

Anomaly Detection in High Dimensional Data

Priyanga Dilini Talagala1,3,4

and

Rob J. Hyndman1,3

and

Kate Smith-Miles2,3

1Department of Econometrics and Business Statistics, Monash University,

Australia

2School of Mathematics and Statistics, University of Melbourne, Australia

3ARC Centre of Excellence for Mathematics and Statistical Frontiers (ACEMS),

Australia

4Department of Computational Mathematics, University of Moratuwa, Sri Lanka

Corresponding author Priyanga Dilini Talagala priyangad@uom.lk

Abstract
The HDoutliers algorithm is a powerful unsupervised algorithm for
detecting anomalies in high-dimensional data, with a strong
theoretical foundation. However, it suffers from some limitations that
significantly hinder its performance level, under certain
circumstances. In this article, we propose an algorithm that
addresses these limitations. We define an anomaly as an observation
where its k-nearest neighbour distance with the maximum gap is
significantly different from what we would expect if the distribution of
k-nearest neighbours with the maximum gap is in the maximum
domain of attraction of the Gumbel distribution. An approach based
on extreme value theory is used for the anomalous threshold
calculation. Using various synthetic and real datasets, we
demonstrate the wide applicability and usefulness of our algorithm,
which we call the stray algorithm. We also demonstrate how this
algorithm can assist in detecting anomalies present in other data
structures using feature engineering. We show the situations where
the stray algorithm outperforms the HDoutliers algorithm both in
accuracy and computational time. This framework is implemented in
the open source R package stray.

Acc
ep

te
d

M
an

us
cr

ipt

http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2020.1807997&domain=pdf

Keywords: Extreme value theory, High dimensional data, Nearest neighbour

searching, Temporal data, Unsupervised outlier detection

1 Introduction

The problem of anomaly detection has many different facets, and detection

techniques can be highly influenced by the way we define anomalies, type of

input data and expected output. These differences lead to wide variations in

problem formulations, which need to be addressed through different analytical

techniques. Although several useful computational methods currently exist,

developing new methods for anomaly detection continues to be an active,

attractive interdisciplinary research area owing to different analytical challenges

in various application fields. Ever-increasing computing resources and advanced

data collection technologies that emphasise real-time, large-scale data are other

reasons for this growth since they introduce new analytical challenges with their

increasing size, speed and complexity that demand effective, efficient analytical

and computing techniques.

Anomaly detection has two main objectives, which are conflicting in nature: One

downgrades the value of anomalies and attempts eliminating them, while the

other demands special attention be paid to anomalies and root-cause analysis be

conducted. The presence of anomalies in data can be considered data flaws or

measurement errors that can lead to biased parameter estimation, model

misspecification and misleading results if classical analysis techniques are blindly

applied (Ben-Gal 2005, Abuzaid et al. 2013). In such situations, the focus is to

find opportunities to remove anomalous points and thereby improve both the

quality of the data and results from the subsequent data analysis (Novotny

and Hauser 2006). In contrast, in many other applications, anomalies themselves

are the main carriers of significant and often critical information, such as extreme

environmental conditions (e.g., bushfire, tsunami, flood, earthquake, volcanic

eruption and water contamination), faults and malfunctions (e.g., flight tracking

Acc
ep

te
d

M
an

us
cr

ipt

and power cable tracking) and fraud activities (Ben-Gal 2005), that can cause

significant harm to valuable lives and assets if not detected and treated quickly.

High-dimensional datasets exist across numerous fields of study (Liu et al. 2016).

Some anomaly detection algorithms also use feature engineering as a dimension

reduction technique and thereby convert other data structures, such as a

collection of time series using time series features (Talagala, Hyndman, Leigh,

Mengersen and Smith-Miles 2019, Hyndman et al. 2015), collection of

scatterplots using scagnostics (Wilkinson et al. 2005) and genomic micro arrays

and chemical compositions in biology (Liu et al. 2016) into high-dimensional data

prior to the detection process for easy control. Under the high-dimensional data

scenario, all attributes can be of the same data type or a mixture of different data

types, such as categorical or numerical, which has a direct impact on the

implementation and scope of the algorithm. Much research attention has been

paid to anomaly detection for numerical data (Breunig et al. 2000, Tang

et al. 2002, Jin et al. 2006, Gao et al. 2011). Limited methods are available that

treat both numerical and categorical data using correspondence analysis, for

example, as in Wilkinson (2017).

High-dimensional anomalies can arise in all the attributes or a subset of the

attributes (Unwin 2019). If all anomalies in a high-dimensional data space were

anomalies in a lower dimension, then anomaly detection can be performed using

axis parallel views or by incorporating an additional step of variable selection for

the detection process. However, in practice, certain high-dimensional instances

are only perceptible as anomalies if treated as high-dimensional problems and

the correlation structure of all the attributes considered. Otherwise, these tend to

be overlooked if attributes are considered separately (Wilkinson 2017, Ben-

Gal 2005).

The problem of anomaly detection has been extensively studied over the past

decades in many application domains (Chandola

Acc
ep

te
d

M
an

us
cr

ipt

et al. 2009, Aggarwal 2017, Shahid et al. 2015, Gupta et al. 2014, Hodge

and Austin 2004). Among the many possibilities, the HDoutliers algorithm,

recently proposed by Wilkinson (2017), is a powerful unsupervised algorithm,

with a strong theoretical foundation, for detecting anomalies in high-dimensional

data. The study presented by Talagala, Hyndman, Leigh, Mengersen and Smith-

Miles (2019) also verifies its performances through a thorough comparative

evaluation of existing state-of-the-art anomaly detection methods. Although this

algorithm has many advantages, a few characteristics hinder its performance. In

particular, under certain circumstances it tends to increase the rate of false

negatives (i.e., the detector ignores points that appear to be real anomalies)

because it uses only the nearest-neighbour distances to distinguish anomalies.

Further, to deal with large datasets with numerous observations it uses the

Leader algorithm (Hartigan and Hartigan 1975), which forms several clusters of

points in one pass through the dataset using a ball of a fixed radius. By

incorporating this clustering method, it tries to gain the ability to identify

anomalous clusters of points. However, in the presence of very close

neighbouring anomalous clusters it tends to increase the rate of false negatives.

Further, this additional step of clustering has a serious negative impact on the

computational efficiency of the algorithm when dealing with large datasets.

Through this study, we make three fundamental contributions. First, we propose

an algorithm called stray, representing ‘Search and TRace AnomalY’, that

addresses the limitations of the HDoutliers algorithm. The stray algorithm

presented here focuses specifically on fast, accurate anomalous score

calculation using simple but effective techniques for improved performance.

Second, we introduce an R (R Core Team 2019) package, stray (Talagala,

Hyndman and Smith-Miles 2019), that implements the stray algorithm and related

functions. Third, we demonstrate the wide applicability and usefulness of our

stray algorithm, using various datasets.

Acc
ep

te
d

M
an

us
cr

ipt

Our improved algorithm, stray, has many advantages: (1) It can be applied to

both one-dimensional and high-dimensional data. (2) It is unsupervised in nature

and therefore does not require training datasets for the model-building process.

(3) The anomalous threshold is a data-driven threshold and has a valid

probabilistic interpretation because it is based on the extreme value theory. (4)

The presence of one anomalous instance can “mask” the appearance of another

anomalous instance (Hadi 1992). The stray algorithm deals with the masking

problem by using k-nearest neighbour distances for anomalous score

calculations. (5) It can provide near real-time support to datasets that stream in

large quantities owing to its use of fast nearest neighbour searching

mechanisms. (6) It can deal with data that may have multimodal distributions for

typical data instances. (7) It produces both score (to indicate how anomalous the

instances are) and binary classification (to reduce the searching space during the

visual and root-cause analysis) for each data instance as an output. (8) It can

detect outliers as well as inliers.

The stray algorithm differs substantially from the HDoutliers algorithm in the

following ways. (1) It does not determine the outliers solely with the help of the

nearest neighbour distances; instead, the algorithm considers the k-nearest

neighbour distance with the maximum gap for all observations and defines an

anomalous threshold on the k nearest neighbour distances with the maximum

gap. (2) The HDoutliers algorithm deals with the masking problem by

incorporating a clustering step which is extremely time-consuming, particularly

with large samples in high dimensions. Owing to the use of k-nearest neighbour

distances, the stray algorithm does not require an additional computationally-

intensive clustering procedure to detect anomalous clusters of points. (3) The

HDoutliers algorithm provides only a binary classification; in contrast, the stray

algorithm produces both a binary classification and an anomalous score

indicating the degree of outlierness of each measurement. (4) The simulation

study shows that the stray implementation is much faster than the HDoutliers

package implementation, particularly with large samples in high dimensions.

Acc
ep

te
d

M
an

us
cr

ipt

The remainder of this paper is organised as follows. Section 2 presents the

related work to lay the foundation for the stray algorithm. Section 3 describes the

limitations of the HDoutliers algorithm that hinder its performance. Section 4

presents the improved algorithm, stray, that addresses the limitations of the

HDoutliers algorithm. Section 5 presents a comprehensive evaluation, illustrating

the key features of the stray algorithm. Section 6 includes an application of stray

algorithm related to pedestrian behaviour in the city of Melbourne, Australia.

Section 7 concludes the article and presents future research directions.

2 Background

2.1 Types of Anomalies in High Dimensional Data

The problems of anomaly detection in high-dimensional data are threefold,

involving detection of: (a) global anomalies, (b) local anomalies and (c) micro

clusters or clusters of anomalies (Goldstein and Uchida 2016). Most of the

existing anomaly detection methods for high-dimensional data can easily

recognise global anomalies since they are very different from the dense area with

respect to their attributes. In contrast, a local anomaly is only an anomaly when it

is distinct from, and compared with, its local neighbourhood. Madsen (2018)

introduces a set of algorithms based on a density or distance definition of an

anomaly, which mainly focuses on local anomalies in high-dimensional data.

Micro clusters or clusters of anomalies may cause masking problems. Very little

attention has been paid to this problem relative to the other two categories. The

recently proposed HDoutliers algorithm (Wilkinson 2017) addresses this problem

to some extent by grouping instances together that are very close in the high-

dimensional space and then selecting a representative member from each

cluster before calculating nearest neighbour distances for the selected instances.

In this study, we focus on all three of these anomaly types.

2.2 Definitions for Anomalies in High Dimensional Data

Acc
ep

te
d

M
an

us
cr

ipt

Owing to the complex nature of the problem, it is difficult to find a unified

definition for an anomaly and the definition often depends on the focus of the

study and the structure of the input data available to the system

(Williams 2016, Unwin 2019). However, there are some definitions that are

general enough to cope with datasets with various application domains.

Grubbs (1969) defines an anomaly as an observation that deviates markedly

from other members of the dataset. However, this deviation can be defined in

terms of either distance or density. Burridge and Taylor (2006), Wilkinson (2017)

and Schwarz (2008) have all proposed methods for anomaly detection by

defining an anomaly in terms of distance. In contrast, Hyndman (1996), Clifton

et al. (2011) and Talagala et al. (2020) have proposed methods that define an

anomaly with respect to either the density or the chance of the occurrence of

observations. Madsen (2018) also provides a series of distance and density-

based anomaly detection algorithms.

In this study, we define an anomaly as an observation where its k-nearest

neighbour distance with the maximum gap is significantly different from what we

would expect if the corresponding distribution is in the maximum domain of

attraction of the Gumbel distribution. This covers a wide range of distributions.

Intuitively, an anomaly deviates markedly from the majority of the data, with a

significantly larger distance between typical observations and anomalies

compared to the distances between typical observations. This definition allows

anomalies to be isolated observations or small isolated clusters of observations.

3 Limitations of HDoutliers Algorithm

The HDoutliers algorithm (Wilkinson 2017) is a distance based anomaly

detection algorithm. One important property of this algorithm is that it has an

ability to convert any higher dimensional anomaly detection problem to a one

dimensional problem by taking the nearest neighbour distances of the data

instances.

Acc
ep

te
d

M
an

us
cr

ipt

There are two published versions of the HDoutliers algorithm. The first version

calculates nearest neighbour distance for each data instance and does not

involve any clustering step prior to the nearest neighbour distance calculation.

This version of the algorithm (version 1 of the HDoutliers, hereafter) is

recommended for small samples. The default maximum sample size for version 1

is set to 10000 in the R implementation of the HDoutliers package. The second

version of the HDoutliers algorithm incorporates a clustering step with the aim of

detecting micro clusters. It uses the Leader algorithm (Hartigan

and Hartigan 1975) to form several clusters of points and then selects a

representative member from each cluster. The nearest neighbour distances are

then calculated only for the selected representative members.

Although the HDoutliers algorithm (Wilkinson 2017) has many advantages, a few

characteristics limit its possibilities. Next, we discuss these limitations in detail.

3.1 HDoutliers Uses Only the Nearest Neighbour Distance to
Discriminate Anomalies

The HDoutliers algorithm uses the Leader algorithm to form small clusters of

points, prior to calculating nearest neighbour distance. In the Leader algorithm,

each cluster is a ball in the high-dimensional data space. In the HDoutliers

algorithm, the radius of this ball is selected such that it is well below the expected

value of the distances between (1) / 2n n pairs of points distributed randomly in

a d-dimensional unit hypercube.

After forming clusters using the Leader algorithm, the HDoutliers algorithm

selects representative members from each cluster. It then calculates the nearest

neighbour distances for each of these representative members. These distances

are then used to identify the anomalies based on the assumption that anomalies

bring large distance separations between typical data and the anomalies, in

comparison to the separations between typical data themselves. Therefore,

under this assumption it is believed that any anomalous cluster will appear far

Acc
ep

te
d

M
an

us
cr

ipt

away from the clusters of the typical data points. As a result, the nearest

neighbour distance for this anomalous cluster will be significantly higher than that

of the clusters of typical data and thereby identify it as an anomalous cluster. All

the data points contained in the anomalous cluster are then marked as

anomalous points within a given dataset.

However, one further assumption for this method to work properly is that any

anomalous clusters present in the dataset are isolated. For example, imagine a

situation in which two anomalous clusters are very close to one another but are

far away from the rest of the typical clusters. Now, the two clusters will become

nearest neighbours to one another and they will jointly protect them by being

anomalous by giving very small nearest neighbour distances for both clusters

that are compatible with the nearest neighbour distances of the rest of the typical

clusters. Figures 4 (c-II) and (d-II) further elaborate this argument. In these two

examples, the HDoutliers algorithm (with the clustering step) declares points as

anomalies only if they are isolated and fails to detect anomalous clusters that

share a few cluster neighbours. Although the HDoutliers algorithm incorporates

the clustering step with the aim of identifying anomalous clusters of points,

because of the very small size of the ball that is used to produce clusters

(exemplars) in the d-dimensional space, it fails to bring all the points into a single

cluster and instead produces a few anomalous clusters that are very close to one

another. These anomalous clusters then become nearest neighbours to one

another and have very small nearest neighbour distances for the representative

member of each cluster. Since the detection of anomalies entirely depends on

these nearest neighbour distances and since the anomalous clusters do not

show any significant deviation from typical clusters with respect to the nearest

neighbour distances, the algorithm now fails to detect these points as anomalies

and thereby increases the rate of false negatives.

3.2 Problems Due to Clustering Via Leader Algorithm

Acc
ep

te
d

M
an

us
cr

ipt

After forming clusters of data points, the HDoutliers algorithm completely ignores

the density of the data points. Once it forms clusters of data points using the

Leader algorithm, it selects a representative member from each cluster and

carries out further analysis only using these representative members. Figure 4

(e-II) provides an example related to this issue. This dataset is a bimodal dataset

with an anomalous point located between the two typical classes. The entire

dataset contains 2,001 data points. The data points gathered at the leftmost

upper corner represent one typical class with 1,000 data points. The second

typical class of data points is gathered at the rightmost bottom corner with

another 1,000 data points. Since this second class of data points is closely

compacted in substance, the 1,000 data points are now wrapped by a single ball

when forming clusters using the Leader algorithm. In the HDoutliers algorithm,

the next step is to select one member from each of these clusters. Once it

selects a representative member from this ball that contains 1,000 data points, it

ignores the remaining 999 data points in detecting anomalies. This step misleads

the algorithm, and the remaining steps of the algorithm view this representative

member as an isolated data point, although it is surrounded by 999 neighbouring

data points in the original dataset. Therefore, all data points in this entire class

are declared as anomalies by the algorithm, although it contains half of the

dataset. Unwin (2019) suggests jittering not as a perfect solution, but as an

alternative to mitigate this problem. Unwin (2019) also argues that the problem

tends not to occur in high-dimensional data spaces where this kind of granularity

is less likely. However, then it gives rise to the problem of neighbouring

anomalous clusters (as illustrated in Figure 4 (c-II, d-II)), which individually

appear to be typical, or of limited suspicion (due to the presence of other

neighbouring anomalous clusters), yet, their co-occurrence is highly anomalous.

Figure 4 (f-II) provides another situation in which false negatives increase

because of the clustering step. This bivariate dataset contains 1,001 data points.

The data points gathered at the leftmost upper corner represent a typical class

covering 1,000 data points, and the isolated data point at the rightmost bottom

Acc
ep

te
d

M
an

us
cr

ipt

corner represents an anomaly. Since this typical class of 1,000 data points is

closely compacted, it gives rise to only 14 clusters through the Leader algorithm.

Altogether, the dataset forms 15 clusters with the one created by the isolated

point located at the rightmost bottom corner. Even though the original dataset

contains 1,001 data points, the algorithm considers only 15 data points (a

representative member from each cluster) for calculating the anomalous

threshold. Now, this number is not large enough to yield a stable estimate for the

anomalous threshold. Due to this ignorance of the density of the original dataset,

it now fails to detect the obvious anomalous point at the leftmost bottom corner.

3.3 Problem with Threshold Calculation

A companion R package (Fraley 2018) is available for the algorithm proposed by

Wilkinson (2017). According to the R package implementation, the current

version of the HDoutliers algorithm uses the next potential candidate for

anomalies in calculating the anomalous threshold, in each iteration of the bottom-

up searching algorithm. This approach causes an increase in the false detection

rate under certain circumstances. We avoid this limitation in our proposed

algorithm.

4 Proposed Improved Algorithm: stray Algorithm

In this section, we propose an improved algorithm for anomaly detection in high

dimensional data. Our proposed algorithm is intended to overcome the limitations

of the HDoutliers algorithm and thereby enhance its capabilities.

4.1 Input to the stray Algorithm

An input to the stray algorithm is a collection of data instances where each data

instance can be a realisation of only one attribute or a set of attributes (also

referred to using terms such as features, measurements and dimensions). In this

study, we limit our discussion to quantitative data; therefore, an input can be a

vector, matrix or data frame of (1)d  numerical variables, where each column

Acc
ep

te
d

M
an

us
cr

ipt

corresponds to an attribute and each row corresponds to an observation of these

attributes. The focus is then to detect anomalous instances (rows) in the dataset.

The stray algorithm can be easily extended to deal with categorical data by using

correspondence analysis which converts categorical data into quantitative

information, as in Wilkinson (2017).

4.2 Normalise the Columns

Since the stray algorithm is based on the distance definition of an anomaly, a

distance measure must be specified. In this analysis we use Euclidean distances

to measure the k-nearest neighbour distances between observations in the high-

dimensional data space. To make the variables of equivalent weight, the columns

of the data are first normalised using a linear transformation. By default, we use “

min-max normalisation”, with the resulting data ranging from 0 to 1. Alternative

normalizations based on linear transformations (see Kandanaarachchi

et al. 2018) may also be used and are available through the stray package

implementation. Thus, our distance measure is invariant to rescaling the

variables but it is not affine invariant (unlike Mahalanobis distance, for example).

Exploration of alternative distance measures would be an interesting avenue for

future research. In addition to min-max normalisation, a robust normalisation

method ((() / ())x median x IQR x) is also available through the stray package

implementation. However, there is no one-fit-for-all normalisation strategy for

anomaly detection problems even though min-max normalisation is shown to be

preferred to median-IQR with most of the datasets and anomaly detection

methods considered in Kandanaarachchi et al. (2018).

4.3 Nearest Neighbour Searching

In the stray algorithm, after the columns of the dataset are normalised, it

calculates the Euclidean distance-based k-nearest neighbour distance with the

maximum gap for each and every instance. By using this measure, we were able

to address the aforementioned limitations of the HDoutliers algorithm.

Acc
ep

te
d

M
an

us
cr

ipt

For each individual observation, the algorithm first calculates the k-nearest

neighbour distances,
,i KNNd , where 1,2,...,i k . Then, it calculates the successive

differences between distances,
,i KNN . Next, it selects the k-nearest neighbour

distance with the maximum gap,
,i max . Figure 1 illustrates how these steps help

our improved algorithm to detect anomalous points or anomalous clusters of

points.

In Figure 1 (a), the dataset contains only one anomaly at (15,16.5). For this

dataset, the nearest neighbour distance can differentiate the anomalous point

from the remaining typical points because the nearest neighbour distance for the

anomalous point is significantly larger (14.8) than that for the remaining typical

points. Figure 1 (b) shows the change in the k-nearest neighbour distances of the

anomaly at (15,16.5). For this dataset, the k-nearest neighbour distance with the

maximum gap occurs when k = 1. The second dataset, in Figure 1 b), has a

micro cluster with three anomalies around (15,16.5). If only the nearest

neighbour distances are calculated for each observation, then the three

anomalies in the micro cluster are not distinguishable from the typical points

since their values are very small (0.7) compared with that of most typical points

with nearest neighbour distances at around (0.0015 to 2.5). However, the three

anomalies in the micro cluster are distinguishable from their typical points with

respect to the k-nearest neighbour distances with the maximum gap at around

14.8 and 14.9 (Figure 1 (d)). For the three anomalies in the micro cluster in

Figure 1 (d), the third nearest neighbour distance has the maximum gap (Figure

1 e)) and the three points in the micro cluster are now easily distinguished as

anomalies, with respect to k-nearest neighbour distances with the maximum gap.

Therefore, by using k-nearest neighbour distances with the maximum gap, the

stray algorithm gains the ability to detect both anomalous singletons and micro

clusters. Through this approach, we are able to reduce the false detection rate

and thereby address the limitations of the HDoutliers algorithm, while gaining the

ability to detect micro clusters. This is also a very simple, but clever, investment

as compared with the time taken by the leader algorithm to form small clusters to

Acc
ep

te
d

M
an

us
cr

ipt

detect micro clusters (especially for datasets with large dimensions), in the

HDoutliers algorithm. Further, for each point, the corresponding k-nearest

neighbour distances with the maximum gap act as an anomalous score to

indicate the degree of being an anomaly.

In the current study, we consider both exact and approximate k-nearest

neighbour searching techniques. Brute force search involves going through every

possible paring of points to detect k-nearest neighbours for each data instance,

and therefore, exact k-nearest neighbours are explored. Conversely, k-

dimensional trees (k-d trees) employ spatial data structures that partition space

to allow efficient access to a specified query point (Elseberg et al. 2012 a).

Therefore, it involves searching approximate k-nearest neighbours around a

specified query point.

In the current algorithm, parameter k, which determines the size of the

neighbourhood, is introduced as a user-defined parameter that can be selected

according to the application. One way to interpret the role of k in the stray

algorithm is to view it as the minimum possible size for a typical cluster in a given

dataset. If the size of an anomalous cluster is less than k, it will be detected as a

micro cluster by the stray algorithm. The choice of k has different effects across

different dimensions and sizes of data (Campos et al. 2016). We can set k to 1 if

no micro clusters are present in the dataset and thereby focus on local and

global anomalous points. High k values are recommended for datasets with high

dimensions because of the curse of dimensionality.

4.4 Threshold Calculation

Anomalous scores assign each point a degree of being an anomaly. However,

for certain applications it is also important to categorise typical and anomalous

points for the subsequent root-cause analysis. Ideally, we prefer a universal

threshold to unambiguously distinguish anomalous points from typical points.

Following Schwarz (2008), the HDoutliers algorithm (Wilkinson 2017) defines an

Acc
ep

te
d

M
an

us
cr

ipt

anomalous threshold based on extreme value theory, a branch of probability

theory that relates to the behaviour of extreme order statistics in a given sample

(Galambos et al. 2013).

The anomalous threshold calculation in Schwarz (2008); Burridge

and Taylor (2006) and Wilkinson (2017) is an application of Weissman’s spacing

theorem (Weissman 1978) (Theorem 1) that is applicable to the distribution of

data covered by the maximum domain of attraction of a Gumbel distribution. This

requirement is satisfied by a wide range of distributions, ranging from those with

light tails to moderately heavy tails that decrease to zero faster than any power

function (Embrechts et al. 2013). Examples include the exponential, gamma,

normal and log-normal distributions with exponentially decaying tails.

Let 1 2, , , nX X X be a sample from a distribution function F and let

1: 2: :n n n nX X X   be the order statistics. The available data are 1: :, ,n K nX X

for some fixed K.

Theorem 1 (Spacing Theorem). (Proposition 1 in Burridge and Taylor (2006), p.6

and Theorem 3 in Weissman (1978), p.813; the notations have been changed for

consistency in this paper)

Let , : 1:i n i n i nD X X   , (1, ,i K ) be the spacing between successive order

statistics. If F is in the maximum domain of attraction of the Gumbel distribution,

the spacings
,i nD are asymptotically independent and exponentially distributed

with mean proportional to 1i .

We illustrate this theorem using Figure 2, which shows the distribution of the

descending order statistics :()i nX and the standardised spacings, ,()i niD , for

 1, ,10i  for 1, 000 samples each containing 20, 000 random numbers from

the standard normal distribution. Figure 2 (a) shows the distribution of :i nX with

means of :i nX depicted as black crosses. The gaps between consecutive black

crosses give the spacings between higher-order statistics ,()i nD . We note that

Acc
ep

te
d

M
an

us
cr

ipt

the normal distribution is in the maximum domain of attraction of the Gumbel

distribution and that this example contains no outliers. A consequence of

Theorem 1 is that the standardised spacings
,()i niD for (1, ,)i K  , are

approximately iid (Burridge and Taylor 2006). Figure 2 (b) shows the distribution

of the standardised spacings
,()i niD for (1,2,...,10)i  for 1, 000 samples of size

20, 000. Each letter-value box plot (Hofmann et al. 2017) exhibits approximately

the shape of an exponential distribution.

Following Schwarz (2008), Burridge and Taylor (2006) and Wilkinson (2017), we

start our anomalous threshold calculation from a subset of the points covering 50

per cent of them with the smallest anomalous scores (k nearest neighbour

distances with the maximum gap) under the assumption that this subset contains

the anomalous scores corresponding to typical data points and the remaining

subset contains the scores corresponding to the possible candidates for

anomalies. Following the Weissman spacing theorem, it then fits an exponential

distribution to the upper tail of the outlier scores of the first subset, and then

computes the upper 1  points of the fitted cumulative distribution function,

thereby defining an anomalous threshold for the next anomalous score as

follows:

Let X be the k-nearest neighbour distances with the maximum gap for the first

subset of the dataset with cdf F and ()F MDA   . Let 1: 2: :n n n nX X X   be

the order statistics. Consider , : 1:i n i n i nD X X   , where 1, ,i K  for some fixed K.

According to the Weissman spacing theorem, we have

, ~ exp(),i nD i

where E() 1/ ()iD i and 1/  is the proportional constant.

Let t be the anomalous threshold. Then 1,Pr() 1nD t    , and so

log(1/) / .t  

Acc
ep

te
d

M
an

us
cr

ipt

Consider,
1

2

ˆ () / (1)
K

i

i

D iD k


  . This is an unbiased estimator for 1/  . Therefore,

an empirical threshold is given by

2

ˆ log(1/) / (1).
K

i

i

t iD k


 

From the remaining subset, the point with the smallest anomalous score is

selected. If this anomalous score exceeds the empirical threshold t̂ , all the

points in the remaining subset are flagged as anomalies. Otherwise, it declares

the point as a typical point and adds it to the subset of the typical points. It then

updates the cut-off point, including the latest addition. This searching algorithm

continues until it finds an anomalous score that exceeds the latest cut-off point.

This algorithm is known as a ‘bottom-up searching’ algorithm in Schwarz (2008).

This threshold calculation is performed under the assumption that the distribution

of k-nearest neighbours with the maximum gap is in the maximum domain of

attraction of the Gumbel distribution, which covers a wide range of distributions.

4.5 Output

In stray, anomalies are measured in two scales: (1) binary classification and (2)

outlier score. Under binary classification, data instances are classified either as

typical or anomalous using the data-driven anomalous threshold based on the

extreme value theory. This anomalous threshold or the cut-off point for the

anomalies is defined on the k-nearest neighbour distances with the maximum

gap. This type of classification is important if the subsequent steps of the data

analysis process are automated.

The decision of the stray algorithm is based on the k-nearest neighbour

distances with the maximum gap of the data instances. The k-nearest neighbour

distance with the maximum gap of each data instance quantifies how isolated the

data instance is with respect to its surrounding points, and hence acts as an

anomalous score. High values indicate higher degree of outlyiness or isolation,

Acc
ep

te
d

M
an

us
cr

ipt

while low values indicate high compactness (Figures 1 (d), (e)). Therefore, in

addition to the binary output, the stray algorithm also assigns an anomalous

score to each data instance. These anomalous scores allow the user to rank and

select the most serious or relevant anomalous points for root-cause analysis and

taking immediate precautions. The HDoutliers algorithm (Wilkinson 2017), which

provides only a binary classification, does not directly allow the user to make

such a choice to direct their attention to more significant anomalous instances.

Conversely, various methods proposed in the literature provide anomalous

scores, but the anomalous threshold is user defined and application specific

(Madsen 2018). The output produced by stray is an all-in-one solution

encapsulating necessary measurements of anomalies for further actions.

5 Experiments

The HDoutliers algorithm is a powerful algorithm in the current state-of-the-art

methods for detecting anomalies in high-dimensional data. The focus of the stray

algorithm is to address some of the limitations of the HDoutliers algorithm that

hinder its performance under certain circumstances. Here, we perform an

experimental evaluation on the accuracy and computational efficiency of our

stray algorithm relative to the HDoutliers algorithm. While these examples are

fairly limited in number and are mostly limited to bivariate datasets, they should

be viewed only as simple illustrations of the key features of the stray algorithm

that outperforms the HDoutliers algorithm.

The first experiment (Figure 3) was designed to test the effect of the dimension,

size of the data and the k-nearest neighbour searching method on running times

of the different versions of the two algorithms: stray and HDoutliers. Due to high

computational cost, the algorithms were applied to problems with only up to 100

dimensions, which are still relatively small for many real-world problems.

Compared with version 1 of the HDoutliers algorithm (Figure 3 (a)), version 2 with

the clustering step is extremely slow for higher dimensions (>10), and the running

Acc
ep

te
d

M
an

us
cr

ipt

time increases more rapidly with increasing sample size. For clear comparison

between the different versions of the two algorithms (stray and HDoutliers), only

a part of the measurements of the full experiment of the second version of the

HDoutliers algorithm is displayed in Figure 3 (b-I)). Figure 3 (b-II) presents the full

version of Figure 3 (b-I). The additional clustering step in the second version of

the HDoutliers algorithm, which is essential for detecting micro clusters, is

extremely time-consuming, particularly with large samples with higher

dimensions. Figure 3 (c)–(f) corresponds to the stray algorithm. In this

experiment, to ascertain the influence from the k-nearest neighbour searching

methods, we considered both exact (brute force) and approximate (kd-trees)

nearest neighbour searching algorithms.

Many implementations of k-nearest neighbour searching algorithms are available

for the R software environment. We considered the FNN (Beygelzimer

et al. (2019), Figure 3 (c) & (d)) and nabor (Elseberg et al. (2012 b); Figure 3 (e)

& (f)) R packages for our comparative analysis. R package nabor, wraps a fast k-

nearest neighbour library written in templated C++. We noticed that searching

(1)k   nearest neighbours (Figure 3 (a), in this example k is set to 10) instead

of only one (k = 1) nearest neighbour (Figure 3 (d)) increases the running time

only slightly as the number of instances is increased. The results in both Figure 3

(a) and Figure 3 (d) are based on approximate nearest neighbour distances

using the kd-trees nearest neighbour searching algorithm. We observed that the

kd-trees implementation in the nabor package (Figure 3 (f)) is much faster than

the FFN package implementation (Figure 3 (d)). Surprisingly, as the dimension

increases, the running time of the stray algorithm with kd-trees (Figure 3 (d), (f))

increases much more quickly than that of the brute force algorithm, which

involves searching every possible pairing of points to detect k-nearest

neighbours for each data instance (Figure 3 (c), (e)). Other studies (Kanungo

et al. 2002) have also reported a similar result for algorithms based on kd-trees

and its variants. This could be due to the parallelisability and memory access

patterns of the two searching mechanisms. The brute force algorithm is easily

Acc
ep

te
d

M
an

us
cr

ipt

parallelisable because it involves independent searching of all possible

candidates for each data instance. In contrast, the kd-tree searching algorithm is

naturally serial and therefore difficult to implement on parallel systems with

appreciable speedup (Zhang 2017).

Following Wilkinson (2017), we evaluated the false positive rate (typical points

incorrectly identified as anomalies) of the stray algorithm by running it many

times on random data. The values presented in Table 1 are based on 1000

iterations and the mean values are reported. Different versions of the two

algorithms (stray and Hdoutliers) were applied on datasets where each column is

randomly generated from the standardised normal distribution. In each test, the

critical value, α, was set to 0.05. Compared with the HDoutliers algorithm, low

false positive rates were achieved for the stray algorithm across all dimensions

and sample sizes. Unlike in the HDoutliers algorithm (Unwin 2019), in stray a

much smaller false detection rate was observed even for the small datasets with

smaller dimensions. No difference was observed across different versions of the

stray algorithm with different nearest neighbour searching mechanisms and their

different implementations.

Figure 4 and Table 2 demonstrate how the stray algorithm outperforms the two

versions of the HDoutliers algorithm under different circumstances. These limited

set of examples were selected with the aim of highlighting some of the key

feature of the stray algorithm:

(1) All three algorithms were able to correctly capture the anomalous point at

the rightmost upper corner of Figure 4 (a)- I, II, III). However, the second

versions of the HDoutliers algorithm tend to generate some false positives,

particularly with the small dimensions (Figure 4 (a)- II; Table 2, row 1

column 3)

(2) Figure 4 (b)- III) shows its ability to deal with multimodal typical classes.

The two clusters at the bottom of the graph represent two typical classes.

Acc
ep

te
d

M
an

us
cr

ipt

Only the second version of the HDoutliers algorithm (Figure 4 (b)- II) that

utilises the clustering step was able to detect the top-centred micro cluster

that contains three anomalous data instances. However, forming small

clusters prior to the distance calculation is not always helpful in detecting

micro clusters.

(3) Figure 4 (c)- II) (Table 2, row 3) shows a situation where even the second

version of the HDoutliers algorithm fails in detecting micro clusters. The

Leader algorithm in the HDoutliers algorithm uses a very small ball of a

fixed radius to form clusters, and therefore, it now fails to capture the five

points into a single cluster and instead generates three small clusters that

are very close to one another. Both versions of the HDoutliers algorithm

now fail to detect the micro cluster at the rightmost upper corner, because

the dataset violates one of the major requirements of isolation of

anomalous points or anomalous clusters. In stray, the value of k was set

to 10. One can interpret the value of k as the maximum permissible size

for a micro cluster. That is, for a small cluster to be a micro cluster, the

number of data points in that cluster should be less than k. Otherwise, the

cluster is considered a typical cluster.

(4) Figure 4 (d)- III) demonstrates the ability of detecting inliers. The

HDoutliers algorithm also has this ability of detecting inliers only when

there are isolated inliers that are free from anomalous neighbours. Both

versions of the HDoutliers algorithm fail to detect the two inliers since they

are very close to one another and thereby jointly protect them as being

anomalous (Table 2, row 4).

(5) As explained in Section 3.2, Figure 4 (e)- II) shows how the clustering step

of the second version of the HDoutliers algorithm can misguide the

detection process and thereby increase the rate of false positives (Table

2, row 5 column 3). The dense areas of the dataset are marked with

density curves. Two typical clusters are visible, one at the leftmost upper

corner and the other at the rightmost bottom corner. An inlier is also

Acc
ep

te
d

M
an

us
cr

ipt

present in between the two typical classes. After forming cluster through

the Leader algorithm, only one representative member is selected from

each cluster for the nearest neighbour distance calculation. The selected

member is now isolated and earns a very high anomalous score, leading

the entire typical cluster at the rightmost bottom corner with 1,000 points

to be identified as anomalous. In contrast, the stray algorithm is free from

these problems because it does not involve any clustering step prior to the

nearest neighbour distance calculation.

(6) As explained in Section 3.2, Figure 4 (f)- II) shows how the clustering step

can increase the rate of false negatives (Table 2, row 6 column 4). This

dataset contains one typical class that is closely compacted in substance

(the leftmost upper corner) and an obvious anomaly at the rightmost

bottom corner. Since the typical class is a dense cluster, only a few data

points are selected from the typical class for the nearest neighbour

calculation. In this example, the clustering step substantially down-

samples the original dataset, leading to a huge information loss in the

representation of the original dataset. The blue dots in Figure 4 (f)- II)

represent the selected members from each cluster for nearest neighbour

calculations. Now, the reduced sample size is not enough for a proper

calculation of the anomalous threshold based on extreme value theory.

6 Usage

We applied our stray algorithm to a dataset obtained from an automated

pedestrian counting system with 43 sensors in the city of Melbourne, Australia

(City of Melbourne 2019, Wang 2018), to identify unusual pedestrian activities

within the municipality. Identification of such unusual, critical behaviours of

pedestrians at different city locations at different times of the day is important

because it is a direct indication of a city’s economic conditions, the related

activities and the safety and convenience of the pedestrian experience (City of

Melbourne 2019). It also guides and informs decision-making and planning. This

Acc
ep

te
d

M
an

us
cr

ipt

case study also illustrates how the stray algorithm can be used to deal with other

data structures, such as temporal data and streaming data using feature

engineering.

6.1 Handling Temporal Data

For this study, we consider the hourly pedestrian counts from January 2, 2019, to

August 18, 2019. For clear visual illustration, Figure 5 shows only a limited part of

the study period with the pedestrian counts at 43 locations in the city of

Melbourne at different times of the day. The distribution of pedestrian counts

follows a negatively skewed distribution. In general, pedestrian counts on

weekdays display a bimodal distribution, while pedestrian counts on weekends

follow a unimodal distribution. Now, the aim is to detect days with unusual

behaviours. Since this involves a large collection of multivariate time series plots,

each representing a day of the study period, manual monitoring is time-

consuming and unusual behaviours are difficult to locate by visual inspection.

Detecting anomalous plots from a large collection of plots requires some pre-

processing. In particular, to apply the stray algorithm, we need to convert this

original dataset, with a large collection of multivariate time series plots, into a

high dimensional dataset. A simple approach is to use features that describe the

different shapes and patterns of the multivariate time series plots. Computing

features that describe meaningful shapes and patterns in a given multivariate

time series plot is straightforward with scagnostics (scatterplot diagnostics)

developed by Wilkinson et al. (2005). For the current study, we select nine

features: outlying (a measure of the proportion of long edges on all edges in the

minimum spanning tree (MST)), skewed (a measure of skewness based on a

ratio of quantiles of the edge lengths of MST), clumpy (a measure of clustering of

data points based on MST), sparse (a measure to check whether points in a

scatterplot are confined to a lattice or a small number of locations on the plane),

striated (a measure of coherence of data points), convex (the ratio of the area of

the alpha hull and the area of the convex hull), skinny (the ratio of perimeter to

Acc
ep

te
d

M
an

us
cr

ipt

area of a polygon), stringy (the ratio of diameter to length of a network) and

monotonic (the squared Spearman correlation coefficient) [Dang

and Wilkinson (2014); wilkinson2005graph]. Once we extract these nine features

from each plot, we convert our original collection of multivariate time series plots

into a dataset with nine dimensions and 228 data instances covering the study

period from January 2, 2019, to August 18, 2019. Figure 6 shows the O3 plot

(Overview of Outliers plot) (Unwin 2019) summarizing feature combinations on

which those days are anomalies and on what groups of features have these days

been identified as anomalies. There is a row for each feature combination for

which anomalies are found. Two white columns separate the feature

combinations and the anomalies detected. Each row of the block on the left

shows which feature combination defines the row. There are 9 columns, one for

each feature and a cell is gray if the feature is a part of the combination. From

this analysis, 13 days were found to be anomalies in at least one of the sub

feature spaces defined by different feature combinations. These anomalies are

marked by red cells on the right block in Figure 6. Figure 7 provides feature-

based representation of the original collection of multivariate time series plots.

Each point in this high-dimensional data space corresponds to a single

multivariate time series plot (or a day) in the original collection of multivariate

time series plots. Anomalies determined by the stray algorithm in at least one of

the sub feature spaces defined by different feature combinations are highlighted

in Figure 7. The corresponding multivariate time series plots (or days) are

highlighted in Figure 5. Visual inspection also confirms the anomalous behaviour

of these individual multivariate time series plots. Most of these anomalous days

display an unusual rise later in the day. Most of the anomalies in January (14, 15,

19 and 20 January 2019) cover the 2019 Australian Open, a Grand Slam tennis

tournament that took place at Melbourne Park from 14 to 27 January 2019. This

annual tennis tournament attracts many thousands of tennis fans from all around

the worlds. Further investigations regarding 13 January 2019, reveal that there

was a musical concert in Melbourne city and the unusual rise later in the day

Acc
ep

te
d

M
an

us
cr

ipt

could be due to the concert participants. Similar patterns were observed with the

remaining anomalies detected.

After detecting the days with anomalous pedestrian behaviours, further

investigation is carried out for each day to detect the locations with anomalous

behaviours within the selected day. Once we focus on one day, we obtain a

collection of 43 time series with hourly pedestrian counts generated from the 43

sensors located at different geographic locations in the city (Figure 8). For this

analysis, we extract 11 time series features (similar to Talagala

et al. 2020, Hyndman et al. 2015) and convert the original collection of time

series into a data space with 11 dimensions and 43 data instances (Figure 9).

Now, each point in this high-dimensional space correspond to a single time

series (or sensor) in Figure 8. The stray algorithm declares three points as

anomalous points in this high dimensional data space. These points correspond

to the sensors at Southbank, the Art centre and St Kilda Rd-Alexandra Gardens

in Melbourne.

These types of findings play a critical role in making decisions about urban

planning and management; to identify opportunities to improve city walkability

and transport measures; to understand the impact of major events and other

extreme conditions on pedestrian activity, and thereby assist in making decisions

regarding security and resource requirements; and to plan and respond to

emergency situations, etc.

6.2 Handling Streaming Data

Owing to the unsupervised nature of the stray algorithm, it can easily be

extended for streaming data. A sliding window of fixed length can be used to deal

with streaming data. Then, datasets in each window can be treated as a batch

dataset (Talagala, Hyndman, Leigh, Mengersen and Smith-Miles 2019) and the

stray algorithm can be applied to each window to detect anomalies in the

datasets defined by the corresponding window.

Acc
ep

te
d

M
an

us
cr

ipt

It also can be used to identify anomalous time series within a large collection of

streaming temporal data. Let [,]W t t w represent a sliding window containing n

number of individual time series of length w. First, we extract m features (similar

to Hyndman et al. (2015) and Talagala, Hyndman, Leigh, Mengersen and Smith-

Miles (2019)) from each and every time series in this window. This step gives rise

to an n × m feature matrix where each row now corresponds to a time series in

the original collection of time series. Once we convert our original collection of

time series into a high-dimensional dataset, we can apply the stray algorithm to

identify anomalous points within this m-dimensional data space. The

corresponding time series are then declared as anomalous series within the large

collection of time series in the corresponding sliding window.

7 Conclusions and Further Research

The HDoutliers algorithm by Wilkinson (2017) is a powerful algorithm for

detecting anomalies in high-dimensional data. However, it suffers from a few

limitations that significantly hinder its ability to detect anomalies under certain

situations. In this study, we propose an improved algorithm, the stray algorithm,

that addresses these limitations. The stray algorithm has many special features:

(1) It can deal with both one dimensional and high dimensional data as it is

based on distance measures. By extracting k nearest neighbour distances for

each data instance, it converts any high dimensional anomaly detection problem

into a one dimensional problem. (2) Since the anomalous threshold calculation is

a data driven approach, the algorithm is unsupervised in nature and therefore

does not require labeled training datasets. (3) Most of the existing algorithms

involve a manual anomalous threshold for binary classification as anomalies or

typical points. Since the stray algorithm uses an anomalous threshold based on

extreme value theory, it has a valid probabilistic interpretation. (4) It deals with

masking problems and detects micro clusters as it does not limit its threshold

calculation only to the nearest neighbour distances and instead uses k nearest

neighbour distances. (5) Since it uses fast nearest neighbour searching

Acc
ep

te
d

M
an

us
cr

ipt

mechanisms it can be easily extended to streaming data using sliding windows.

(6) Owing to the use of k nearest neighbour distances it can deal with multimodal

distributions. (7) In addition to a label, the stray algorithm also assigns an

anomalous score to each data instance to indicate the degree of outlierness of

each measurement. (8) Owing to the use of k nearest neighbour distances it also

detect inliers, which is overlooked in most past research. We also demonstrate

how the stray algorithm can assist in detecting anomalies present in other data

structures using feature engineering.

While the HDoutliers algorithm is powerful, we have provided several classes of

counterexamples in this paper where the structural properties of the data did not

enable HDoutliers to detect certain types of outliers. We demonstrated on these

counterexamples that the stray algorithm outperforms HDoutliers, in terms of

both accuracy and computational time. It is certainly common practice to

evaluate the strength of an algorithm using collections of test problems with

various challenging properties. However, we acknowledge that these

counterexamples are not diverse and challenging enough to enable us to

comment about the unique strengths and weaknesses of these two algorithms,

nor to generalise our findings to conclude that stray is always the superior

algorithm. This study should be viewed as an attempt to simulate further

investigation on the HDoutliers algorithm and its successors, with the ultimate

goal to achieve further improvements across the entire problem space defined by

various high-dimensional datasets. An important open research problem is

therefore to assess the effectiveness of these algorithms across the the broadest

possible problem space defined by different datasets with diverse properties

(Kang et al. 2017). It is an interesting question to explore the impact of other

classes of problems with various structural properties affect the performance of

the stray algorithm and where its weaknesses might lie. This kind of instance

space analysis (Smith-Miles et al. 2014) will enable further insights into improved

algorithm design.

Acc
ep

te
d

M
an

us
cr

ipt

In our proposed algorithm, the anomalous threshold calculation was performed

under the assumption that the distribution of k-nearest neighbours with the

maximum gap is in the maximum domain of attraction of the Gumbel distribution.

This requirement is satisfied by a wide range of distributions, ranging from those

with light tails to moderately heavy tails that decrease to zero faster than any

power function (Embrechts et al. 2013). Future studies will be required for

alternative methods to find better values for the anomalous threshold in the

presence of other sub-classes of EVT. For the current work, parameter k, which

determines the size of the neighbourhood is introduced as a user-defined

parameter that can be selected according to the application as too large values

of k could increase the rate of false positives and too small values of k could

increase the rate of false negatives. Further work will be needed to perform an

optimization to select the best k as the performance of the algorithms can

depend on the value of k and algorithms can reach their peak performance for

different choices of k (Campos et al. 2016). One possibility is to adopt the

method proposed by Zhang et al. (2017), for fast learning an optimal-k-value for

each test sample. The features we used in this paper were directed by the data

structures and typical patterns imposed by a given application. Domain specific

knowledge plays a vital role when selecting suitable features for a given

application.

In the simulation study, different versions of the algorithms (stray and HDoutlier)

were applied on both real and simulated datasets. Some of the two-dimensional

simulated data sets and real examples include high correlation among variables.

But for very high dimensional data, each column is randomly generated from the

standard normal distribution. One interesting issue is to look at the effect of the

correlation on the algorithm performance when the number of dimensions of the

datasets gets higher. But we leave this for future work as it is more complicated

and not the main focus of this paper.

Acc
ep

te
d

M
an

us
cr

ipt

Anomaly detection problems commonly appear in many applications in different

application domains. Therefore, it is hoped that different people with different

knowledge levels will use the stray algorithm for many different purposes.

Therefore, we expect future studies to develop interactive data visualisation tools

that can enable exploring anomalies using a combination of graphical and

numerical methods.

Supplementary Materials

Data and scripts:

Datasets and R code to reproduce all figures in this article (main.R and R

package stray (Talagala, Hyndman and Smith-Miles 2019)).

R package stray:

The stray package consists of the implementation of the stray algorithm

as described in this article. Version 0.1.1 of the package was used for the

results presented in the article and is available from CRAN. The

development version of the package is available from

https://github.com/pridiltal/stray.

R-packages:

Each of the R packages used in this article (ggplot2 (Wickham 2016),

dplyr (Wickham et al. 2019), tidyr (Wickham and Henry 2019),

HDoutliers (Fraley 2018), lvplot(Wickham and Hofmann 2016) are

available online (URLs are provided in the bibliography).

Acknowledgements

This research was supported in part by the Monash eResearch Centre and

eSolutions-Research Support Services through the use of the MonARCH

(Monash Advanced Research Computing Hybrid) HPC Cluster. We thank Heike

Hofmann, Eamonn Keogh and all the anonymous reviewers for their valuable

comments and suggestions to improve our work. We also thank Anthony Unwin

for his valuable feedback for our R implementation. Further, we thank Sevvandi

Acc
ep

te
d

M
an

us
cr

ipt

https://github.com/pridiltal/stray

Kandanaarachchi and Mario A. Muñoz for joining the discussions during the

initial stage of the project and Anastasios Panagiotelis for his valuable support

during the revision of the manuscript. We also thank the Australian Centre of

Excellence for Mathematical and Statistical Frontiers for supporting this work.

References

Abuzaid, A., Hussin, A. and Mohamed, I. (2013), ‘Detection of outliers in simple

circular regression models using the mean circular error statistic’, Journal of

Statistical Computation and Simulation 83(2), 269–277.

Aggarwal, C. C. (2017), Outlier analysis, second edition. edn, Cham, Switzerland

: Springer.

Ben-Gal, I. (2005), Outlier detection, in ‘Data mining and knowledge discovery

handbook’, Springer, pp. 131–146.

Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D. and Li, S. (2019),

FNN: Fast Nearest Neighbor Search Algorithms and Applications. R package

version 1.1.3. URL: https://CRAN.R-project.org/package=FNN

Breunig, M. M., Kriegel, H.-P., Ng, R. T. and Sander, J. (2000), Lof: identifying

density-based local outliers, in ‘ACM Sigmod Record’, Vol. 29, ACM, pp. 93–104.

Burridge, P. and Taylor, A. M. R. (2006), ‘Additive outlier detection via extreme-

value theory’, Journal of Time Series Analysis 27(5), 685–701.

Campos, G. O., Zimek, A., Sander, J., Campello, R. J., Micenková, B., Schubert,

E., Assent, I. and Houle, M. E. (2016), ‘On the evaluation of unsupervised outlier

detection: measures, datasets, and an empirical study’, Data Mining and

Knowledge Discovery 30(4), 891–927.

Chandola, V., Banerjee, A. and Kumar, V. (2009), ‘Anomaly detection: A survey’,

ACM Computing Surveys 41(3), 1–58.

Acc
ep

te
d

M
an

us
cr

ipt

City of Melbourne (2019), Pedestrian Volume in Melbourne. Last accessed 2019-

07-23. URL: http://www.pedestrian.melbourne.vic.gov.au

Clifton, D. A., Hugueny, S. and Tarassenko, L. (2011), ‘Novelty detection with

multivariate extreme value statistics’, Journal of Signal Processing Systems

65(3), 371–389.

Dang, T. N. and Wilkinson, L. (2014), ‘Transforming scagnostics to reveal hidden

features’, IEEE Transactions on Visualization and Computer Graphics

20(12), 1624–1632.

Elseberg, J., Magnenat, S., Siegwart, R. and Nüchter, A. (2012 a), ‘Comparison

of nearest-neighbor-search strategies and implementations for efficient shape

registration’, Journal of Software Engineering for Robotics 3(1), 2–12.

Elseberg, J., Magnenat, S., Siegwart, R. and Nüchter, A. (2012 b), ‘Comparison

of nearest-neighbor-search strategies and implementations for efficient shape

registration’, Journal of Software Engineering for Robotics (JOSER) 3(1), 2–12.

Embrechts, P., Klüppelberg, C. and Mikosch, T. (2013), Modelling Extremal

Events: for Insurance and Finance, Stochastic Modelling and Applied Probability,

Springer Berlin Heidelberg.

Fraley, C. (2018), HDoutliers: Leland Wilkinson’s Algorithm for Detecting

Multidimensional Outliers. R package version 1.0. URL: https://CRAN.R-

project.org/package=HDoutliers

Galambos, J., Lechner, J. and Simiu, E. (2013), Extreme Value Theory and

Applications: Proceedings of the Conference on Extreme Value Theory and

Applications, Volume 1 Gaithersburg Maryland 1993, Extreme Value Theory and

Applications: Proceedings of the Conference on Extreme Value Theory and

Applications, Gaithersburg, Maryland, 1993, Springer US.

Acc
ep

te
d

M
an

us
cr

ipt

Gao, J., Hu, W., Zhang, Z. M., Zhang, X. and Wu, O. (2011), Rkof: robust kernel-

based local outlier detection, in ‘Pacific-Asia Conference on Knowledge

Discovery and Data Mining’, Springer, pp. 270–283.

Goldstein, M. and Uchida, S. (2016), ‘A comparative evaluation of unsupervised

anomaly detection algorithms for multivariate data’, PlOS ONE 11(4), e0152173.

Grubbs, F. E. (1969), ‘Procedures for detecting outlying observations in samples’

, Technometrics 11(1), 1–21.

Gupta, M., Gao, J., Aggarwal, C. C. and Han, J. (2014), ‘Outlier detection for

temporal data: A survey’, IEEE Transactions on Knowledge and Data

Engineering 26(9), 2250–2267.

Hadi, A. S. (1992), ‘Identifying multiple outliers in multivariate data’, Journal of

the Royal Statistical Society: Series B (Methodological) 54(3), 761–771.

Hartigan, J. A. and Hartigan, J. (1975), Clustering Algorithms, Vol. 209, Wiley

New York.

Hodge, V. and Austin, J. (2004), ‘A survey of outlier detection methodologies’,

Artificial Intelligence Review 22(2), 85–126.

Hofmann, H., Wickham, H. and Kafadar, K. (2017), ‘Value plots: Boxplots for

large data’, Journal of Computational and Graphical Statistics 26(3), 469–477.

Hyndman, R. J. (1996), ‘Computing and graphing highest density regions’, The

American Statistician 50(2), 120–126.

Hyndman, R. J., Wang, E. and Laptev, N. (2015), Large-scale unusual time

series detection, in ‘2015 IEEE International Conference on Data Mining

Workshop (ICDMW)’, pp. 1616–1619.

Acc
ep

te
d

M
an

us
cr

ipt

Jin, W., Tung, A. K., Han, J. and Wang, W. (2006), Ranking outliers using

symmetric neighborhood relationship, in ‘Pacific-Asia Conference on Knowledge

Discovery and Data Mining’, Springer, pp. 577–593.

Kandanaarachchi, S., Munoz, M. A., Hyndman, R. J., Smith-Miles, K. et al.

(2018), On normalization and algorithm selection for unsupervised outlier

detection, Technical report, Monash University, Department of Econometrics and

Business Statistics.

Kang, Y., Hyndman, R. J. and Smith-Miles, K. (2017), ‘Visualising forecasting

algorithm performance using time series instance spaces’, International Journal

of Forecasting 33(2), 345–358.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R.

and Wu, A. Y. (2002), ‘An efficient k-means clustering algorithm: Analysis and

implementation’, IEEE Transactions on Pattern Analysis & Machine Intelligence

(7), 881–892.

Liu, S., Maljovec, D., Wang, B., Bremer, P.-T. and Pascucci, V. (2016), ‘

Visualizing high-dimensional data: Advances in the past decade’, IEEE

Transactions on Visualization and Computer Graphics 23(3), 1249–1268.

Madsen, J. H. (2018), DDoutlier: Distance and Density-Based Outlier Detection.

R package version 0.1.0. URL: https://CRAN.R-project.org/package=DDoutlier

Novotny, M. and Hauser, H. (2006), ‘Outlier-preserving focus+ context

visualization in parallel coordinates’, IEEE Transactions on Visualization and

Computer Graphics 12(5), 893–900.

R Core Team (2019), R: A Language and Environment for Statistical Computing,

R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-

project.org/

Acc
ep

te
d

M
an

us
cr

ipt

Schwarz, K. T. (2008), Wind dispersion of carbon dioxide leaking from

underground sequestration, and outlier detection in eddy covariance data using

extreme value theory, ProQuest.

Shahid, N., Naqvi, I. H. and Qaisar, S. B. (2015), ‘Characteristics and

classification of outlier detection techniques for wireless sensor networks in harsh

environments: a survey’, Artificial Intelligence Review 43(2), 193–228.

Smith-Miles, K., Baatar, D., Wreford, B. and Lewis, R. (2014), ‘Towards objective

measures of algorithm performance across instance space’, Computers &

Operations Research 45, 12–24.

Talagala, P. D., Hyndman, R. J., Leigh, C., Mengersen, K. and Smith-Miles, K.

(2019), ‘A feature-based procedure for detecting technical outliers in water-

quality data from in situ sensors’, Water Resources Research 55(11), 8547–

8568.

Talagala, P. D., Hyndman, R. J. and Smith-Miles, K. (2019), stray: Anomaly

Detection in High Dimensional and Temporal Data. R package version 0.1.1.

Talagala, P. D., Hyndman, R. J., Smith-Miles, K., Kandanaarachchi, S.

and Muñoz, M. A. (2020), ‘Anomaly detection in streaming nonstationary

temporal data’, Journal of Computational and Graphical Statistics 29(1), 13–27.

Tang, J., Chen, Z., Fu, A. W.-C. and Cheung, D. W. (2002), Enhancing

effectiveness of outlier detections for low density patterns, in ‘Pacific-Asia

Conference on Knowledge Discovery and Data Mining’, Springer, pp. 535–548.

Unwin, A. (2019), ‘Multivariate outliers and the o3 plot’, Journal of Computational

and Graphical Statistics pp. 1–11.

Wang, E. (2018), rwalkr: API to Melbourne Pedestrian Data. R package version

0.4.0. URL: https://CRAN.R-project.org/package=rwalkr

Acc
ep

te
d

M
an

us
cr

ipt

Weissman, I. (1978), ‘Estimation of parameters and large quantiles based on the

k largest observations’, Journal of the American Statistical Association

73(364), 812–815.

Wickham, H. (2016), ggplot2: Elegant Graphics for Data Analysis, Springer-

Verlag New York. URL: https://ggplot2.tidyverse.org

Wickham, H., François, R., Henry, L. and Müller, K. (2019), dplyr: A Grammar of

Data Manipulation. R package version 0.8.3. URL: https://CRAN.R-

project.org/package=dplyr

Wickham, H. and Henry, L. (2019), tidyr: Tidy Messy Data. R package version

1.0.0. URL: https://CRAN.R-project.org/package=tidyr

Wickham, H. and Hofmann, H. (2016), lvplot: Letter Value ’Boxplots’. R package

version 0.2.0. URL: https://CRAN.R-project.org/package=lvplot

Wilkinson, L. (2017), ‘Visualizing big data outliers through distributed aggregation

’, IEEE Transactions on Visualization and Computer Graphics 24(1), 256–266.

Wilkinson, L., Anand, A. and Grossman, R. (2005), Graph-theoretic scagnostics,

in ‘IEEE Symposium on Information Visualization, 2005. INFOVIS 2005.’, IEEE,

pp. 157–164.

Williams, K. T. (2016), Local parametric density-based outlier detection and

ensemble learning with applications to malware detection, PhD thesis, The

University of Texas at San Antonio.

Zhang, R. (2017), ‘Performance of kd-tree vs brute-force nearest neighbor

search on gpu?’, Computational Science Stack Exchange.

URL:https://scicomp.stackexchange.com/q/26873 (version: 2017-05-13).

Acc
ep

te
d

M
an

us
cr

ipt

Zhang, S., Li, X., Zong, M., Zhu, X. and Wang, R. (2017), ‘Efficient knn

classification with different numbers of nearest neighbors’, IEEE transactions on

neural networks and learning systems 29(5), 1774–1785.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 1 Difference between the nearest neighbour distance and the k-nearest

neighbour distance with the maximum gap. (a) Dataset contains only one

anomaly at (15,16.5). Nearest neighbour distance are indicated by the labels in

the figure. (b) Change in the k-nearest neighbour distances of the anomaly. (c)

Dataset contains micro cluster around (15,16.5). Nearest neighbour distances

are indicated by the labels in the figure. (d) Dataset contains micro cluster around

(15,16.5). For the three anomalies, the third nearest neighbour distance

(indicated by the labels in the figure) has the maximum gap. (e) Change in the k-

nearest neighbour distances of an anomaly from micro cluster around (15,16.5).

Anomalies are represented by triangles and the dots correspond to the typical

behaviour. For this illustration two-dimensional datasets are selected to maximize

the chances of obtaining insights via visualization.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 2 (a) Distribution of the descending order statistics :i nX and (b) distribution

of the standardised spacings
,i niD for {1, ,10}i  for 1, 000 samples each

containing 20, 000 random numbers from the standard normal distribution.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 3 Scalability Performance. (a) HDoutliers algorithm without clustering step,

(b-I) HDoutliers algorithm with clustering step, (c) stray algorithm with brute force

nearest neighbour search using FNN R package implementation, (d) stray

algorithm with kd-trees nearest neighbour search using ‘FNN’ R package

implementation, (e) stray algorithm with brute force nearest neighbour search

using ‘nabor’ R package implementation, (f) stray algorithm with kd-trees nearest

neighbour search using ‘nabor’ R package implementation. For clear

comparison, only a part of the measurements of the full experiment is displayed

in (b-I). (b-II) presents the full version of (b-I). Black rectangle frame in (b-II)

covers the plotting region of (b-I).

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 4 Algorithm performance. (a) The top panel shows the results of the

HDoutliers algorithm without a clustering step. (b) The middle panel shows the

results of the HDoutliers algorithm with a clustering step. The representative

member selected from each cluster formed by the Leader algorithm are marked

as dark dots (c) The bottom panel shows the results of the improved algorithm

with brute force k-nearest neighbour searching. The detected anomalies are

marked as triangles. In each test, the critical value, α, was set to.1%. Two-

dimensional datasets are selected to maximize the chances of obtaining insights

via visualization.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 5 Collection of multivariate time series plots of hourly pedestrian counts at

43 locations in the city Melbourne, Australia, from 2 January to 8 February 2019.

Anomalous days detected by the stray algorithm using scagnostics are marked in

dark color (red in the online version). This covers only a small part of the study

period considered (from January 2, 2019, to August 18, 2019).

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 6 O3 plot of data relating to hourly pedestrian counts at 43 locations in the

city Melbourne, Australia, from January 2, 2019, to August 18, 2019. Thirteen

days were found to be anomalies on some combination of features. Anomalous

days detected by the stray algorithm are marked in dark cells (red in the online

version). Two days were anomalies on several combinations, 13-01-2019 and

20-01-2019.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 7 Feature-based representation of the collection of multivariate time series

plots using scagnostics. In each feature, anomalies determined by the stray

algorithm in at least one of the sub feature spaces defined by different feature

combinations are represented in dark colour (red in the online version). The

columns of the data are normalised such that the data are bounded by the unit

hypercube.

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 8 Multivariate time series plot of hourly counts of pedestrians measured at

43 different sensors in the city of Melbourne, on 20 Jansuary 2019. The

anomalous time series detected by the stray algorithm using time series features

are marked in dashed lines).

Acc
ep

te
d

M
an

us
cr

ipt

Fig. 9 Feature-based representation of the collection of time series on 20

January 2019. In each plot, anomalies determined by the stray algorithm are

represented in light (red in the online version) colour. The columns of the data

are normalised such that the data are bounded by the unit hypercube.

Acc
ep

te
d

M
an

us
cr

ipt

Table 1 Performance metrics – False positive rates. The values given are

based on 100 iterations and the mean values are reported. Different versions of

the two algorithms (stray and Hdoutliers) are applied on datasets where each

column is randomly generated from the standardised normal distribution. All the

datasets are free from anomalies. HDoutliers WoC: HDoutliers algorithm without

clustering step; HDoutliers WC: HDoutliers algorithm with clustering step. [n = 50,

100, 500, 1000, 2500, 5000, 7500, 10000]

Method dim 50 100 500 1000 2500 5000 7500 10000

HDoutliers WoC 1 0.027 0.017 0.011 0.008 0.007 0.005 0.005 0.004

HDoutliers WoC 10 0.011 0.002 0.002 0.002 0.002 0.002 0.002 0.002

HDoutliers WoC 100 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001

HDoutliers WC 1 0.055 0.036 0.024 0.024 0.019 0.017 0.014 0.013

HDoutliers WC 10 0.021 0.006 0.006 0.006 0.005 0.005 0.005 0.005

HDoutliers WC 100 0.013 0.003 0.003 0.003 0.003 0.003 0.003 0.003

stray - brute force 1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - brute force 10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - brute force 100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

stray - FNN kd-tree 1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - FNN kd-tree 10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - FNN kd-tree 100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

stray - nabor brute 1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - nabor brute 10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - nabor brute 100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

stray - nabor kd-tree 1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - nabor kd-tree 10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - nabor kd-tree 100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Acc
ep

te
d

M
an

us
cr

ipt

Table 2 Performance metrics – False positive (FP) and False negative (FN)

rates. HDo-WoC: HDoutliers algorithm without clustering step, HDo-WC:

HDoutliers algorithm with clustering step.

Data

set

HDo-WoC

FP

HDo-WoC

FN

HDo-WC

FP

HDo-WC

FN

Stray

FP

stray

FN

a 0.00000 0.00000 0.00100 0.00000 0.00000 0.00000

b 0.00000 0.00150 0.00000 0.00000 0.00000 0.00000

c 0.00000 0.00694 0.00000 0.00496 0.00000 0.00000

d 0.00000 0.00200 0.00000 0.00200 0.00000 0.00000

e 0.00000 0.00000 0.49975 0.00000 0.00000 0.00000

f 0.00000 0.00000 0.00000 0.00050 0.00000 0.00000

Acc
ep

te
d

M
an

us
cr

ipt

