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Abstract 
The HDoutliers algorithm is a powerful unsupervised algorithm for 
detecting anomalies in high-dimensional data, with a strong 
theoretical foundation. However, it suffers from some limitations that 
significantly hinder its performance level, under certain 
circumstances. In this article, we propose an algorithm that 
addresses these limitations. We define an anomaly as an observation 
where its k-nearest neighbour distance with the maximum gap is 
significantly different from what we would expect if the distribution of 
k-nearest neighbours with the maximum gap is in the maximum 
domain of attraction of the Gumbel distribution. An approach based 
on extreme value theory is used for the anomalous threshold 
calculation. Using various synthetic and real datasets, we 
demonstrate the wide applicability and usefulness of our algorithm, 
which we call the stray algorithm. We also demonstrate how this 
algorithm can assist in detecting anomalies present in other data 
structures using feature engineering. We show the situations where 
the stray algorithm outperforms the HDoutliers algorithm both in 
accuracy and computational time. This framework is implemented in 
the open source R package stray. 
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1 Introduction 

The problem of anomaly detection has many different facets, and detection 

techniques can be highly influenced by the way we define anomalies, type of 

input data and expected output. These differences lead to wide variations in 

problem formulations, which need to be addressed through different analytical 

techniques. Although several useful computational methods currently exist, 

developing new methods for anomaly detection continues to be an active, 

attractive interdisciplinary research area owing to different analytical challenges 

in various application fields. Ever-increasing computing resources and advanced 

data collection technologies that emphasise real-time, large-scale data are other 

reasons for this growth since they introduce new analytical challenges with their 

increasing size, speed and complexity that demand effective, efficient analytical 

and computing techniques. 

Anomaly detection has two main objectives, which are conflicting in nature: One 

downgrades the value of anomalies and attempts eliminating them, while the 

other demands special attention be paid to anomalies and root-cause analysis be 

conducted. The presence of anomalies in data can be considered data flaws or 

measurement errors that can lead to biased parameter estimation, model 

misspecification and misleading results if classical analysis techniques are blindly 

applied (Ben-Gal 2005, Abuzaid et al. 2013). In such situations, the focus is to 

find opportunities to remove anomalous points and thereby improve both the 

quality of the data and results from the subsequent data analysis (Novotny 

and Hauser 2006). In contrast, in many other applications, anomalies themselves 

are the main carriers of significant and often critical information, such as extreme 

environmental conditions (e.g., bushfire, tsunami, flood, earthquake, volcanic 

eruption and water contamination), faults and malfunctions (e.g., flight tracking 
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and power cable tracking) and fraud activities (Ben-Gal 2005), that can cause 

significant harm to valuable lives and assets if not detected and treated quickly. 

High-dimensional datasets exist across numerous fields of study (Liu et al. 2016). 

Some anomaly detection algorithms also use feature engineering as a dimension 

reduction technique and thereby convert other data structures, such as a 

collection of time series using time series features (Talagala, Hyndman, Leigh, 

Mengersen and Smith-Miles 2019, Hyndman et al. 2015), collection of 

scatterplots using scagnostics (Wilkinson et al. 2005) and genomic micro arrays 

and chemical compositions in biology (Liu et al. 2016) into high-dimensional data 

prior to the detection process for easy control. Under the high-dimensional data 

scenario, all attributes can be of the same data type or a mixture of different data 

types, such as categorical or numerical, which has a direct impact on the 

implementation and scope of the algorithm. Much research attention has been 

paid to anomaly detection for numerical data (Breunig et al. 2000, Tang 

et al. 2002, Jin et al. 2006, Gao et al. 2011). Limited methods are available that 

treat both numerical and categorical data using correspondence analysis, for 

example, as in Wilkinson (2017). 

High-dimensional anomalies can arise in all the attributes or a subset of the 

attributes (Unwin 2019). If all anomalies in a high-dimensional data space were 

anomalies in a lower dimension, then anomaly detection can be performed using 

axis parallel views or by incorporating an additional step of variable selection for 

the detection process. However, in practice, certain high-dimensional instances 

are only perceptible as anomalies if treated as high-dimensional problems and 

the correlation structure of all the attributes considered. Otherwise, these tend to 

be overlooked if attributes are considered separately (Wilkinson 2017, Ben-

Gal 2005). 

The problem of anomaly detection has been extensively studied over the past 

decades in many application domains (Chandola 
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et al. 2009, Aggarwal 2017, Shahid et al. 2015, Gupta et al. 2014, Hodge 

and Austin 2004). Among the many possibilities, the HDoutliers algorithm, 

recently proposed by Wilkinson (2017), is a powerful unsupervised algorithm, 

with a strong theoretical foundation, for detecting anomalies in high-dimensional 

data. The study presented by Talagala, Hyndman, Leigh, Mengersen and Smith-

Miles (2019) also verifies its performances through a thorough comparative 

evaluation of existing state-of-the-art anomaly detection methods. Although this 

algorithm has many advantages, a few characteristics hinder its performance. In 

particular, under certain circumstances it tends to increase the rate of false 

negatives (i.e., the detector ignores points that appear to be real anomalies) 

because it uses only the nearest-neighbour distances to distinguish anomalies. 

Further, to deal with large datasets with numerous observations it uses the 

Leader algorithm (Hartigan and Hartigan 1975), which forms several clusters of 

points in one pass through the dataset using a ball of a fixed radius. By 

incorporating this clustering method, it tries to gain the ability to identify 

anomalous clusters of points. However, in the presence of very close 

neighbouring anomalous clusters it tends to increase the rate of false negatives. 

Further, this additional step of clustering has a serious negative impact on the 

computational efficiency of the algorithm when dealing with large datasets. 

Through this study, we make three fundamental contributions. First, we propose 

an algorithm called stray, representing ‘Search and TRace AnomalY’, that 

addresses the limitations of the HDoutliers algorithm. The stray algorithm 

presented here focuses specifically on fast, accurate anomalous score 

calculation using simple but effective techniques for improved performance. 

Second, we introduce an R (R Core Team 2019) package, stray (Talagala, 

Hyndman and Smith-Miles 2019), that implements the stray algorithm and related 

functions. Third, we demonstrate the wide applicability and usefulness of our 

stray algorithm, using various datasets. 
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Our improved algorithm, stray, has many advantages: (1) It can be applied to 

both one-dimensional and high-dimensional data. (2) It is unsupervised in nature 

and therefore does not require training datasets for the model-building process. 

(3) The anomalous threshold is a data-driven threshold and has a valid 

probabilistic interpretation because it is based on the extreme value theory. (4) 

The presence of one anomalous instance can “mask” the appearance of another 

anomalous instance (Hadi 1992). The stray algorithm deals with the masking 

problem by using k-nearest neighbour distances for anomalous score 

calculations. (5) It can provide near real-time support to datasets that stream in 

large quantities owing to its use of fast nearest neighbour searching 

mechanisms. (6) It can deal with data that may have multimodal distributions for 

typical data instances. (7) It produces both score (to indicate how anomalous the 

instances are) and binary classification (to reduce the searching space during the 

visual and root-cause analysis) for each data instance as an output. (8) It can 

detect outliers as well as inliers. 

The stray algorithm differs substantially from the HDoutliers algorithm in the 

following ways. (1) It does not determine the outliers solely with the help of the 

nearest neighbour distances; instead, the algorithm considers the k-nearest 

neighbour distance with the maximum gap for all observations and defines an 

anomalous threshold on the k nearest neighbour distances with the maximum 

gap. (2) The HDoutliers algorithm deals with the masking problem by 

incorporating a clustering step which is extremely time-consuming, particularly 

with large samples in high dimensions. Owing to the use of k-nearest neighbour 

distances, the stray algorithm does not require an additional computationally-

intensive clustering procedure to detect anomalous clusters of points. (3) The 

HDoutliers algorithm provides only a binary classification; in contrast, the stray 

algorithm produces both a binary classification and an anomalous score 

indicating the degree of outlierness of each measurement. (4) The simulation 

study shows that the stray implementation is much faster than the HDoutliers 

package implementation, particularly with large samples in high dimensions. 
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The remainder of this paper is organised as follows. Section 2 presents the 

related work to lay the foundation for the stray algorithm. Section 3 describes the 

limitations of the HDoutliers algorithm that hinder its performance. Section 4 

presents the improved algorithm, stray, that addresses the limitations of the 

HDoutliers algorithm. Section 5 presents a comprehensive evaluation, illustrating 

the key features of the stray algorithm. Section 6 includes an application of stray 

algorithm related to pedestrian behaviour in the city of Melbourne, Australia. 

Section 7 concludes the article and presents future research directions. 

2 Background 

2.1 Types of Anomalies in High Dimensional Data 

The problems of anomaly detection in high-dimensional data are threefold, 

involving detection of: (a) global anomalies, (b) local anomalies and (c) micro 

clusters or clusters of anomalies (Goldstein and Uchida 2016). Most of the 

existing anomaly detection methods for high-dimensional data can easily 

recognise global anomalies since they are very different from the dense area with 

respect to their attributes. In contrast, a local anomaly is only an anomaly when it 

is distinct from, and compared with, its local neighbourhood. Madsen (2018) 

introduces a set of algorithms based on a density or distance definition of an 

anomaly, which mainly focuses on local anomalies in high-dimensional data. 

Micro clusters or clusters of anomalies may cause masking problems. Very little 

attention has been paid to this problem relative to the other two categories. The 

recently proposed HDoutliers algorithm (Wilkinson 2017) addresses this problem 

to some extent by grouping instances together that are very close in the high-

dimensional space and then selecting a representative member from each 

cluster before calculating nearest neighbour distances for the selected instances. 

In this study, we focus on all three of these anomaly types. 

2.2 Definitions for Anomalies in High Dimensional Data 
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Owing to the complex nature of the problem, it is difficult to find a unified 

definition for an anomaly and the definition often depends on the focus of the 

study and the structure of the input data available to the system 

(Williams 2016, Unwin 2019). However, there are some definitions that are 

general enough to cope with datasets with various application domains. 

Grubbs (1969) defines an anomaly as an observation that deviates markedly 

from other members of the dataset. However, this deviation can be defined in 

terms of either distance or density. Burridge and Taylor (2006), Wilkinson (2017) 

and Schwarz (2008) have all proposed methods for anomaly detection by 

defining an anomaly in terms of distance. In contrast, Hyndman (1996), Clifton 

et al. (2011) and Talagala et al. (2020) have proposed methods that define an 

anomaly with respect to either the density or the chance of the occurrence of 

observations. Madsen (2018) also provides a series of distance and density-

based anomaly detection algorithms. 

In this study, we define an anomaly as an observation where its k-nearest 

neighbour distance with the maximum gap is significantly different from what we 

would expect if the corresponding distribution is in the maximum domain of 

attraction of the Gumbel distribution. This covers a wide range of distributions. 

Intuitively, an anomaly deviates markedly from the majority of the data, with a 

significantly larger distance between typical observations and anomalies 

compared to the distances between typical observations. This definition allows 

anomalies to be isolated observations or small isolated clusters of observations. 

3 Limitations of HDoutliers Algorithm 

The HDoutliers algorithm (Wilkinson 2017) is a distance based anomaly 

detection algorithm. One important property of this algorithm is that it has an 

ability to convert any higher dimensional anomaly detection problem to a one 

dimensional problem by taking the nearest neighbour distances of the data 

instances. 
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There are two published versions of the HDoutliers algorithm. The first version 

calculates nearest neighbour distance for each data instance and does not 

involve any clustering step prior to the nearest neighbour distance calculation. 

This version of the algorithm (version 1 of the HDoutliers, hereafter) is 

recommended for small samples. The default maximum sample size for version 1 

is set to 10000 in the R implementation of the HDoutliers package. The second 

version of the HDoutliers algorithm incorporates a clustering step with the aim of 

detecting micro clusters. It uses the Leader algorithm (Hartigan 

and Hartigan 1975) to form several clusters of points and then selects a 

representative member from each cluster. The nearest neighbour distances are 

then calculated only for the selected representative members. 

Although the HDoutliers algorithm (Wilkinson 2017) has many advantages, a few 

characteristics limit its possibilities. Next, we discuss these limitations in detail. 

3.1 HDoutliers Uses Only the Nearest Neighbour Distance to 
Discriminate Anomalies 

The HDoutliers algorithm uses the Leader algorithm to form small clusters of 

points, prior to calculating nearest neighbour distance. In the Leader algorithm, 

each cluster is a ball in the high-dimensional data space. In the HDoutliers 

algorithm, the radius of this ball is selected such that it is well below the expected 

value of the distances between ( 1) / 2n n  pairs of points distributed randomly in 

a d-dimensional unit hypercube. 

After forming clusters using the Leader algorithm, the HDoutliers algorithm 

selects representative members from each cluster. It then calculates the nearest 

neighbour distances for each of these representative members. These distances 

are then used to identify the anomalies based on the assumption that anomalies 

bring large distance separations between typical data and the anomalies, in 

comparison to the separations between typical data themselves. Therefore, 

under this assumption it is believed that any anomalous cluster will appear far 
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away from the clusters of the typical data points. As a result, the nearest 

neighbour distance for this anomalous cluster will be significantly higher than that 

of the clusters of typical data and thereby identify it as an anomalous cluster. All 

the data points contained in the anomalous cluster are then marked as 

anomalous points within a given dataset. 

However, one further assumption for this method to work properly is that any 

anomalous clusters present in the dataset are isolated. For example, imagine a 

situation in which two anomalous clusters are very close to one another but are 

far away from the rest of the typical clusters. Now, the two clusters will become 

nearest neighbours to one another and they will jointly protect them by being 

anomalous by giving very small nearest neighbour distances for both clusters 

that are compatible with the nearest neighbour distances of the rest of the typical 

clusters. Figures 4 (c-II) and (d-II) further elaborate this argument. In these two 

examples, the HDoutliers algorithm (with the clustering step) declares points as 

anomalies only if they are isolated and fails to detect anomalous clusters that 

share a few cluster neighbours. Although the HDoutliers algorithm incorporates 

the clustering step with the aim of identifying anomalous clusters of points, 

because of the very small size of the ball that is used to produce clusters 

(exemplars) in the d-dimensional space, it fails to bring all the points into a single 

cluster and instead produces a few anomalous clusters that are very close to one 

another. These anomalous clusters then become nearest neighbours to one 

another and have very small nearest neighbour distances for the representative 

member of each cluster. Since the detection of anomalies entirely depends on 

these nearest neighbour distances and since the anomalous clusters do not 

show any significant deviation from typical clusters with respect to the nearest 

neighbour distances, the algorithm now fails to detect these points as anomalies 

and thereby increases the rate of false negatives. 

3.2 Problems Due to Clustering Via Leader Algorithm 
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After forming clusters of data points, the HDoutliers algorithm completely ignores 

the density of the data points. Once it forms clusters of data points using the 

Leader algorithm, it selects a representative member from each cluster and 

carries out further analysis only using these representative members. Figure 4 

(e-II) provides an example related to this issue. This dataset is a bimodal dataset 

with an anomalous point located between the two typical classes. The entire 

dataset contains 2,001 data points. The data points gathered at the leftmost 

upper corner represent one typical class with 1,000 data points. The second 

typical class of data points is gathered at the rightmost bottom corner with 

another 1,000 data points. Since this second class of data points is closely 

compacted in substance, the 1,000 data points are now wrapped by a single ball 

when forming clusters using the Leader algorithm. In the HDoutliers algorithm, 

the next step is to select one member from each of these clusters. Once it 

selects a representative member from this ball that contains 1,000 data points, it 

ignores the remaining 999 data points in detecting anomalies. This step misleads 

the algorithm, and the remaining steps of the algorithm view this representative 

member as an isolated data point, although it is surrounded by 999 neighbouring 

data points in the original dataset. Therefore, all data points in this entire class 

are declared as anomalies by the algorithm, although it contains half of the 

dataset. Unwin (2019) suggests jittering not as a perfect solution, but as an 

alternative to mitigate this problem. Unwin (2019) also argues that the problem 

tends not to occur in high-dimensional data spaces where this kind of granularity 

is less likely. However, then it gives rise to the problem of neighbouring 

anomalous clusters (as illustrated in Figure 4 (c-II, d-II) ), which individually 

appear to be typical, or of limited suspicion (due to the presence of other 

neighbouring anomalous clusters), yet, their co-occurrence is highly anomalous. 

Figure 4 (f-II) provides another situation in which false negatives increase 

because of the clustering step. This bivariate dataset contains 1,001 data points. 

The data points gathered at the leftmost upper corner represent a typical class 

covering 1,000 data points, and the isolated data point at the rightmost bottom 
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corner represents an anomaly. Since this typical class of 1,000 data points is 

closely compacted, it gives rise to only 14 clusters through the Leader algorithm. 

Altogether, the dataset forms 15 clusters with the one created by the isolated 

point located at the rightmost bottom corner. Even though the original dataset 

contains 1,001 data points, the algorithm considers only 15 data points (a 

representative member from each cluster) for calculating the anomalous 

threshold. Now, this number is not large enough to yield a stable estimate for the 

anomalous threshold. Due to this ignorance of the density of the original dataset, 

it now fails to detect the obvious anomalous point at the leftmost bottom corner. 

3.3 Problem with Threshold Calculation 

A companion R package (Fraley 2018) is available for the algorithm proposed by 

Wilkinson (2017). According to the R package implementation, the current 

version of the HDoutliers algorithm uses the next potential candidate for 

anomalies in calculating the anomalous threshold, in each iteration of the bottom-

up searching algorithm. This approach causes an increase in the false detection 

rate under certain circumstances. We avoid this limitation in our proposed 

algorithm. 

4 Proposed Improved Algorithm: stray Algorithm 

In this section, we propose an improved algorithm for anomaly detection in high 

dimensional data. Our proposed algorithm is intended to overcome the limitations 

of the HDoutliers algorithm and thereby enhance its capabilities. 

4.1 Input to the stray Algorithm 

An input to the stray algorithm is a collection of data instances where each data 

instance can be a realisation of only one attribute or a set of attributes (also 

referred to using terms such as features, measurements and dimensions). In this 

study, we limit our discussion to quantitative data; therefore, an input can be a 

vector, matrix or data frame of ( 1)d   numerical variables, where each column 

Acc
ep

te
d 

M
an

us
cr

ipt



corresponds to an attribute and each row corresponds to an observation of these 

attributes. The focus is then to detect anomalous instances (rows) in the dataset. 

The stray algorithm can be easily extended to deal with categorical data by using 

correspondence analysis which converts categorical data into quantitative 

information, as in Wilkinson (2017). 

4.2 Normalise the Columns 

Since the stray algorithm is based on the distance definition of an anomaly, a 

distance measure must be specified. In this analysis we use Euclidean distances 

to measure the k-nearest neighbour distances between observations in the high-

dimensional data space. To make the variables of equivalent weight, the columns 

of the data are first normalised using a linear transformation. By default, we use “

min-max normalisation”, with the resulting data ranging from 0 to 1. Alternative 

normalizations based on linear transformations (see Kandanaarachchi 

et al. 2018) may also be used and are available through the stray package 

implementation. Thus, our distance measure is invariant to rescaling the 

variables but it is not affine invariant (unlike Mahalanobis distance, for example). 

Exploration of alternative distance measures would be an interesting avenue for 

future research. In addition to min-max normalisation, a robust normalisation 

method ( ( ( ) / ( ))x median x IQR x ) is also available through the stray package 

implementation. However, there is no one-fit-for-all normalisation strategy for 

anomaly detection problems even though min-max normalisation is shown to be 

preferred to median-IQR with most of the datasets and anomaly detection 

methods considered in Kandanaarachchi et al. (2018). 

4.3 Nearest Neighbour Searching 

In the stray algorithm, after the columns of the dataset are normalised, it 

calculates the Euclidean distance-based k-nearest neighbour distance with the 

maximum gap for each and every instance. By using this measure, we were able 

to address the aforementioned limitations of the HDoutliers algorithm. 
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For each individual observation, the algorithm first calculates the k-nearest 

neighbour distances, 
,i KNNd , where 1,2,...,i k . Then, it calculates the successive 

differences between distances, 
,i KNN . Next, it selects the k-nearest neighbour 

distance with the maximum gap, 
,i max . Figure 1 illustrates how these steps help 

our improved algorithm to detect anomalous points or anomalous clusters of 

points. 

In Figure 1 (a), the dataset contains only one anomaly at (15,16.5). For this 

dataset, the nearest neighbour distance can differentiate the anomalous point 

from the remaining typical points because the nearest neighbour distance for the 

anomalous point is significantly larger (14.8) than that for the remaining typical 

points. Figure 1 (b) shows the change in the k-nearest neighbour distances of the 

anomaly at (15,16.5). For this dataset, the k-nearest neighbour distance with the 

maximum gap occurs when k = 1. The second dataset, in Figure 1 b), has a 

micro cluster with three anomalies around (15,16.5). If only the nearest 

neighbour distances are calculated for each observation, then the three 

anomalies in the micro cluster are not distinguishable from the typical points 

since their values are very small (0.7) compared with that of most typical points 

with nearest neighbour distances at around (0.0015 to 2.5). However, the three 

anomalies in the micro cluster are distinguishable from their typical points with 

respect to the k-nearest neighbour distances with the maximum gap at around 

14.8 and 14.9 (Figure 1 (d)). For the three anomalies in the micro cluster in 

Figure 1 (d), the third nearest neighbour distance has the maximum gap (Figure 

1 e)) and the three points in the micro cluster are now easily distinguished as 

anomalies, with respect to k-nearest neighbour distances with the maximum gap. 

Therefore, by using k-nearest neighbour distances with the maximum gap, the 

stray algorithm gains the ability to detect both anomalous singletons and micro 

clusters. Through this approach, we are able to reduce the false detection rate 

and thereby address the limitations of the HDoutliers algorithm, while gaining the 

ability to detect micro clusters. This is also a very simple, but clever, investment 

as compared with the time taken by the leader algorithm to form small clusters to 
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detect micro clusters (especially for datasets with large dimensions), in the 

HDoutliers algorithm. Further, for each point, the corresponding k-nearest 

neighbour distances with the maximum gap act as an anomalous score to 

indicate the degree of being an anomaly. 

In the current study, we consider both exact and approximate k-nearest 

neighbour searching techniques. Brute force search involves going through every 

possible paring of points to detect k-nearest neighbours for each data instance, 

and therefore, exact k-nearest neighbours are explored. Conversely, k-

dimensional trees (k-d trees) employ spatial data structures that partition space 

to allow efficient access to a specified query point (Elseberg et al. 2012 a). 

Therefore, it involves searching approximate k-nearest neighbours around a 

specified query point. 

In the current algorithm, parameter k, which determines the size of the 

neighbourhood, is introduced as a user-defined parameter that can be selected 

according to the application. One way to interpret the role of k in the stray 

algorithm is to view it as the minimum possible size for a typical cluster in a given 

dataset. If the size of an anomalous cluster is less than k, it will be detected as a 

micro cluster by the stray algorithm. The choice of k has different effects across 

different dimensions and sizes of data (Campos et al. 2016). We can set k to 1 if 

no micro clusters are present in the dataset and thereby focus on local and 

global anomalous points. High k values are recommended for datasets with high 

dimensions because of the curse of dimensionality. 

4.4 Threshold Calculation 

Anomalous scores assign each point a degree of being an anomaly. However, 

for certain applications it is also important to categorise typical and anomalous 

points for the subsequent root-cause analysis. Ideally, we prefer a universal 

threshold to unambiguously distinguish anomalous points from typical points. 

Following Schwarz (2008), the HDoutliers algorithm (Wilkinson 2017) defines an 
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anomalous threshold based on extreme value theory, a branch of probability 

theory that relates to the behaviour of extreme order statistics in a given sample 

(Galambos et al. 2013). 

The anomalous threshold calculation in Schwarz (2008); Burridge 

and Taylor (2006) and Wilkinson (2017) is an application of Weissman’s spacing 

theorem (Weissman 1978) (Theorem 1) that is applicable to the distribution of 

data covered by the maximum domain of attraction of a Gumbel distribution. This 

requirement is satisfied by a wide range of distributions, ranging from those with 

light tails to moderately heavy tails that decrease to zero faster than any power 

function (Embrechts et al. 2013). Examples include the exponential, gamma, 

normal and log-normal distributions with exponentially decaying tails. 

Let 1 2, , , nX X X  be a sample from a distribution function F and let 

1: 2: :n n n nX X X    be the order statistics. The available data are 1: :, ,n K nX X  

for some fixed K. 

Theorem 1 (Spacing Theorem). (Proposition 1 in Burridge and Taylor (2006), p.6 

and Theorem 3 in Weissman (1978), p.813; the notations have been changed for 

consistency in this paper) 

Let , : 1:i n i n i nD X X   , ( 1, ,i K  ) be the spacing between successive order 

statistics. If F is in the maximum domain of attraction of the Gumbel distribution, 

the spacings 
,i nD  are asymptotically independent and exponentially distributed 

with mean proportional to 1i . 

We illustrate this theorem using Figure 2, which shows the distribution of the 

descending order statistics :( )i nX  and the standardised spacings, ,( )i niD , for 

 1, ,10i   for 1, 000 samples each containing 20, 000 random numbers from 

the standard normal distribution. Figure 2 (a) shows the distribution of :i nX  with 

means of :i nX  depicted as black crosses. The gaps between consecutive black 

crosses give the spacings between higher-order statistics ,( )i nD . We note that 
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the normal distribution is in the maximum domain of attraction of the Gumbel 

distribution and that this example contains no outliers. A consequence of 

Theorem 1 is that the standardised spacings 
,( )i niD  for ( 1, , )i K  , are 

approximately iid (Burridge and Taylor 2006). Figure 2 (b) shows the distribution 

of the standardised spacings 
,( )i niD  for ( 1,2,...,10)i   for 1, 000 samples of size 

20, 000. Each letter-value box plot (Hofmann et al. 2017) exhibits approximately 

the shape of an exponential distribution. 

Following Schwarz (2008), Burridge and Taylor (2006) and Wilkinson (2017), we 

start our anomalous threshold calculation from a subset of the points covering 50 

per cent of them with the smallest anomalous scores (k nearest neighbour 

distances with the maximum gap) under the assumption that this subset contains 

the anomalous scores corresponding to typical data points and the remaining 

subset contains the scores corresponding to the possible candidates for 

anomalies. Following the Weissman spacing theorem, it then fits an exponential 

distribution to the upper tail of the outlier scores of the first subset, and then 

computes the upper 1   points of the fitted cumulative distribution function, 

thereby defining an anomalous threshold for the next anomalous score as 

follows: 

Let X be the k-nearest neighbour distances with the maximum gap for the first 

subset of the dataset with cdf F and ( )F MDA   . Let 1: 2: :n n n nX X X    be 

the order statistics. Consider , : 1:i n i n i nD X X   , where 1, ,i K   for some fixed K. 

According to the Weissman spacing theorem, we have 

, ~ exp( ),i nD i  

where E( ) 1/ ( )iD i  and 1/   is the proportional constant. 

Let t be the anomalous threshold. Then 1,Pr( ) 1nD t    , and so 

log(1/ ) / .t    
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Consider, 
1

2

ˆ ( ) / ( 1)
K

i

i

D iD k


  . This is an unbiased estimator for 1/  . Therefore, 

an empirical threshold is given by 

2

ˆ log(1/ ) / ( 1).
K

i

i

t iD k


   

From the remaining subset, the point with the smallest anomalous score is 

selected. If this anomalous score exceeds the empirical threshold t̂ , all the 

points in the remaining subset are flagged as anomalies. Otherwise, it declares 

the point as a typical point and adds it to the subset of the typical points. It then 

updates the cut-off point, including the latest addition. This searching algorithm 

continues until it finds an anomalous score that exceeds the latest cut-off point. 

This algorithm is known as a ‘bottom-up searching’ algorithm in Schwarz (2008). 

This threshold calculation is performed under the assumption that the distribution 

of k-nearest neighbours with the maximum gap is in the maximum domain of 

attraction of the Gumbel distribution, which covers a wide range of distributions. 

4.5 Output 

In stray, anomalies are measured in two scales: (1) binary classification and (2) 

outlier score. Under binary classification, data instances are classified either as 

typical or anomalous using the data-driven anomalous threshold based on the 

extreme value theory. This anomalous threshold or the cut-off point for the 

anomalies is defined on the k-nearest neighbour distances with the maximum 

gap. This type of classification is important if the subsequent steps of the data 

analysis process are automated. 

The decision of the stray algorithm is based on the k-nearest neighbour 

distances with the maximum gap of the data instances. The k-nearest neighbour 

distance with the maximum gap of each data instance quantifies how isolated the 

data instance is with respect to its surrounding points, and hence acts as an 

anomalous score. High values indicate higher degree of outlyiness or isolation, 
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while low values indicate high compactness (Figures 1 (d), (e)). Therefore, in 

addition to the binary output, the stray algorithm also assigns an anomalous 

score to each data instance. These anomalous scores allow the user to rank and 

select the most serious or relevant anomalous points for root-cause analysis and 

taking immediate precautions. The HDoutliers algorithm (Wilkinson 2017), which 

provides only a binary classification, does not directly allow the user to make 

such a choice to direct their attention to more significant anomalous instances. 

Conversely, various methods proposed in the literature provide anomalous 

scores, but the anomalous threshold is user defined and application specific 

(Madsen 2018). The output produced by stray is an all-in-one solution 

encapsulating necessary measurements of anomalies for further actions. 

5 Experiments 

The HDoutliers algorithm is a powerful algorithm in the current state-of-the-art 

methods for detecting anomalies in high-dimensional data. The focus of the stray 

algorithm is to address some of the limitations of the HDoutliers algorithm that 

hinder its performance under certain circumstances. Here, we perform an 

experimental evaluation on the accuracy and computational efficiency of our 

stray algorithm relative to the HDoutliers algorithm. While these examples are 

fairly limited in number and are mostly limited to bivariate datasets, they should 

be viewed only as simple illustrations of the key features of the stray algorithm 

that outperforms the HDoutliers algorithm. 

The first experiment (Figure 3) was designed to test the effect of the dimension, 

size of the data and the k-nearest neighbour searching method on running times 

of the different versions of the two algorithms: stray and HDoutliers. Due to high 

computational cost, the algorithms were applied to problems with only up to 100 

dimensions, which are still relatively small for many real-world problems. 

Compared with version 1 of the HDoutliers algorithm (Figure 3 (a)), version 2 with 

the clustering step is extremely slow for higher dimensions (>10), and the running 
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time increases more rapidly with increasing sample size. For clear comparison 

between the different versions of the two algorithms (stray and HDoutliers), only 

a part of the measurements of the full experiment of the second version of the 

HDoutliers algorithm is displayed in Figure 3 (b-I)). Figure 3 (b-II) presents the full 

version of Figure 3 (b-I). The additional clustering step in the second version of 

the HDoutliers algorithm, which is essential for detecting micro clusters, is 

extremely time-consuming, particularly with large samples with higher 

dimensions. Figure 3 (c)–(f) corresponds to the stray algorithm. In this 

experiment, to ascertain the influence from the k-nearest neighbour searching 

methods, we considered both exact (brute force) and approximate (kd-trees) 

nearest neighbour searching algorithms. 

Many implementations of k-nearest neighbour searching algorithms are available 

for the R software environment. We considered the FNN (Beygelzimer 

et al. (2019), Figure 3 (c) & (d)) and nabor (Elseberg et al. (2012 b); Figure 3 (e) 

& (f)) R packages for our comparative analysis. R package nabor, wraps a fast k-

nearest neighbour library written in templated C++. We noticed that searching 

( 1)k    nearest neighbours (Figure 3 (a), in this example k is set to 10) instead 

of only one (k = 1) nearest neighbour (Figure 3 (d)) increases the running time 

only slightly as the number of instances is increased. The results in both Figure 3 

(a) and Figure 3 (d) are based on approximate nearest neighbour distances 

using the kd-trees nearest neighbour searching algorithm. We observed that the 

kd-trees implementation in the nabor package (Figure 3 (f)) is much faster than 

the FFN package implementation (Figure 3 (d)). Surprisingly, as the dimension 

increases, the running time of the stray algorithm with kd-trees (Figure 3 (d), (f)) 

increases much more quickly than that of the brute force algorithm, which 

involves searching every possible pairing of points to detect k-nearest 

neighbours for each data instance (Figure 3 (c), (e)). Other studies (Kanungo 

et al. 2002) have also reported a similar result for algorithms based on kd-trees 

and its variants. This could be due to the parallelisability and memory access 

patterns of the two searching mechanisms. The brute force algorithm is easily 
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parallelisable because it involves independent searching of all possible 

candidates for each data instance. In contrast, the kd-tree searching algorithm is 

naturally serial and therefore difficult to implement on parallel systems with 

appreciable speedup (Zhang 2017). 

Following Wilkinson (2017), we evaluated the false positive rate (typical points 

incorrectly identified as anomalies) of the stray algorithm by running it many 

times on random data. The values presented in Table 1 are based on 1000 

iterations and the mean values are reported. Different versions of the two 

algorithms (stray and Hdoutliers) were applied on datasets where each column is 

randomly generated from the standardised normal distribution. In each test, the 

critical value, α, was set to 0.05. Compared with the HDoutliers algorithm, low 

false positive rates were achieved for the stray algorithm across all dimensions 

and sample sizes. Unlike in the HDoutliers algorithm (Unwin 2019), in stray a 

much smaller false detection rate was observed even for the small datasets with 

smaller dimensions. No difference was observed across different versions of the 

stray algorithm with different nearest neighbour searching mechanisms and their 

different implementations. 

Figure 4 and Table 2 demonstrate how the stray algorithm outperforms the two 

versions of the HDoutliers algorithm under different circumstances. These limited 

set of examples were selected with the aim of highlighting some of the key 

feature of the stray algorithm: 

(1) All three algorithms were able to correctly capture the anomalous point at 

the rightmost upper corner of Figure 4 (a)- I, II, III). However, the second 

versions of the HDoutliers algorithm tend to generate some false positives, 

particularly with the small dimensions (Figure 4 (a)- II; Table 2, row 1 

column 3) 

(2) Figure 4 (b)- III) shows its ability to deal with multimodal typical classes. 

The two clusters at the bottom of the graph represent two typical classes. 
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Only the second version of the HDoutliers algorithm (Figure 4 (b)- II) that 

utilises the clustering step was able to detect the top-centred micro cluster 

that contains three anomalous data instances. However, forming small 

clusters prior to the distance calculation is not always helpful in detecting 

micro clusters. 

(3) Figure 4 (c)- II) (Table 2, row 3) shows a situation where even the second 

version of the HDoutliers algorithm fails in detecting micro clusters. The 

Leader algorithm in the HDoutliers algorithm uses a very small ball of a 

fixed radius to form clusters, and therefore, it now fails to capture the five 

points into a single cluster and instead generates three small clusters that 

are very close to one another. Both versions of the HDoutliers algorithm 

now fail to detect the micro cluster at the rightmost upper corner, because 

the dataset violates one of the major requirements of isolation of 

anomalous points or anomalous clusters. In stray, the value of k was set 

to 10. One can interpret the value of k as the maximum permissible size 

for a micro cluster. That is, for a small cluster to be a micro cluster, the 

number of data points in that cluster should be less than k. Otherwise, the 

cluster is considered a typical cluster. 

(4) Figure 4 (d)- III) demonstrates the ability of detecting inliers. The 

HDoutliers algorithm also has this ability of detecting inliers only when 

there are isolated inliers that are free from anomalous neighbours. Both 

versions of the HDoutliers algorithm fail to detect the two inliers since they 

are very close to one another and thereby jointly protect them as being 

anomalous (Table 2, row 4). 

(5) As explained in Section 3.2, Figure 4 (e)- II) shows how the clustering step 

of the second version of the HDoutliers algorithm can misguide the 

detection process and thereby increase the rate of false positives (Table 

2, row 5 column 3). The dense areas of the dataset are marked with 

density curves. Two typical clusters are visible, one at the leftmost upper 

corner and the other at the rightmost bottom corner. An inlier is also 
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present in between the two typical classes. After forming cluster through 

the Leader algorithm, only one representative member is selected from 

each cluster for the nearest neighbour distance calculation. The selected 

member is now isolated and earns a very high anomalous score, leading 

the entire typical cluster at the rightmost bottom corner with 1,000 points 

to be identified as anomalous. In contrast, the stray algorithm is free from 

these problems because it does not involve any clustering step prior to the 

nearest neighbour distance calculation. 

(6) As explained in Section 3.2, Figure 4 (f)- II) shows how the clustering step 

can increase the rate of false negatives (Table 2, row 6 column 4). This 

dataset contains one typical class that is closely compacted in substance 

(the leftmost upper corner) and an obvious anomaly at the rightmost 

bottom corner. Since the typical class is a dense cluster, only a few data 

points are selected from the typical class for the nearest neighbour 

calculation. In this example, the clustering step substantially down-

samples the original dataset, leading to a huge information loss in the 

representation of the original dataset. The blue dots in Figure 4 (f)- II) 

represent the selected members from each cluster for nearest neighbour 

calculations. Now, the reduced sample size is not enough for a proper 

calculation of the anomalous threshold based on extreme value theory. 

6 Usage 

We applied our stray algorithm to a dataset obtained from an automated 

pedestrian counting system with 43 sensors in the city of Melbourne, Australia 

(City of Melbourne 2019, Wang 2018), to identify unusual pedestrian activities 

within the municipality. Identification of such unusual, critical behaviours of 

pedestrians at different city locations at different times of the day is important 

because it is a direct indication of a city’s economic conditions, the related 

activities and the safety and convenience of the pedestrian experience (City of 

Melbourne 2019). It also guides and informs decision-making and planning. This 
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case study also illustrates how the stray algorithm can be used to deal with other 

data structures, such as temporal data and streaming data using feature 

engineering. 

6.1 Handling Temporal Data 

For this study, we consider the hourly pedestrian counts from January 2, 2019, to 

August 18, 2019. For clear visual illustration, Figure 5 shows only a limited part of 

the study period with the pedestrian counts at 43 locations in the city of 

Melbourne at different times of the day. The distribution of pedestrian counts 

follows a negatively skewed distribution. In general, pedestrian counts on 

weekdays display a bimodal distribution, while pedestrian counts on weekends 

follow a unimodal distribution. Now, the aim is to detect days with unusual 

behaviours. Since this involves a large collection of multivariate time series plots, 

each representing a day of the study period, manual monitoring is time-

consuming and unusual behaviours are difficult to locate by visual inspection. 

Detecting anomalous plots from a large collection of plots requires some pre-

processing. In particular, to apply the stray algorithm, we need to convert this 

original dataset, with a large collection of multivariate time series plots, into a 

high dimensional dataset. A simple approach is to use features that describe the 

different shapes and patterns of the multivariate time series plots. Computing 

features that describe meaningful shapes and patterns in a given multivariate 

time series plot is straightforward with scagnostics (scatterplot diagnostics) 

developed by Wilkinson et al. (2005). For the current study, we select nine 

features: outlying (a measure of the proportion of long edges on all edges in the 

minimum spanning tree (MST)), skewed (a measure of skewness based on a 

ratio of quantiles of the edge lengths of MST), clumpy (a measure of clustering of 

data points based on MST), sparse (a measure to check whether points in a 

scatterplot are confined to a lattice or a small number of locations on the plane), 

striated (a measure of coherence of data points), convex (the ratio of the area of 

the alpha hull and the area of the convex hull), skinny (the ratio of perimeter to 
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area of a polygon), stringy (the ratio of diameter to length of a network) and 

monotonic (the squared Spearman correlation coefficient) [ Dang 

and Wilkinson (2014); wilkinson2005graph]. Once we extract these nine features 

from each plot, we convert our original collection of multivariate time series plots 

into a dataset with nine dimensions and 228 data instances covering the study 

period from January 2, 2019, to August 18, 2019. Figure 6 shows the O3 plot 

(Overview of Outliers plot) (Unwin 2019) summarizing feature combinations on 

which those days are anomalies and on what groups of features have these days 

been identified as anomalies. There is a row for each feature combination for 

which anomalies are found. Two white columns separate the feature 

combinations and the anomalies detected. Each row of the block on the left 

shows which feature combination defines the row. There are 9 columns, one for 

each feature and a cell is gray if the feature is a part of the combination. From 

this analysis, 13 days were found to be anomalies in at least one of the sub 

feature spaces defined by different feature combinations. These anomalies are 

marked by red cells on the right block in Figure 6. Figure 7 provides feature-

based representation of the original collection of multivariate time series plots. 

Each point in this high-dimensional data space corresponds to a single 

multivariate time series plot (or a day) in the original collection of multivariate 

time series plots. Anomalies determined by the stray algorithm in at least one of 

the sub feature spaces defined by different feature combinations are highlighted 

in Figure 7. The corresponding multivariate time series plots (or days) are 

highlighted in Figure 5. Visual inspection also confirms the anomalous behaviour 

of these individual multivariate time series plots. Most of these anomalous days 

display an unusual rise later in the day. Most of the anomalies in January (14, 15, 

19 and 20 January 2019) cover the 2019 Australian Open, a Grand Slam tennis 

tournament that took place at Melbourne Park from 14 to 27 January 2019. This 

annual tennis tournament attracts many thousands of tennis fans from all around 

the worlds. Further investigations regarding 13 January 2019, reveal that there 

was a musical concert in Melbourne city and the unusual rise later in the day 

Acc
ep

te
d 

M
an

us
cr

ipt



could be due to the concert participants. Similar patterns were observed with the 

remaining anomalies detected. 

After detecting the days with anomalous pedestrian behaviours, further 

investigation is carried out for each day to detect the locations with anomalous 

behaviours within the selected day. Once we focus on one day, we obtain a 

collection of 43 time series with hourly pedestrian counts generated from the 43 

sensors located at different geographic locations in the city (Figure 8). For this 

analysis, we extract 11 time series features (similar to Talagala 

et al. 2020, Hyndman et al. 2015) and convert the original collection of time 

series into a data space with 11 dimensions and 43 data instances (Figure 9). 

Now, each point in this high-dimensional space correspond to a single time 

series (or sensor) in Figure 8. The stray algorithm declares three points as 

anomalous points in this high dimensional data space. These points correspond 

to the sensors at Southbank, the Art centre and St Kilda Rd-Alexandra Gardens 

in Melbourne. 

These types of findings play a critical role in making decisions about urban 

planning and management; to identify opportunities to improve city walkability 

and transport measures; to understand the impact of major events and other 

extreme conditions on pedestrian activity, and thereby assist in making decisions 

regarding security and resource requirements; and to plan and respond to 

emergency situations, etc. 

6.2 Handling Streaming Data 

Owing to the unsupervised nature of the stray algorithm, it can easily be 

extended for streaming data. A sliding window of fixed length can be used to deal 

with streaming data. Then, datasets in each window can be treated as a batch 

dataset (Talagala, Hyndman, Leigh, Mengersen and Smith-Miles 2019) and the 

stray algorithm can be applied to each window to detect anomalies in the 

datasets defined by the corresponding window. 
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It also can be used to identify anomalous time series within a large collection of 

streaming temporal data. Let [ , ]W t t w  represent a sliding window containing n 

number of individual time series of length w. First, we extract m features (similar 

to Hyndman et al. (2015) and Talagala, Hyndman, Leigh, Mengersen and Smith-

Miles (2019)) from each and every time series in this window. This step gives rise 

to an n × m feature matrix where each row now corresponds to a time series in 

the original collection of time series. Once we convert our original collection of 

time series into a high-dimensional dataset, we can apply the stray algorithm to 

identify anomalous points within this m-dimensional data space. The 

corresponding time series are then declared as anomalous series within the large 

collection of time series in the corresponding sliding window. 

7 Conclusions and Further Research 

The HDoutliers algorithm by Wilkinson (2017) is a powerful algorithm for 

detecting anomalies in high-dimensional data. However, it suffers from a few 

limitations that significantly hinder its ability to detect anomalies under certain 

situations. In this study, we propose an improved algorithm, the stray algorithm, 

that addresses these limitations. The stray algorithm has many special features: 

(1) It can deal with both one dimensional and high dimensional data as it is 

based on distance measures. By extracting k nearest neighbour distances for 

each data instance, it converts any high dimensional anomaly detection problem 

into a one dimensional problem. (2) Since the anomalous threshold calculation is 

a data driven approach, the algorithm is unsupervised in nature and therefore 

does not require labeled training datasets. (3) Most of the existing algorithms 

involve a manual anomalous threshold for binary classification as anomalies or 

typical points. Since the stray algorithm uses an anomalous threshold based on 

extreme value theory, it has a valid probabilistic interpretation. (4) It deals with 

masking problems and detects micro clusters as it does not limit its threshold 

calculation only to the nearest neighbour distances and instead uses k nearest 

neighbour distances. (5) Since it uses fast nearest neighbour searching 
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mechanisms it can be easily extended to streaming data using sliding windows. 

(6) Owing to the use of k nearest neighbour distances it can deal with multimodal 

distributions. (7) In addition to a label, the stray algorithm also assigns an 

anomalous score to each data instance to indicate the degree of outlierness of 

each measurement. (8) Owing to the use of k nearest neighbour distances it also 

detect inliers, which is overlooked in most past research. We also demonstrate 

how the stray algorithm can assist in detecting anomalies present in other data 

structures using feature engineering. 

While the HDoutliers algorithm is powerful, we have provided several classes of 

counterexamples in this paper where the structural properties of the data did not 

enable HDoutliers to detect certain types of outliers. We demonstrated on these 

counterexamples that the stray algorithm outperforms HDoutliers, in terms of 

both accuracy and computational time. It is certainly common practice to 

evaluate the strength of an algorithm using collections of test problems with 

various challenging properties. However, we acknowledge that these 

counterexamples are not diverse and challenging enough to enable us to 

comment about the unique strengths and weaknesses of these two algorithms, 

nor to generalise our findings to conclude that stray is always the superior 

algorithm. This study should be viewed as an attempt to simulate further 

investigation on the HDoutliers algorithm and its successors, with the ultimate 

goal to achieve further improvements across the entire problem space defined by 

various high-dimensional datasets. An important open research problem is 

therefore to assess the effectiveness of these algorithms across the the broadest 

possible problem space defined by different datasets with diverse properties 

(Kang et al. 2017). It is an interesting question to explore the impact of other 

classes of problems with various structural properties affect the performance of 

the stray algorithm and where its weaknesses might lie. This kind of instance 

space analysis (Smith-Miles et al. 2014) will enable further insights into improved 

algorithm design. 
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In our proposed algorithm, the anomalous threshold calculation was performed 

under the assumption that the distribution of k-nearest neighbours with the 

maximum gap is in the maximum domain of attraction of the Gumbel distribution. 

This requirement is satisfied by a wide range of distributions, ranging from those 

with light tails to moderately heavy tails that decrease to zero faster than any 

power function (Embrechts et al. 2013). Future studies will be required for 

alternative methods to find better values for the anomalous threshold in the 

presence of other sub-classes of EVT. For the current work, parameter k, which 

determines the size of the neighbourhood is introduced as a user-defined 

parameter that can be selected according to the application as too large values 

of k could increase the rate of false positives and too small values of k could 

increase the rate of false negatives. Further work will be needed to perform an 

optimization to select the best k as the performance of the algorithms can 

depend on the value of k and algorithms can reach their peak performance for 

different choices of k (Campos et al. 2016). One possibility is to adopt the 

method proposed by Zhang et al. (2017), for fast learning an optimal-k-value for 

each test sample. The features we used in this paper were directed by the data 

structures and typical patterns imposed by a given application. Domain specific 

knowledge plays a vital role when selecting suitable features for a given 

application. 

In the simulation study, different versions of the algorithms (stray and HDoutlier) 

were applied on both real and simulated datasets. Some of the two-dimensional 

simulated data sets and real examples include high correlation among variables. 

But for very high dimensional data, each column is randomly generated from the 

standard normal distribution. One interesting issue is to look at the effect of the 

correlation on the algorithm performance when the number of dimensions of the 

datasets gets higher. But we leave this for future work as it is more complicated 

and not the main focus of this paper. 
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Anomaly detection problems commonly appear in many applications in different 

application domains. Therefore, it is hoped that different people with different 

knowledge levels will use the stray algorithm for many different purposes. 

Therefore, we expect future studies to develop interactive data visualisation tools 

that can enable exploring anomalies using a combination of graphical and 

numerical methods. 

Supplementary Materials 

Data and scripts: 

Datasets and R code to reproduce all figures in this article (main.R and R 

package stray (Talagala, Hyndman and Smith-Miles 2019) ). 

R package stray: 

The stray package consists of the implementation of the stray algorithm 

as described in this article. Version 0.1.1 of the package was used for the 

results presented in the article and is available from CRAN. The 

development version of the package is available from 

https://github.com/pridiltal/stray. 

R-packages: 

Each of the R packages used in this article (ggplot2 (Wickham 2016), 

dplyr (Wickham et al. 2019), tidyr (Wickham and Henry 2019), 

HDoutliers (Fraley 2018), lvplot(Wickham and Hofmann 2016) are 

available online (URLs are provided in the bibliography). 
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Fig. 1 Difference between the nearest neighbour distance and the k-nearest 

neighbour distance with the maximum gap. (a) Dataset contains only one 

anomaly at (15,16.5). Nearest neighbour distance are indicated by the labels in 

the figure. (b) Change in the k-nearest neighbour distances of the anomaly. (c) 

Dataset contains micro cluster around (15,16.5). Nearest neighbour distances 

are indicated by the labels in the figure. (d) Dataset contains micro cluster around 

(15,16.5). For the three anomalies, the third nearest neighbour distance 

(indicated by the labels in the figure) has the maximum gap. (e) Change in the k-

nearest neighbour distances of an anomaly from micro cluster around (15,16.5). 

Anomalies are represented by triangles and the dots correspond to the typical 

behaviour. For this illustration two-dimensional datasets are selected to maximize 

the chances of obtaining insights via visualization. 
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Fig. 2 (a) Distribution of the descending order statistics :i nX  and (b) distribution 

of the standardised spacings 
,i niD  for {1, ,10}i   for 1, 000 samples each 

containing 20, 000 random numbers from the standard normal distribution. 
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Fig. 3 Scalability Performance. (a) HDoutliers algorithm without clustering step, 

(b-I) HDoutliers algorithm with clustering step, (c) stray algorithm with brute force 

nearest neighbour search using FNN R package implementation, (d) stray 

algorithm with kd-trees nearest neighbour search using ‘FNN’ R package 

implementation, (e) stray algorithm with brute force nearest neighbour search 

using ‘nabor’ R package implementation, (f) stray algorithm with kd-trees nearest 

neighbour search using ‘nabor’ R package implementation. For clear 

comparison, only a part of the measurements of the full experiment is displayed 

in (b-I). (b-II) presents the full version of (b-I). Black rectangle frame in (b-II) 

covers the plotting region of (b-I). 
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Fig. 4 Algorithm performance. (a) The top panel shows the results of the 

HDoutliers algorithm without a clustering step. (b) The middle panel shows the 

results of the HDoutliers algorithm with a clustering step. The representative 

member selected from each cluster formed by the Leader algorithm are marked 

as dark dots (c) The bottom panel shows the results of the improved algorithm 

with brute force k-nearest neighbour searching. The detected anomalies are 

marked as triangles. In each test, the critical value, α, was set to.1%. Two-

dimensional datasets are selected to maximize the chances of obtaining insights 

via visualization. 
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Fig. 5 Collection of multivariate time series plots of hourly pedestrian counts at 

43 locations in the city Melbourne, Australia, from 2 January to 8 February 2019. 

Anomalous days detected by the stray algorithm using scagnostics are marked in 

dark color (red in the online version). This covers only a small part of the study 

period considered (from January 2, 2019, to August 18, 2019). 
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Fig. 6 O3 plot of data relating to hourly pedestrian counts at 43 locations in the 

city Melbourne, Australia, from January 2, 2019, to August 18, 2019. Thirteen 

days were found to be anomalies on some combination of features. Anomalous 

days detected by the stray algorithm are marked in dark cells (red in the online 

version). Two days were anomalies on several combinations, 13-01-2019 and 

20-01-2019. 
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Fig. 7 Feature-based representation of the collection of multivariate time series 

plots using scagnostics. In each feature, anomalies determined by the stray 

algorithm in at least one of the sub feature spaces defined by different feature 

combinations are represented in dark colour (red in the online version). The 

columns of the data are normalised such that the data are bounded by the unit 

hypercube. 
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Fig. 8 Multivariate time series plot of hourly counts of pedestrians measured at 

43 different sensors in the city of Melbourne, on 20 Jansuary 2019. The 

anomalous time series detected by the stray algorithm using time series features 

are marked in dashed lines). 
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Fig. 9 Feature-based representation of the collection of time series on 20 

January 2019. In each plot, anomalies determined by the stray algorithm are 

represented in light (red in the online version) colour. The columns of the data 

are normalised such that the data are bounded by the unit hypercube. 
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Table 1 Performance metrics – False positive rates. The values given are 

based on 100 iterations and the mean values are reported. Different versions of 

the two algorithms (stray and Hdoutliers) are applied on datasets where each 

column is randomly generated from the standardised normal distribution. All the 

datasets are free from anomalies. HDoutliers WoC: HDoutliers algorithm without 

clustering step; HDoutliers WC: HDoutliers algorithm with clustering step. [n = 50, 

100, 500, 1000, 2500, 5000, 7500, 10000] 

Method  dim 50 100 500 1000 2500 5000 7500 10000 

HDoutliers WoC  1 0.027 0.017 0.011 0.008 0.007 0.005 0.005 0.004 

HDoutliers WoC  10 0.011 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

HDoutliers WoC  100 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

HDoutliers WC  1 0.055 0.036 0.024 0.024 0.019 0.017 0.014 0.013 

HDoutliers WC  10 0.021 0.006 0.006 0.006 0.005 0.005 0.005 0.005 

HDoutliers WC  100 0.013 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

stray - brute force  1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001 

stray - brute force  10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000 

stray - brute force  100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

stray - FNN kd-tree  1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001 

stray - FNN kd-tree  10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000 

stray - FNN kd-tree  100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

stray - nabor brute  1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001 

stray - nabor brute  10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000 

stray - nabor brute  100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

stray - nabor kd-tree 1 0.012 0.006 0.003 0.002 0.002 0.002 0.001 0.001 

stray - nabor kd-tree 10 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.000 

stray - nabor kd-tree 100 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 2 Performance metrics – False positive (FP) and False negative (FN) 

rates. HDo-WoC: HDoutliers algorithm without clustering step, HDo-WC: 

HDoutliers algorithm with clustering step. 

Data 

set 

HDo-WoC 

FP 

HDo-WoC 

FN 

HDo-WC 

FP 

HDo-WC 

FN 

Stray 

FP 

stray 

FN 

a  0.00000  0.00000  0.00100  0.00000  0.00000  0.00000  

b  0.00000  0.00150  0.00000  0.00000  0.00000  0.00000 

c  0.00000  0.00694  0.00000  0.00496  0.00000  0.00000  

d  0.00000  0.00200  0.00000  0.00200  0.00000  0.00000  

e  0.00000  0.00000  0.49975  0.00000  0.00000  0.00000  

f  0.00000  0.00000  0.00000  0.00050  0.00000  0.00000  
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