional complexity compared to that proposed in [21] because

the former is an optimal filter whereas the latter is a sub-

optimal filter. Furthermore, the proposed sparse filter provides

77% reduction in computational complexity with negligible
degradation in the average BRISQUE score and SSIM index

compared to an equivalent nonsparse filter [18].

V. CONCLUSION

We demonstrate simultaneous multi-volumetric refocusing

of LFs by employing a 4-D sparse FIR filter consisting of

multiple hyperfan-shaped passbands. We employ a two-step

optimization method to design the optimal 4-D sparse FIR

filters in the least-squares sense. Experimental results confirm

that the proposed filter provides 63% average reduction in

computational complexity with negligible degradation in the

fidelity of two-volumetric-region refocused LFs compared to

an equivalent 4-D non-sparse FIR filter. Furthermore, in single-

volumetric-region refocusing, the proposed filter provides 13%
reduction in computational complexity compared to a pre-

viously proposed 4-D sparse FIR filters with a negligible

degradation in the fidelity.
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