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Abstract

Let X ∈ Cn×m (m ≥ n) be a random matrix with independent columns each distributed as complex

multivariate Gaussian with zero mean and single-spiked covariance matrix In + ηuu∗, where In is the

n × n identity matrix, u ∈ Cn×1 is an arbitrary vector with unit Euclidean norm, η ≥ 0 is a non-

random parameter, and (·)∗ represents the conjugate-transpose. This paper investigates the distribution

of the random quantity κ2SC(X) =
∑n

k=1 λk/λ1, where 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn < ∞ are the

ordered eigenvalues of XX∗ (i.e., single-spiked Wishart matrix). This random quantity is intimately

related to the so called scaled condition number or the Demmel condition number (i.e., κSC(X)) and

the minimum eigenvalue of the fixed trace Wishart-Laguerre ensemble (i.e., κ−2
SC (X)). In particular, we

use an orthogonal polynomial approach to derive an exact expression for the probability density function

of κ2SC(X) which is amenable to asymptotic analysis as matrix dimensions grow large. Our asymptotic

results reveal that, as m,n → ∞ such that m − n is fixed and when η scales on the order of 1/n,

κ2SC(X) scales on the order of n3. In this respect we establish simple closed-form expressions for the

limiting distributions. It turns out that, as m,n → ∞ such that n/m → c ∈ (0, 1), properly centered

κ2SC(X) fluctuates on the scale m
1
3 .
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I. INTRODUCTION

Condition numbers measure the worst-case sensitivity of problems with respect to small

perturbations of the input. The seminal studies by Turing [1] and John von Neumann and Herman

Goldstine [2] had introduced the condition number as a powerful tool to understand the loss of

precision in the solution of linear systems in the presence of finite-precision arithmetic. This

particular tool is fundamentally important in numerical linear algebra and related areas. However,

as conjectured in [3], computing the condition number corresponding to a certain input, for a

given problem, is no easier than solving the problem itself for this particular input. To circumvent

this difficulty, the concept of probabilistic analysis of condition numbers has been introduced; see

e.g., [4] for a partial list of references in this respect. The key concept here is to endow the input

set with a certain probability measure and thereby statistically characterize the condition number.

Since this characterization rely on the underlying probability measure, the current literature

identifies two different approaches, namely, average analysis [5] and smoothed analysis [6]–

[9] depending on the nature of the input distribution. In particular, former approach assigns

real/complex standard normal density to the input set, whereas the latter approach assumes that

the input set is endowed with real/complex non-zero mean normal measure.

Among various condition numbers, perhaps the best known condition number with respect to

matrix inversion problem assumes [2] κ(A) = ||A||2||A−1||2, where A ∈ Cn×n and ||·||2 denotes

the 2−norm. The statistical characteristics of κ(A) have been well studied in the literature [10]–

[13]. Another fundamental form introduced by Demmel in his seminal work on the probabilistic

analysis of the degree of difficulty associated with numerical analysis problems [5] is defined

as κD(A) = ||A||F ||A−1||2, where || · ||F denotes the Frobenius norm. This definition naturally

extends to rectangular matrices [9], [14] giving

κSC(X) = ||X||F ||X†||2 (1)

where X ∈ Cn×m and (·)† denotes the Moore-Penrose or pseudo inverse operation [15]. We

refer to κSC(X) as the scaled condition number (SCN)1; a term coined by Edelman in [16]. A

convenient alternative representation of κSC(X) involving the spectral characteristics of X can be

written as κSC(X) =
√∑r

k=1 λk/λ1, where rank(X) = r ≤ min(m,n) and λ1 ≤ λ2 ≤ . . . ≤ λr

are the non-zero eigenvalues of XX∗ (or X∗X) with (·)∗ denoting the conjugate transpose

1This belongs to a certain class known as the conic condition numbers [9].
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operator. Since the statistical characteristics of κSC(X) are of paramount importance in many

scientific disciplines, it is common to assume X to be real/complex Gaussian distributed with

m ≥ n [13], [14], [16]–[18] which in turn gives

κSC(X) =

√∑n
k=1 λk
λ1

. (2)

The statistical characteristics of the SCN and its variants2 have been instrumental in under-

standing many physical phenomena across a heterogeneous fields of sciences [5], [9], [14], [16],

[19]–[24], [26]–[35]. While numerical analysts and statistical physicists are interested in the

behavior of κSC(X) for X having independent complex normal entries, the case corresponding

to correlated complex normal entries are instrumental in wireless communications and statistics

[27]–[34]. In particular, κSC(X) has been used as a performance metric in certain wireless

signal processing applications involving multiple-input multiple-output (MIMO) systems [27],

[29], [30] in which X corresponds to the rich scattering matrix channel between the transmit and

receive antenna arrays [36]. Moreover, in the presence of antenna correlation, X is commonly

modelled as a correlated Gaussian random matrix; e.g, see [37] for a partial list of references.

Therefore, these facts further highlight the utility of κSC(X) for random and correlated X. The

exact statistical characteristics of κSC(X) for X having independent real/complex entries are well

documented in the literature [14], [16]–[18], [20]–[25].

Among various covariance structures, Johnstone’s spiked model [38] has been widely used

in the literature to analyze the effects of having a few dominant trends or correlations in the

covariance matrix. To be precise, under this setting, the covaraince matrix Σ ∈ Cn×n of X

is modeled as Σ = In +
∑r

k=1 θkuku
∗
k, where In is the n × n identity matrix, uk ∈ Cn×1,

k = 1, 2, . . . , r(≤ n) are a set of orthonormal vectors, and θ1 ≥ θ2 ≥ . . . ≥ θr ≥ 0. Consequently,

the uks’ are referred to as the spikes and this particular covariance structure is sometimes known

as rank-r perturbation of the identity matrix. This fact is further highlighted by the eigen-

structure of Σ in which the the dominant r eigenvalues can be written as, θ1 + 1 ≥ θ2 + 1 ≥

. . . ≥ θr + 1, whereas the rest of the n− r eigenvalues assume 1. These spikes arise in various

practical scenarios in different scientific disciplines. For instance, they correspond to the first few

dominant factors in factor models arising from financial economics [39]–[41], first few principal

2The quantity κ−2
SC (X) is known as the minimum eigenvalue of the fixed trace Wishart-Laguerre ensemble in the statistical

physics literature; see e.g [19]–[25] and references therein.
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components [38], [42], the number of clusters in gene expression data [43], and the number of

signals in signal detection and estimation, see e.g., [44]–[54], and references therein. In particular,

[45] and [47] have focus on the rank-r model, whereas the rank-1 (i.e., single-spiked) model,

which is of our interest in this manuscript, has been employed by [46], [48]–[55] in the signal

detection problem. In a sharp contrast, Hanlen and Grant [56] have used the rank−r model

to investigate the effect of correlation on the MIMO capacity. Be that as it may, the constant

correlation model, which is one of the most important correlation models frequently used in a

wide array of MIMO applications [57]–[62], gives rise to a single spiked model for the scaled Σ

matrix. To be specific, under this setting, Σ consists of 1’s in the main diagonal and σ ∈ [0, 1)’s

in all off-diagonal entries. As such, 1
1−σΣ admits the desired single spiked structure given by

1
1−σΣ = In + nσ

1−σ11∗, where 1 =
(

1√
n

1√
n
. . . 1√

n

)∗
. For instance, this has been exploited

in [57], [58] to derive certain performance measures related to MIMO systems. Moreover, the

SCN has been used as a performance metric in several wireless signal processing applications

involving MIMO systems as delineated in [27], [29], [30]. Therefore, these facts further highlight

the utility of the single spiked covariance model in a wide class of applications.

The square of the SCN κ2
SC(X) in conjunction with correlated Gaussian X having a single-

spiked covariance structure has been instrumental in the spectrum sensing problem of cognitive

radio (CR) networks3 [65]–[67]. In particular, one of the blind detection techniques proposed in

the seminal paper [66] uses κ2
SC(X) as the test statistic to detect the presence of primary user

(i.e., to detect whether the particular slice of spectrum is occupied by the intended user or not).

To be specific, let us consider a scenario where the secondary user is equipped with n > 1

antennas (or sensors). Then the spectrum sensing problem can be formulated as the following

binary hypothesis testing problem [48], [65]:

H1 : x(k) = hs(k) + w(k), k = 1, 2, . . . ,m

H0 : x(k) = w(k), k = 1, 2, . . . ,m (3)

where H1 and H0 are the “primary signal present” and “primary signal absent” hypotheses,

x(k) ∈ Cn×1 is the observed signal, h ∈ Cn×1 is the channel between the source and the

detector, s(k) ∼ CN (0, γ) denotes the transmitted signal with γ > 0, w(k) ∼ CN n(0, σ2In)

3The key concept behind CR is to opportunistically utilize the underutilized spectrum in view of improving the spectral

efficiency [63]–[65].
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denotes the noise process, and m ≥ n denotes the number of independent observations (samples).

Consequently, the population covariance matrix can be written as

R = E {x(k)x(k)∗} =

 γhh∗ + σ2In under H1

σ2In under H0

(4)

where E {·} denotes the mathematical expectation operator. Now, in the absence of the knowledge

of the parameters h, γ, and σ2 at the receiver, one of the blind-eigenvalue based test statistics

proposed in [66] (also in [65] and [67]) assumes (see e.g., [65] for a comprehensive discussion

on this and related other detectors)

T (λ̂) =

∑n
k=1 λ̂k

λ̂1

(5)

where λ̂1 ≤ λ̂2 ≤ . . . ≤ λ̂n are the ordered eigenvalues of the sample covariance matrix

R̂ =
1

m

m∑
k=1

x(k)x(k)∗ (6)

and λ̂ = (λ̂1 λ̂2 . . . λ̂n). Since T (λ̂) is not affected if R̂ is scaled by a given constant, we find

it convenient to rewrite the above test statistic as

T (λ) = κ2
SC(X) =

∑n
k=1 λk
λ1

(7)

where λ1 ≤ λ2 ≤ . . . ≤ λn are the ordered eigenvalues of XX∗ with X = (x(1) . . . x(m)) ∈

Cn×m. Therefore, in view of (4) and noting that the columns of X are independent, we obtain

X ∼

 CN n,m (0,Σ⊗ Im) under H1

CN n,m (0, In ⊗ Im) under H0

(8)

where Σ = In + γ||h||2
σ2 uhu

∗
h denotes the single-spiked covariance model with uh = h/||h||, ⊗

stands for the Kronecker product of two matrices, and || · || denotes the Euclidean norm. It is

noteworthy that the term
γ||h||2

σ2
is also known as the signal-to-noise ratio (SNR) [48]. Clearly,

to study the power of the above test for a given false alarm rate, one needs to statistically

characterize the density of T (λ)|H1, thereby the density of κ2
SC(X)|H1. Such a characterization

has been confined to n = 2 scenario only [68]. This further highlights the utility of the finite

dimensional statistical characterization of the distribution of κ2
SC(X) for X with a single-spiked

covariance structure.

Having motivated with the above facts, as the main contribution of this paper, we address

the generic problem of determining the probability density function (p.d.f.) of κ2
SC(X) for X ∼

June 1, 2022 DRAFT
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CN n,m (0,Σ⊗ Im) with Σ = In + ηuu∗, where η ≥ 0 and u ∈ Cn×1 is a unit vector. In

particular, here we adopt a moment generating function (m.g.f.) based approach to derive a

novel expression for the p.d.f. of κ2
SC(X). The single-spiked covariance structure in turn enables

us to leverage the powerful orthogonal polynomial techniques developed in [21] to arrive at our

final p.d.f. expression. This novel expression developed for the p.d.f. of κ2
SC(X) contains the

determinant of a square matrix whose dimensions depend on the relative difference between m

and n (i.e., m − n). For instance, in the CR setting discussed above, this refers to the relative

difference between the number of observed samples and the number of secondary user antennas

(or sensors). Moreover, this new p.d.f. expression further facilitates the evaluation of the power

(i.e., probability of detection) of the test T . To further highlight this fact, we generate receiver

operating characteristic (ROC) curves of the test T for various n,m configurations. Although

obtaining an explicit functional relationship between the detection and false alarm probabilities

seems an arduous task, for the important configuration of m = n, an explicit relation between

those quantities has been derived. It turns out that increasing either the SNR or the relative

difference between m and n leads to an improved detection probability.

Whereas the above statistical characterization is valid for arbitrary m and n, it is of paramount

importance to investigate the behavior of κ2
SC(X) (or T (λ)) in various asymptotic domains. This

amounts to establishing stochastic convergence result for the random variable κ2
SC(X). In this

respect, it is critical to choose the correct asymptotic domain. For instance, related to multi-

antenna communications, it is common to consider the domain in which the number of transmit

and receive antennas diverge to infinity such that their ratio is fixed, see e.g., [44], [69] and

references therein. Although this ratio can be any non-negative real number, it is taken to be

unity in the analysis of asymptotic capacity scaling limits in multi-antenna systems [70]–[72].

Against this backdrop, noting that the algebraic complexity of the new p.d.f. depends on m−n,

we choose the asymptotic domain in which m,n→∞ such that m−n is fixed. To be specific,

we assume that4 m − n = O(1). This particular scaling has been instrumental in applications

involving signal detection [50], capacity scaling in multi-antenna systems [70]–[72], multivariate

analysis [26], and theoretical physics [20], [23], [24], [73], [74]. In the setting of CR spectrum

sensing, this is tantamount to the assumption that the number of samples (i.e., m) and the

secondary user antennas (i.e., n) are of the same order but diverging. However, in practice,

4Given the functions f(x) and g(x), we have, for x→∞, f(x) = O(g(x)) if lim supx→∞ |f(x)/g(x)| <∞.
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the number of co-located antennas at the secondary user cannot be increased due to space

limitations. This drawback can be alleviated if we consider either a geographically distributed

array of antennas at the secondary user or geographically distributed multiple secondary users

each with a single antenna [75]5. Therefore, the above facts further accentuate the utility of

the asymptotic characterization of κ2
SC(X) in the domain m − n = O(1). Capitalizing on this,

we prove that the scaled random variable κ2
SC(X)/n3 converges in distribution to a random

variable whose cumulative distribution function (c.d.f.) as well as p.d.f. contain the Bessel kernels.

These limiting distributions are compact and having less algebraic complexity than their finite

dimensional counterparts. Our numerical results reveal that, although derived for asymptotically

large m and n, these distributions compare favorably with finite values of those parameters as

well. The limiting c.d.f. expression has been derived based on a new compact c.d.f. that we have

obtained for the minimum eigenvalue of the single-spiked Wishart matrix. Although various

c.d.f. and p.d.f. expressions have been derived in the literature for the minimum eigenvalue of

this particular ensemble [74], [76]–[80], our newly derived expression is more compact and

algebraically less complicated than those expressions. Apart from this, we also derive a new

p.d.f. for the minimum eigenvalue as well. It turns out that this expression is more simpler than

that one can derive by taking the derivative of the corresponding c.d.f.

Another pertinent asymptotic domain is characterized by m,n → ∞ such that n/m → c ∈

(0, 1), see e.g., [38], [45], [48], [52], [69] and references therein. In this regime, stochastic

convergence result for κ2
SC(X) has been established. In particular, we show that, for η = O(1),

properly centered and scaled κ2
SC(X) converges in law to the famous Tracy-Widom distribution

[81] corresponding to β = 2 (i.e., complex case)6. This further reveals that suitably centered

κ2
SC(X) fluctuates on the scale m1/3. Since the above limiting distribution encompasses the case

η = 0 (i.e., when Σ = In or equivalently no primary user signal is present) as well, we conclude

that κ2
SC(X) (also T (λ)) does not have statistical power to detect a weak signal. Nevertheless, this

conclusion may not necessarily be true in the presence of a strong primary user signal. Moreover,

we have shown that properly centered and scaled random variable κ−2
SC (X) also converges in law

to the same Tracy-Widom distribution in this asymptotic regime. However, suitably centered

5This is also known as cooperative spectrum sensing [65], [75].
6Here β > 0 is a non-random parameter which assumes 1, 2, 4 for real (R) symmetric, complex (C) Hermitian, and quaternion

(H) self-dual case, respectively.
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κ−2
SC (X) fluctuates on the scale m−5/3.

The remainder of this paper is organized as follows. Section II provides some key preliminary

results required in the subsequent sections. The new exact p.d.f. of κ2
SC(X) is derived in Section

III. It also gives certain particularizations of the general p.d.f. expression. Apart from these

results, we present the ROC curves corresponding to the test T in the above outlined CR setting.

Moreover, a detailed asymptotic analysis of κ2
SC(X) is provided in Section IV. Finally, conclusive

remarks are made in Section V.

II. PRELIMINARIES

To facilitate our main derivations, we will require the following preliminary results and

definitions.

Definition 1: Let X ∈ Cn×m (m ≥ n) be distributed as CN n,m (0,Σ⊗ Im), where Σ ∈ Cn×n

is a Hermitian positive definite matrix. Then the matrix W = XX∗ is said to follow a complex

correlated Wishart distribution, i.e., W ∼ Wn(m,Σ).

Theorem 1: The joint density of the ordered eigenvalues 0 < λ1 ≤ · · · ≤ λn of W is given

by [82]

f (λ1, λ2, . . . , λn) =
Kn,α

detm(Σ)

n∏
i=1

λαi ∆2
n(λ)0F̃0

(
Λ,−Σ−1

)
(9)

where

Kn,α =
1∏n

i=1(n+ α− i)!(n− i)!
,

Λ = diag(λ) with λ = (λ1, . . . , λn), ∆n(λ) =
∏

1≤i<k≤n (λk − λi) denotes the Vandermonde

determinant, 0F̃0(·; ·) denotes the complex hypergeometric function of two matrix arguments,

diag(·) denotes the diagonal matrix, and det(Σ) is the determinant of the square matrix Σ. For

n× n Hermitian matrices S and T, we have [82]

0F̃0 (S,T) =
∞∑
k=0

1

k!

∑
κ

Cκ(S)Cκ(T)

Cκ(In)

where Cκ(·) is the complex zonal polynomial7, κ = (k1, . . . , kn), with ki’s being non-negative

integers, is a partition of k such that k1 ≥ · · · ≥ kn ≥ 0 and
∑n

i=1 ki = k. Moreover, 0F̃0(S; T)

7The zonal polynomial Cκ(A) is a symmetric, homogeneous polynomial of degree k in the eigenvalues of A. However, the

exact definition of the zonal polynomial is tacitly avoided, since it is not required in the subsequent analysis. More details of

the zonal polynomials can be found in [82], [83].
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admits the following unitary integral form [82]

0F̃0(S; T) =

∫
Un
etr(SUTU∗)dU (10)

where U ∈ Cn×n is a unitary matrix, dU denotes the invariant measure (i.e., Haar measure) on

the unitary group Un normalized to make the total measure one (i.e.,
∫
Un dU = 1), and tr(·) is

the trace of a square matrix.

Remark 1: Alternatively, following [84], we have the following determinant representation of

the complex hypergeometric function of two matrix arguments

0F̃0 (S,T) =
n∏
k=1

(n− k)!
det [esitj ]i,j=1,...,n

∆n(s)∆n(t)
(11)

where s = {s1, s2, . . . , sn}, t = {t1, t2, . . . , tn} are the eigenvalues of S and T respectively,

and the determinant of an n × n matrix with the (i, j)th element given by esitj is denoted by

det [esitj ]i,j=1,...,n.

Since we are interested in the so called single-spiked covariance model for Σ, following [85],

[86], the joint eigenvalue density given in Theorem 1 can be simplified to yield the expression

given in the following corollary.

Corollary 1: Let Σ = In + ηuu∗, where u ∈ Cn×1 with ||u|| = 1, and η ≥ 0. Then the joint

eigenvalue density of W ∼ Wn(m,Σ) (i.e., single-spiked Wishart-Laguerre ensemble8) assumes

f(λ1, .., λn) = Cn,α,η

n∏
i=1

λαi e
−λi∆2

n(λ)
n∑
k=1

ecηλk
n∏
i=1
i 6=k

(λk − λi)
(12)

where

Cn,α,η =
Kn,α(n− 1)!

(η + 1)α+1ηn−1
,

and cη = η/(η + 1).

It is noteworthy that in addition to the contour integral approaches due to [85], [86], the

repeated application of the l’Hospital’s rule due to [84]9 can be used to obtain the above form.

Here we adopt the former approach, since it seems algebraically less tedious. As such, by

8Alternatively, we can refer to it as the deformed Wishart-Laguerre ensemble.
9Repeated application of the l’Hospital’s rule in the context of simplifying indeterminate forms involving determinants is

given in [84].
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substituting Σ = In + ηuu∗ into (9) and simplifying10 the resultant joint p.d.f. with the help of

(10), we get

f(λ1, λ2, ...., λn) =
Kn,α

(η + 1)m

n∏
i=1

λαi e
−λi∆2

n(λ) 0F̃0 (Λ,B) (13)

where B = diag
(

η
η+1

, 0, ..., 0
)

is a rank-one matrix. Following the developments in [85], [86],

the object 0F̃0 (Λ,B) can be further simplified to yield

0F̃0 (Λ,B) = (n− 1)!

(
η + 1

η

)n−1 n∑
i=1

ecηλi
n∏
j=1
j 6=i

(λi − λj)
, (14)

which upon substituting into (13) gives the desired result.

The functional form given in (12) facilitates the use of classical orthogonal polynomial

approach due to Mehta [21] in our subsequent derivations.

Definition 2: For ρ > −1, the generalized Laguerre polynomial of degree M , L(ρ)
M (z), is given

by [87]

L
(ρ)
M (z) =

(ρ+ 1)M
M !

M∑
j=0

(−M)j
(ρ+ 1)j

zj

j!
, (15)

with its kth derivative satisfying

dk

dzk
L

(ρ)
M (z) = (−1)kL

(ρ+k)
M−k (z), (16)

where (a)j = a(a+ 1) . . . (a+ j−1) with (a)0 = 1 denotes the Pochhammer symbol. Moreover,

we have the following contiguity relationships [88, Eq. 8.971.4]:

zL
(ρ)
M (z) = (M + ρ)L

(ρ−1)
M (z)− (M + 1)L

(ρ−1)
M+1 (z) (17)

Lρ−1
M (z) = LρM(z)− LρM−1(z). (18)

Finally, we use the following compact notation to represent the determinant of an N × N

block matrix:

det [ai,j bi,k−2] i=1,2,...,N
j=1,2

k=3,4,...,N

=

∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 b1,1 b1,2 . . . b1,N−2

a2,1 a2,2 b2,1 b2,2 . . . b2,N−2

...
...

...
... . . . ...

aN,1 aN,2 bN,1 bN,2 . . . bN,N−2

∣∣∣∣∣∣∣∣∣∣∣
. (19)

10Here we make use of the relation (In + ηuu∗)−1 = In − cηuu∗.
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III. PROBABILITY DENSITY FUNCTION OF κ2
SC(X)

Here we derive a closed form p.d.f. expression for κ2
SC(X) by leveraging the orthogonal

polynomial techniques due to Mehta [21]. By definition, the m.g.f. of κ2
SC(X) is

Mκ2SC(X)(s) = e−s
∫
R
e
−s

∑n
j=2 λj

λ1 f(λ1, . . . , λn)dλ1 · · · dλn

where R = {0 ≤ λ1 ≤ · · · ≤ λn < ∞}. For convenience, let us introduce the substitution

λ1 = x and rewrite the above multiple integral, keeping the integration with respect to x last, as

Mκ2SC(X)(s) = e−s
∫ ∞

0

∫
Rx
e−s

∑n
j=2 λj

x f(x, λ2, . . . , λn)dλ2 · · · dλndx (20)

where Rx = {x ≤ · · · ≤ λn <∞}. To facilitate further analysis, we may use the decomposition,

∆2
n(λ) =

∏n
i=2(x− λi)2∆2

n−1(λ), to rewrite (12) as

f(x, λ2, . . . , λn) = Cn,α,ηx
αe−x

n∏
i=2

λαi e
−λi(x− λi)2∆2

n−1(λ)

×


ecηx

n∏
i=2

(x− λi)
+

n∑
k=2

ecηλk

(λk − x)
n∏
i=2
i 6=k

(λk − λi)

 . (21)

Therefore, we use (21) in (20) with some algebraic manipulation to yield

Mκ2SC(X)(s) = A(s) + B(s) (22)

where

A(s) = Cn,α,ηe
−s
∫ ∞

0

e−x(1−cη)xα

(∫
Rx

n∏
i=2

e−(1+ s
x)λiλαi (x− λi)∆2

n−1(λ)dλ2 · · · dλn

)
dx

(23)

and

B(s) = Cn,α,ηe
−s
∫ ∞

0

e−xxα

(∫
Rx

n∑
k=2

ecηλk

(λk − x)
n∏
i=2
i 6=k

(λk − λi)

×
n∏
i=2

e−(1+ s
x)λiλαi (x− λi)2∆2

n−1(λ)dλ2 · · · dλn

)
dx. (24)

Since the above two multiple integrals are structurally different from each other, in what follows,

we evaluate each separately.
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First, let us focus on A(s). As such, noting that the inner (n− 1)-fold integral is symmetric

in the variables λ2, λ3, . . . , λn, we may remove the ordered region of integration to obtain

A(s) =
Cn,α,η

(n− 1)!
e−s
∫ ∞

0

e−x(1−cη)xα

(∫
[x,∞)n−1

n∏
i=2

e−(1+ s
x)λiλαi (x− λi)

×∆2
n−1(λ)dλ2 · · · dλn

)
dx. (25)

To facilitate further analysis, we apply the change of variables, yi−1 = (x + s)(λi − x)/x, i =

2, . . . , n, to the inner (n− 1)-fold integral with some algebraic manipulation to yield

A(s) = (−1)(n−1)(1+α) Cn,α,η
(n− 1)!

e−ns
∫ ∞

0

e−x(n−cη) xn(n+α−1)

(x+ s)(n−1)(n+α)
R

(α)
n−1 (−(x+ s)) dx (26)

where

R(α)
n (t) =

∫
[0,∞)n

n∏
j=1

e−yjyj(t− yj)α∆2
n(y)dy1 · · · dyn.

The above integral can be solved using the powerful orthogonal polynomial technique devised

in [21, Section 22.2.2] to yield (see also [26, Eq. c.6])

R(α)
n (t) = (−1)nα

n−1∏
j=0

(j + 1)!(j + 1)!
α−1∏
j=0

(n+ j)!

j!
det
[
L

(j)
n+i−j(t)

]
i,j=1,...,α

. (27)

This in turn enables us to write A(s) as

A(s) = K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη) xn(n+α−1)

(x+ s)(n−1)(n+α)
det
[
L

(j)
n+i−j−1(−x− s)

]
i,j=1,..,α

dx (28)

where K̃n,α,η = (−1)n−1 (n−1)!
(n+α−1)!(η+1)α+1ηn−1 . For convenience, let us leave A(s) without further

simplification and instead focus on B(s).

Due to symmetry, we can convert the ordered region of integration into an unordered region

to yield

B(s) =
Cn,α,η

(n− 1)!
e−s
∫ ∞

0

e−xxα

(∫
[x,∞)n−1

n∑
k=2

ecηλk

(λk − x)
n∏
i=2
i 6=k

(λk − λi)

×
n∏
i=2

e−(1+ s
x)λiλαi (x− λi)2∆2

n−1(λ)dλ2 · · · dλn

)
dx. (29)
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A careful inspection of the summation in the inner integrand reveals that each term therein

contributes the same amount to the final answer. Therefore, capitalizing on that observation, we

can further simplify the above multiple integral to obtain

B(s) =
Cn,α,η

(n− 2)!
e−s
∫ ∞

0

e−xxα

(∫
[x,∞)n−1

ecηλ2

(λ2 − x)
n∏
i=3

(λ2 − λi)

×
n∏
i=2

e−(1+ s
x)λiλαi (x− λi)2∆2

n−1(λ)dλ2 · · · dλn

)
dx. (30)

Noting the decomposition, ∆2
n−1(λ) =

∏n
j=3(λ2−λj)2∆2

n−2(λ), the above multiple integral can

be rewritten as

B(s) =
Cn,α,η

(n− 2)!
e−s
∫ ∞

0

e−xxα

{∫ ∞
x

e−(1+ s
x
−cη)λ2λα2 (λ2 − x)

×

(∫
[x,∞)n−2

n∏
i=3

e−(1+ s
x)λiλαi (x− λi)2(λ2 − λi)∆2

n−2(λ)dλ3 · · · dλn

)
dλ2

}
dx. (31)

Now it is convenient to introduce the variable transformations, y = λ2 − x and yi−2 = (x +

s)(λi − x)/x, i = 3, . . . , n, in the above multiple integral to yield

B(s) = (−1)nα
Cn,α,η

(n− 2)!
e−ns

∫ ∞
0

e−x(n−cη)xα(
1 + s

x

)(n−2)(n+α+1)

{∫ ∞
0

e−(1+ s
x
−cη)yy(y + x)α

× T (α)
n−2

((
1 +

s

x

)
y,−s− x

)
dy

}
dx (32)

where

T (α)
n (a, b) :=

∫
[0,∞)n

n∏
i=1

(a− yi)(b− yi)αe−yiy2
i ∆

2
n(y)dy1 · · · dyn. (33)

Following [14, Eq. 5.8], the above multiple integral admits the solution

T (α)
n (a, b) :=

(−1)n+α(n+α)Kn,α
(b− a)α

det
[
L

(2)
n+i−1(a) L

(j)
n+i+1−j(b)

]
i=1,...,α+1
j=2,...,α+1

(34)

where

Kn,α =

∏α+1
j=1 (n+ j − 1)!

∏n−1
j=0 (j + 1)!(j + 2)!∏α−1

j=0 j!
.
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Therefore, we use (34) in (32) with some algebraic manipulation to arrive at

B(s) = −K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη)xα(
1 + s

x

)(n−1)(n+α)−2

{∫ ∞
0

ye−(1+ s
x
−cη)y

× det
[
L

(2)
n+i−3

(
y
(

1 +
s

x

))
L

(j)
n+i−1−j (−x− s)

]
i=1,...,α+1
j=2,...,α+1

dy

}
dx

from which we obtain, after the variable transformation y(1 + s/x) = t,

B(s) = −K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη)xα(
1 + s

x

)(n−1)(n+α)

{∫ ∞
0

te−t(1− cηx

x+s)

× det
[
L

(2)
n+i−3 (t) L

(j)
n+i−1−j (−x− s)

]
i=1,...,α+1
j=2,...,α+1

dt

}
dx.

Since only the first column of the determinant depends on t, we can easily rewrite the above

double integral as

B(s) = −K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη) xn(n+α−1)

(x+ s)(n−1)(n+α)

× det[ρi(x, s) L
(j)
n+i−j−1(−x− s) ]i=1,...,α+1

j=2,...,α+1
dx (35)

where

ρi(x, s) =

∫ ∞
0

te−t(1− cηx

x+s)L
(2)
n+i−3(t)dt. (36)

Following (17), we further decompose ρi(s, x) to yield

ρi(x, s) = (n+ i− 1)

∫ ∞
0

e−t(1− cηx

x+s)L
(1)
n+i−3(t)dt− (n+ i− 2)

∫ ∞
0

e−t(1− cηx

x+s)L
(1)
n+i−2(t)dt,

(37)

from which we obtain in view of [88, Eq. 7.414.5]

ρi(x, s) = (n + i − 1)
n+i−3∑
m=0

(
− cηx

x+s

)n+i−3−m(
1− cηx

x+s

)n+i−2−m − (n + i − 2)
n+i−2∑
m=0

(
− cηx

x+s

)n+i−2−m(
1− cηx

x+s

)n+i−1−m . (38)

Some algebraic manipulation now gives

ρi(x, s) = 1 + σi(x+ s, x) (39)

where

σi(x+ s, x) = (−1)n+i−3

(
cηx

x+ s− cηx

)n+i−2(
(n+ i− 1)(x+ s)− cηx

x+ s− cηx

)
.
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Now it is convenient to substitute (39) into (35) and exploit the multilinear property to expand

the resultant determinant to yield

B(s) = −K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη) xn(n+α−1)

(x+ s)(n−1)(n+α)
det[1 L

(j)
n+i−j−1(−x− s) ]i=1,...,α+1

j=2,...,α+1
dx

− K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη) xn(n+α−1)

(x+ s)(n−1)(n+α)

× det[σi(x+ s, x) L
(j)
n+i−j−1(−x− s) ]i=1,...,α+1

j=2,...,α+1
dx. (40)

In order to further simplify the determinant in the first integral, we apply the following row

operations

ith row→ ith row + (−1)(i− 1)th row, i = 2, 3, . . . , α + 1

and expand the resultant determinant using its first column to obtain

det
[
1 L

(j)
n+i−1−j (−x− s)

]
i=1,...,α+1
j=2,...,α+1

= det
[
L

(j)
n+i−1−j (−x− s)

]
i,j=1,...,α

(41)

where we have made use of the contiguous relation (18). Therefore, in view of (28), (40) can

be written as

B(s) = −A(s)− K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη) xn(n+α−1)

(x+ s)(n−1)(n+α)

× det[σi(x+ s, x) L
(j)
n+i−j−1(−x− s) ]i=1,...,α+1

j=2,...,α+1
dx, (42)

from which we obtain, following (22)

Mκ2SC(X)(s) = −K̃n,α,ηe
−ns
∫ ∞

0

e−x(n−cη) xn(n+α−1)

(x+ s)(n−1)(n+α)

× det[σi(x+ s, x) L
(j)
n+i−j−1(−x− s) ]i=1,...,α+1

j=2,...,α+1
dx. (43)

Keeping in mind that L−1 {e−nsG(x+ s)} = enxe−xzL−1 {e−nsG(s)}, we take the inverse

Laplace transform of (43) to obtain

fακ2SC(X)(z) = −K̃n,α,ηL−1

{
e−ns

s(n−1)(n+α)

∫ ∞
0

e−x(z−cη)xn(n+α−1)

× det
[
σi(s, x) L

(j)
n+i−j−1(−s)

]
i=1,...,α+1
j=2,...,α+1

dx

}
, (44)

from which, one obtains after changing the order of integration

fακ2SC(X)(z) = −K̃n,α,η

∫ ∞
0

e−x(z−cη)xn(n+α−1)L−1 {D(x, s)} dx (45)
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where

D(x, s) = det
[
Ai(x, s) L

(j)
n+i−j−1(−s)

]
i=1,...,α+1
j=2,...,α+1

(46)

with

Ai(x, s) =
e−nsσi(s, x)

s(n−1)(n+α)
(47)

and L−1(·) denotes the inverse Laplace transform.

Now let us focus on further simplification of D(x, s). To this end, we use (15) to rewrite

D(x, s) as

D(x, s) = det

Ai(x, s) (j + 1)n+i−j−1

(n+ i− j − 1)!

n+i−j−1∑
kj=0

(−n− i+ j + 1)kj(−s)kj
(j + 1)kjkj!


i=1,..,α+1
j=2,..,α+1

.

(48)

Further simplification of the determinant is difficult in its current form due to the dependence

of the upper limit of the finite summation on i and j. To circumvent this challenge, we use the

decomposition

(−n− i+ j + 1)kj = (−n− i+ j + 1)kj
(−n− α + j)kj
(−n− α + j)kj

=
(n+ i− j − 1)!(n+ α− j − kj)!(−n− α + j)kj

Γ(n+ i− j − kj)(n+ α− j)!

with some algebraic manipulation to rewrite

D(x, s)

= det

[
Ai(x, s)

(n+ i− 1)!

(n+ α− j)!j!

×
n+α−j∑
kj=0

(−n− α + j)kj(−s)kj
(j + 1)kjkj!

(n+ α− j − kj)!
Γ(n+ i− j − kj)

]
i=1,..,α+1
j=2,..,α+1

=

∏α+1
j=1 (n+ j − 1)!∏α+1

j=2 j!(n+ α− j)!

n+α−2∑
k2=0

...
n−1∑

kα+1=0

α+1∏
j=2

(−n− α + j)kj(−s)kj(n+ α− j − kj)!
(j + 1)kjkj!

× det

[
Ai(x, s)

(n+ i− 1)!

1

Γ(n+ i− j − kj)

]
i=1,..,α+1
j=2,..,α+1

(49)

where Γ(·) denotes the Gamma function. It is worth noting that the original restriction on kj in

(48), kj ≤ n+ i− j−1, is implicitly imposed here by the term 1
Γ(n+i−j−kj) . Now we may collect
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all powers of s in the outer nested summations and multiply the first column of the determinant

by the resultant term s
∑α+1
j=2 kj to obtain

D(x, s)

=
(n+ α− 1)!(n+ α)!

(n− 1)!

n+α−2∑
k2=0

...
n−1∑

kα+1=0

α+1∏
j=2

(n+ α− j)!
(j + kj)!kj!

× det

[
Ai(x, s)s

∑α+1
j=2 kj

(n+ i− 1)!

1

Γ(n+ i− j − kj)

]
i=1,..,α+1
j=2,..,α+1

. (50)

Again, the same restriction on the parameters kj is critically important for the existence of the

term s
∑α+1
j=2 kj . However, in what follows, for the clarity of presentation, we tacitly avoid it, since

this particular restriction is implicitly embedded in the term 1/Γ(n+i−j−kj) . Noting that only

the first column of the above determinant contains s, we take term-by-term Laplace inversion to

obtain

L−1 {D(x, s)} =
(n+ α− 1)!(n+ α)!

(n− 1)!

n+α−2∑
k2=0

. . .
n−1∑

kα+1=0

α+1∏
j=2

(n+ α− j)!
(j + kj)!kj!

× det

[
Bi(x, z)

1

Γ(n+ i− j − kj)

]
i=1,...,α+1
j=2,...,α+1

(51)

where

Bi(x, z)

= L−1

{
Ai(x, s)s

∑α+1
j=2 kj

(n+ i− 1)!

}

=
(−1)n+i−3 (cηx)n+i−2

(n+ i− 1)!

(
(n+ i− 1)L−1

{
e−ns

s(n−1)(n+α)−
∑α+1
j=2 kj−1(s− cηx)n+i−1

}

−cηxL−1

{
e−ns

s(n−1)(n+α)−
∑α+1
j=2 kj(s− cηx)n+i−1

})
. (52)

Consequently, we make use of the Laplace inversion relation [89, Eq. 6.10.6]

L−1

{
e−ns

sa(s− ω)b

}
=

(z − n)a+b−1

Γ(a+ b)
1F1 (b; a+ b;ω(z − n))H(z − n), a+ b > 0, (53)

with 1F1(·; ·; ·) denoting the confluent hypergeometric function of the first kind [88] and H(·)

denoting the Heaviside unit step function, in (52) with some algebraic manipulation to obtain

Bi(x, z) =
(−1)ai(cηx)ai−1(z − n)bi−1

Γ(ai)Γ(bi)

(
1F1 (ai; bi;Zx)−

Zx
aibi

1F1 (ai; bi + 1;Zx)

)
H(z−n)

(54)
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where ai = n+ i− 1, bi = n2 + nα+ i−α−
∑α+1

j=2 kj − 2, and Zx = cηx(z− n). We note here

that bi > 0 by virtue of kj ≤ n− i− j− 1. Now it is convenient to substitute (54) into (51) and

use the resultant expression in (45) to yield

fακ2SC(X)(z) = −K̃n,α,η
(n+ α− 1)!(n+ α)!

(n− 1)!

n+α−2∑
k2=0

. . .

n−1∑
kα+1=0

α+1∏
j=2

(n+ α− j)!
(j + kj)!kj!

×
∫ ∞

0

e−x(z−cη)xn(n+α−1) det

[
Bi(x, z)

1

Γ(n+ i− j − kj)

]
i=1,...,α+1
j=2,...,α+1

dx. (55)

Since only the first column of the determinant depends on x, the integration operation can be

absorbed into the determinant to obtain

fακ2SC(X)(z) = −K̃n,α,η
(n+ α− 1)!(n+ α)!

(n− 1)!

n+α−2∑
k2=0

. . .
n−1∑

kα+1=0

α+1∏
j=2

(n+ α− j)!
(j + kj)!kj!

× det

[
Ii(z)

1

Γ(n+ i− j − kj)

]
i=1,...,α+1
j=2,...,α+1

(56)

where

Ii(z) =

∫ ∞
0

e−x(z−cη)xn(n+α−1)Bi(x, z)dx

=
(−1)ai(cη)

ai−1(z − n)bi−1

Γ(ai)Γ(bi)

(∫ ∞
0

e−x(z−cη)xci−1
1F1 (ai; bi;Zx) dx

−cη(z − n)

aibi

∫ ∞
0

e−x(z−cη)xci 1F1 (ai; bi + 1;Zx) dx

)
H(z − n) (57)

with ci = n2 + nα+ i− 1. Now in light of [88, Eq. 7.621.4] each of the above integrals can be

evaluated in closed-form to obtain

Ii(z) =
(−1)aiΓ(ci)c

ai−1
η (z − n)bi−1

Γ(ai)Γ(bi)(z − cη)ci

(
2F1

(
ai, ci; bi;

cη(z − n)

z − cη

)
− ci
aibi

cη(z − n)

z − cη
2F1

(
ai, ci + 1; bi + 1;

cη(z − n)

z − cη

))
H(z − n) (58)

where 2F1(a, b; c; z) denotes the Gauss hypergeometric function [88]. In order to further simplify

the above expression, noting that 2F1(a, b; c; z) = 3F2(a, b, d; c, d; z) for d 6= 0, we re-write (58)
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as

Ii(z)

=
(−1)aiΓ(ci)c

ai−1
η (z − n)bi−1

Γ(ai)Γ(bi)(z − cη)ci
H(z − n)

(
3F2

(
ai, ci, ai + 1; ai + 1, bi;

cη(z − n)

z − cη

)

− (ai − (ai − 1))ci(ai + 1)

(ai + 1)aibi

cη(z − n)

z − cη
3F2

(
ai, ci + 1, ai + 2; ai + 2, bi + 1;

cη(z − n)

z − cη

))
.

(59)

Now, the following contiguous relationship [90, Eq. 07.27.17.0015.01]

3F2 (a, b, c; d, e; z) = 3F2 (a+ 1, b, c; d+ 1, e; z)

− (d− a)bcz

(d+ 1)de
3F2 (a+ 1, b+ 1, c+ 1; d+ 2, e+ 1; z) (60)

can be used to further simplify the above expression to arrive at

Ii(z) =
(−1)aiΓ(ci)c

ai−1
η (z − n)bi−1

Γ(ai)Γ(bi)(z − cη)ci
3F2

(
ai − 1, ci, ai + 1; ai, bi;

cη(z − n)

z − cη

)
H(z−n). (61)

Substituting this result into (56), along with some algebraic manipulations and the index shift

i→ i− 1, j → j − 1 gives us the final result which is given by the following theorem.

Theorem 2: The exact p.d.f. of κ2
SC(X) is given by

fακ2SC(X)(z) =
(n+ α)!(z − n)n

2+nα−α−2

(η + 1)n+α(z − cη)n2+nα

n+α−2∑
k1=0

. . .
n−1∑
kα=0

(
α∏
j=1

(n+ α− j − 1)!

(j + kj + 1)!kj!

)

× (z − n)−
∑α
j=1 kjdet

[
Gi(z, η)

1

Γ(n+ i− j − kj)

]
i=0,..,α
j=1,..,α

H(z − n) (62)

where

Gi(z, η) = (−1)i
ciη(z − n)i

(z − cη)i
Γ (n2 + nα + i)

Γ(n+ i)Γ
(
n2 + nα− α + i−

∑α
j=1 kj − 1

)
× 3F2

(
n+ i− 1, n+ i+ 1, n2 + nα + i;n+ i, n2 + nα− α + i−

α∑
j=1

kj − 1;
cη(z − n)

z − cη

)
(63)

and H(z) is the unit step function.

June 1, 2022 DRAFT



20

Remark 2: It is worth mentioning that the above generalized hypergeometric function 3F2

boils down to a sum of rational functions, thereby simplifying the classical equivalent infinite

series expansion. To demonstrate this, let us utilize the decomposition11

3F2(a, b, c; a− 1, d; z) = 2F1(b, c; d; z) +
zbc

d(a− 1)
2F1(b+ 1, c+ 1; d+ 1; z), (64)

along with [88, Eq. 9.131.1] to further simplify the generalized hypergeometric function in (63)

as

3F2

(
pi + 1, pi − 1, qi; pi, ri;

cη(z − n)

z − cη

)
=

(
z(η + 1)− η
z + η(n− 1)

)pi−1

(qi − ri)!
qi−ri∑
k=0

(pi − 1)k
(qi − ri − k)!k!(ri)k

(
η(z − n)

z + η(n− 1)

)k
×
(

1 +
(pi − 1 + k)qi

(ri + k)pi

η(z − n)

z + η(n− 1)

)
(65)

where pi = n + i, qi = n2 + nα + i, and ri = n2 + nα − α + i −
∑α

j=1 kj − 1. Nevertheless,

for notational concision, we use 3F2 instead of the above representation involving the sum of

rational functions.

Since the number of nested summations depends only on α, this formula provides an efficient

way of evaluating the p.d.f. of κ2
SC(X), especially for small values of α. Furthermore, since the

algebraic complexity depends only on n and α (i.e., the difference between m and n), this in

turn makes our result (62) very useful for determining the macroscopic limit of κ2
SC(X) (i.e., as

m and n grow large while their difference is fixed). This will be addressed in the next section.

Now it is worth observing that for some small values of α, (62) admits the following simple

forms.

Corollary 2: The exact p.d.f.s of κ2
SC(X) corresponding to α = 0 and α = 1 are given,

respectively, by

f 0
κ2SC(X)(z) =

n(n2 − 1)(z − n)n
2−2

(η + 1)n(z − cη)n2 3F2

(
n− 1, n+ 1, n2;n, n2 − 1;

cη(z − n)

z − cη

)
H(z − n),

(66)

11Capitalizing on the observation (a)k
(a−1)k

= 1+ k
(a−1)

, we obtain 3F2(a, b, c; a− 1, d; z) =

∞∑
k=0

(
1 +

k

a− 1

)
(b)k(c)k
(d)kk!

zk =

2F1(b, c; d; z) +
z

a− 1

∞∑
k=0

(b)k+1(c)k+1

(d)k+1k!)!
zk. Now the final result follows by noting the decomposition (p)k+1 = p(p+ 1)k.
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f 1
κ2SC(X)(z) =

(z − cη)−n(n+1)

n(η + 1)n+1

(
n(n2 + n− 1)!(3)n−1

(n− 1)!

n−1∑
j=0

(−n+ 1)j(−1)j(z − n)n
2+n−3−j

j!(3)j(n2 + n− 3− j)!

×3F2

(
n− 1, n+ 1, n2 + n;n, n2 + n− 2− j; cη(z − n)

z − cη

)
+

(
cη

z − cη

)
(n+ 1)(n2 + n)!(3)n−2

(n− 2)!

n−2∑
j=0

(−n+ 2)j(−1)j(z − n)n
2+n−2−j

j!(3)j(n2 + n− 2− j)!

×3F2

(
n, n+ 2, n2 + n+ 1;n+ 1, n2 + n− 1− j; cη(z − n)

z − cη

))
H(z − n). (67)

The expression corresponding to η = 0 agrees with a previous result given in [14, Theorem

3.3] as shown in the following corollary.

Corollary 3: The exact p.d.f. of κ2
SC(X) given in Theorem 2 simplifies, for η = 0, giving

fακ2SC(X)(z) = Γ (mn)

(
α∏
j=0

n+ j

(j + 1)!

)
(z − n)mn−α−2z−mn

×
n+α−2∑
k1=0

...
n−1∑
kα=0

(
α∏
j=1

(−1)kj
(−n− α + j + 1)kj

(j + 1)kjkj!
(z − n)−kj

)

× ∆α(c)

Γ
(
mn− α− 1−

∑α
j=1 kj

)H(z − n)

(68)

which coincides with [14, Theorem 3.3]. Here, c = {c1, c2, . . . , cα} with cj = j + kj and

m = n+ α.

Proof: See Appendix A.

Interestingly, capitalizing on the joint eigenvalue density (12), we can derive novel expressions

for the p.d.f. and the c.d.f. of the minimum eigenvalue λ1 of the single-spiked Wishart-Laguerre

ensemble as shown in the following lemma.

Lemma 1: The p.d.f. and c.d.f. of the minimum eigenvalue λ1 of the single-spiked Wishart-

Laguerre ensemble is given, respectively, by

fαλ1(x) =
(n− 1)!xαe−x(n−cη)

(n+ α− 1)!(η + 1)α
det
[
(n+ i− cη) (−η)i L

(j+1)
n+i−j−1(−x)

]
i=0,...,α
j=1,...,α

, (69)

Fα
λ1

(x) = 1− e−x(n−cη)

(η + 1)α
det
[
(−η)i L

(j−1)
n+i−j(−x)

]
i=0,...,α
j=1,...,α

. (70)

Proof: See Appendices B and C.

Similar results (i.e., α dependent determinant size) appear in the literature [14], [25], [73]

for λ1 of Wishart-Laguerre ensemble (i.e., without the single-spiked covariance or Σ = In).
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For a fully correlated Wishart matrix, a more complicated α dependent result for the minimum

eigenvalue has been reported in [74]. However, for single-spiked case, the above results are much

compact and easy to handle. As a sanity check, for α = 0, we obtain F 0
λ1

(x) = 1 − e−x(n−cη),

which coincides with [76, Eq. 2.15], [86, Eq. 3.23], and [77, Eq. 21].

Figures 1 and 2 compare the analytical p.d.f. result of κ2
SC(X) for the deformed Laguerre-

Wishart matrix computed based on Theorem 2 with simulated data. In particular, Fig. 1 depicts

the p.d.f. of κ2
SC(X) for various n and m configurations with η = 10. Figure 2 shows the effect

of η on the p.d.f. for the fixed configuration n = 5 and m = 8 (i.e., α = 3). Moreover, Fig. 3

shows the effect of m on the p.d.f. of κ2
SC(X) for fixed η and n. As depicted in the figure, as m

increases for fixed n and η (i.e., n = 5 and η = 10), the p.d.f. of κ2
SC(X) tends to concentrate

towards z = 16. To further examine this behaviour, let us focus on the limiting behaviour of

κ2
SC(X) as m → ∞. Noting that λ1/m tends to 1 almost surely and tr(W)/m =

∑n
j=1 λj/m

tends to η+n+1 in probability12, following continuous mapping theorem [91], we can conclude

that κ2
SC(X) =

(∑n
j=1 λj/m

)
/ (λ1/m) tends to η + n + 1 in probability. This explains reason

behind leftward shift of the p.d.f.s in Fig. 3 as α (i.e., m) increases for fixed η.

Having statistically characterized the p.d.f. of κ2
SC(X), we now focus on developing the

ROC curves for the test statistic T (λ) in (7). Since the dependency of the p.d.f. of κ2
SC(X)

on the perturbation power η is of paramount importance in the sequel, we rewrite fα
κ2SC(X)

(z)

as fα
κ2SC(X)

(z, η) to indicate it. Therefore, under this setting, the detection13 and false alarm

probabilities can be written with the help of (7), (8), and Theorem 2 as

Pα
D(ηsnr, ξth) = Pr {T (λ) > ξth|H1} , (71)

Pα
F (ξth) = Pr {T (λ) > ξth|H0} (72)

where ξth denotes a certain threshold14 and

T (λ) ∼

 fα
κ2SC(X)

(z, ηsnr) under H1

fα
κ2SC(X)

(z, 0) under H0

(73)

12It can easily be proved that the characteristic function of tr(W)/m given by E
{
e−jωtr(W)/m

}
=

1

(1+(1+η)jω/m)m(1+jω/m)m(n−1) converges to e−jω(n+η+1) as m → ∞ for fixed n. Therefore, following the Lévy’s

continuity theorem, we obtain tr(W)/m converges to n+ η+1 weakly (i.e., converges in distribution). The final claim follows

by noting that weak convergence to a constant amounts to convergence in probability to the same constant.
13This is also known as the power of the test.
14Since T (λ) is a continuous random variable, the threshold ξth is chosen such that PαF (ξth) = δ ∈ (0, 1).
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Fig. 1. Comparison of simulated data points and the analytical p.d.f. fακ2
SC(X)(z) for different values of n with α = 3 and

η = 10.
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Fig. 2. Comparison of simulated data points and the analytical p.d.f. fακ2
SC(X)(z) for different values of η with n = 5 and

α = 3.
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Fig. 3. Comparison of simulated data points and the analytical p.d.f. fακ2
SC(X)(z) for different values of α with n = 5 and

η = 10.

with ηsnr =
γ||h||2

σ2
denoting the SNR. Now the (Pα

D, P
α
F ) ∈ [0, 1]2 pair characterizes the detector

and is called as the ROC profile. In general, obtaining an explicit functional relationship between

Pα
D and Pα

F by eliminating the parametric dependency on ξth seems an arduous task. Nevertheless,

when α admits zero, an explicit relationship between them is possible. To show this, let us first

write Pα
F in (72) as

Pα
F (ξth) =

∫ ∞
ξth

fακ2SC(X)(z, 0)dz (74)

which can be further simplified in view of (68) with α = 0 to obtain

P 0
F (ξth) = n(n2 − 1)

∫ ∞
ξth

(z − n)n
2−2

zn2 dz = 1−
(

1− n

ξth

)n2−1

. (75)

Therefore, we get [67, Eq. 15]

ξth =
n

1− (1− P 0
F )

1
n2−1

. (76)

Now following (71), we write the detection probability as

Pα
D(ηsnr, ξth) =

∫ ∞
ξth

fακ2SC(X)(z, ηsnr)dz (77)

from which, in view of (66), we obtain

P 0
D(ηsnr, ξth) =

n(n2 − 1)

(ηsnr + 1)n

∫ ∞
ξth

(z − n)n
2−2

(z − cηsnr)n
2 3F2

(
n− 1, n+ 1, n2;n, n2 − 1;

cηsnr(z − n)

z − cηsnr

)
dz.

(78)
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To facilitate further analysis, we use (65) with α = 0 to rewrite 3F2 as

3F2

(
n− 1, n+ 1, n2;n, n2 − 1;

cηsnr(z − n)

z − cηsnr

)
=

(z − cηsnr)n+1

(n+ 1) [(1− cηsnr)z + (n− 1)cηsnr ]
n+1

+
z(n− cηsnr)(z − cηsnr)n−1

(n+ 1) [(1− cηsnr)z + (n− 1)cηsnr ]
n ,

(79)

which upon substituting into (78) followed by some algebraic manipulation gives

P 0
D(ηsnr, ξth) = n(n− 1)(ηsnr + 1)

∫ ∞
ξth

(z − n)n
2−2

(z − cηsnr)n
2−n−1 [z + (n− 1)ηsnr]

n+1 dz

+ n(n− 1)(n− cηsnr)
∫ ∞
ξth

z(z − n)n
2−2

(z − cηsnr)n
2−n+1 [z + (n− 1)ηsnr]

n dz. (80)

Now we may apply the substitution x = z + (n − 1)ηsnr into (80) and evaluate the resultant

integrals to obtain the probability of detection as

P 0
D(ηsnr, ξth) =

n(n− 1) (1 + ηsnr)
n2

ηn2−1
snr (n+ (n− 1)ηsnr)

n2−2∑
k=0

2∑
`=0

(−1)k
(
n2−2
k

)
(n− 1)ε`

(ηsnr + 1)k+`
Pk+`(ξth, ηsnr) (81)

where

PM(z, ηsnr) =


1

n−M

[
1−

(
1− ηsnr[n+ (n− 1)ηsnr]

[ηsnr + 1][z + (n− 1)ηsnr]

)n−M]
for n 6= M

− ln

(
1− ηsnr[n+ (n− 1)ηsnr]

[ηsnr + 1][z + (n− 1)ηsnr]

)
for n = M

, (82)

(
n
k

)
= n!/k!(n− k)! is the binomial coefficient, and ε` = 1

2
(1− (−1)`). Consequently, (76) and

(81) together determine the ROC curve of the test statistic T corresponding to α = 0 for an

arbitrary SNR ηsnr.

Figure 4 depicts the analytical and simulated ROC curves for different SNR values with α = 0

and n = 4. The positive effect of SNR on the probability of detection is clearly visible from the

figure. To further highlight this and to investigate the effect of the sample size (i.e., m) on the

probability of detection, in Fig. 5, we plot the detection probability versus false alarm probability

for various values of m and ηsnr with n = 5. Here the theoretical ROC curves corresponding to

α = 0 have been generated by using (76) and (81), whereas, for α 6= 0, we have numerically

integrated the analytical p.d.f.s given in (62) and (68). Again, as expected, both parameters m

and ηsnr affect the detection probability positively. Having understood the joint effect of the latter

parameters, let us now focus on demonstrating the joint effect of the number of samples and

the number of receive antennas (i.e., n) or equivalently the number of single antenna secondary
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users on the detection probability. To this end, Fig. 6 depicts the ROC curves corresponding

to different values of α for various configurations of m and n such that α = m − n is fixed

with h = (1 1 . . . 1)T . It is noteworthy that this particular choice of h gives ||h||2 = n,

whereas, for h ∼ CN n(0, In) (i.e., Rayleigh fading channels), we obtain the almost sure limit

lim
n→∞

||h||2

n
→ 1. This in turn suggests that, for large enough n, ||h||2 can be approximated

with n; thereby drawing an analogy between the two channels. As can be seen from the figure,

increasing both m and n with their difference fixed leads to an improved detection probability

for an arbitrary transmit SNR (i.e., γ/σ2). The reason behind this improvement for fixed α is

the dependency of ηsnr on n. To be specific, for each n with fixed α, we have ηsnr = γn/σ2;

therefore, ηsnr grows linearly with n. In the setting of Fig. 6, the values of ηsnr corresponding

to n = 2, 5, 8 are given, respectively, by ηsnr ≈ 8, 12, 14 dB.

ηsnr=0dB

ηsnr=5dB

ηsnr=10dB

ηsnr=15dB

ηsnr=20dB

ηsnr=25dB

Simulation

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

PF
0 (ηsnr,ξth )

P
D0
(η
sn
r,
ξ t
h
)

Fig. 4. Probability of detection versus false alarm probability; simulation and analytical result comparison. ROC curves are

shown for different ηsnr with α = 0 and n = 4

IV. ASYMPTOTIC CHARACTERIZATION OF κ2
SC(X)

In this section, we investigate the distribution of κ2
SC(X) over two pertinent asymptotic regimes.

In particular, our focus is on the two regimes: m,n→∞ such that m−n is fixed and m,n→∞

such that n/m→ c ∈ (0, 1). Our general strategy is to first characterize the limiting distributions

(i.e., weak limits) of suitably centered and scaled λ1 and to obtain the weak limits of suitably
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Fig. 5. Probability of detection versus false alarm probability; simulation and analytical result comparison. ROC curves are

shown for different values of m with n = 5 and ηsnr = 5, 15 dB.
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Fig. 6. Probability of detection versus false alarm probability; simulation and analytical result comparison. ROC curves are

shown for different n and α with the transmit SNR = 5 dB.
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centered and scaled κ2
SC(X) corresponding to the above two regimes by invoking the Slutsky’s

lemma [91] subsequently.

A. Limiting Distribution in the Fixed m− n Regime

In this subsection, we use the exact c.d.f. expression (70) to investigate the c.d.f. of κ2
SC(X),

suitably scaled, for fixed α when m,n→∞. As such, we have the following theorem.

Theorem 3: The scaled random variable Xn = µnλ1 with η scaled as η = ρ
n

, where µ, ρ ∈ R+

are arbitrary constants, converges in distribution to another random variable X with the following

c.d.f as m,n→∞ with α = m− n fixed:

Fα
X(x) = 1− e−

x
µ det

[
Ij−i

(
2

√
x

µ

)]
i,j=1,...,α

(83)

where Ik(·) denotes the modified Bessel function of the second kind and order k.

Proof: We may use (70) and the the definition of Laguerre polynomial given in (15) to

obtain

Pr (λ1 ≥ x) =
e−x(n−cη)

(η + 1)α
det

(−η)i
(j)n+i−j

(n+ i− j)!

n+i−j∑
kj=0

(−n− i+ j)kj
(j)kj

(−x)kj

kj!


i=0,...,α
j=1,...,α

. (84)

Further manipulation of the above determinant seems an arduous task due to the i, j-dependent

summation upper limits. To circumvent this difficulty, noting that (−n − i + j)kj = 0 for

kj > n+ i− j, the above expression can be re-written as

Pr (λ1 ≥ x) =
e−x(n−cη)

(η + 1)α
det

(−η)i
(n+ i− 1)!

(j − 1)!(n+ i− j)!

n+α−j∑
kj=0

(−n− i+ j)kj
(j)kj

(−x)kj

kj!


i=0,...,α
j=1,...,α

.

(85)

Again, to eliminate the i, j-dependency in the numerator of each summation, we use the decom-

position,

(−n− i+ j)kj = (−n− i+ j)kj
(−n− α + j)kj
(−n− α + j)kj

(86)

=
(n+ i− j)!
(n+ α− j)!

(−n− α + j)kj

α−i−1∏
p=0

(ĉj − p) (87)
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where ĉj = n+ α− j − kj , in (85) with some algebraic manipulations to obtain

Pr (λ1 ≥ x) =
e−x(n−cη)

(η + 1)α

α∏
j=1

1

(j − 1)!

n+α−1∑
k1=0

. . .

n∑
kα=0

(
α∏
j=1

(−n− α + j)kj
(j)kj

(−x)kj

kj!

)

× det

[
(−η)i(n− 1)!

(n+ i− 1)!

α−i−1∏
p=0

(ĉj − p)

]
i=0,...,α
j=1,...,α

(88)

where an empty product is interpreted as unity. Now, to determine the limiting distribution, we

consider the scaled random variable µnλ1 and the scaled parameter η = ρ/n. As such, after

using some elementary limiting arguments we arrive at

lim
n→∞

Pr (µnλ1 ≥ x) =
e−

x
µ∏α

j=1(j − 1)!

∞∑
k1=0

. . .
∞∑

kα=0

(
α∏
j=1

1

(j)kjkj!

xkj

µkj

)
lim
n→∞

Ω(ρ, α, n) (89)

where

Ω(ρ, α, n) = det

[
(−ρ)i(n− 1)!

ni(n+ i− 1)!

α−i−1∏
p=0

(ĉj − p)

]
i=0,...,α
j=1,...,α

.

To facilitate further analysis, we need to obtain the limiting value of the above determinant. To

this end, we use some algebraic manipulations to yield

Ω(ρ, α, n) = det

[
(−1)iρi

ni
∏i−1

q=0(n+ q)

α−i−1∏
p=0

(ĉj − p)

]
i=0,...,α
j=1,...,α

(90)

from which we obtain upon invoking [14, Lemma A.1]

Ω(ρ, α, n) =



(−1)0 + o
(

1
n2

)
ĉα1 . . . ĉαα

(−1)1ρ
n2 + o

(
1
n4

)
ĉα−1

1 . . . ĉα−1
α

...
...

...
(−1)iρi

ni
∏i−1
q=0(n+q)

+ o
(

1
n2(i+1)

)
ĉα−i1 . . . ĉα−iα

...
...

...
(−1)αρα

nα
∏α−1
q=0 (n+q)

1 . . . 1


(91)

where o(·) denotes the little-o notation. Now following [26], we obtain

lim
n→∞

Ω(ρ, α, n) = ∆α (c)

where c = (c1, c2, . . . , cα)with c` = `+ k`. Consequently, (89) assumes the form

lim
n→∞

Pr (µnλ1 ≥ x) =
e−

x
µ∏α

j=1(j − 1)!

∞∑
k1=0

. . .
∞∑

kα=0

(
α∏
j=1

1

(j)kjkj!

xkj

µkj

)
∆α (c)
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from which we obtain using [26]

lim
n→∞

Pr (µnλ1 ≥ x) = e−
x
µ det

[
Ij−i

(
2

√
x

µ

)]
i,j=1,...,α

. (92)

Finally, we make use of the relation

Fα
X(x) = lim

n→∞
Fα
µnλ1

(x) = 1− lim
n→∞

Pr (µnλ1 ≥ x) (93)

to conclude the proof.

Having asymptotically characterized λ1, we are now in a position to present the weak limit

of properly scaled κ2
SC(X) which is given by the following corollary.

Corollary 4: The scaled random variable Vn = κ2
SC(X)/µn3 with η = ρ

n
, where µ, ρ ∈ R+ are

arbitrary constants, converges in distribution to another random variable V with the following

c.d.f. and p.d.f., respectively, as m,n −→∞ with α = m− n fixed:

Fα
V (v) = e−

1
µv det

[
Ij−i

(
2
√
µv

)]
i,j=1,..,α

H(v) (94)

fαV (v) =
e−

1
µv

µv2
det

[
Ij−i+2

(
2
√
µv

)]
i,j=1,..,α

H(v). (95)

Proof: Since, from Theorem 3, as m,n→∞ with α fixed, µnλ1 converges in distribution

to X and
∑n

j=1 λj/n
2 converges in probability to 115, we may use the Slutsky’s lemma [91] to

obtain the weak limit of µn3/κ2
SC(X). Consequently, we invoke the continuous mapping theorem

[91] to conclude the proof of (94).

Whereas the derivative of Fα
V (v) with respect to v gives, in principle, the p.d.f. of V , that

approach does not yield any simple expression for the p.d.f. To overcome this difficulty, here

we directly evaluate the limiting p.d.f. of V starting from the p.d.f. of κ2
SC(X) given in Theorem

(2). To this end, we multiply and divide (62) by the factor (n + α − j − kj − 1)! with some

algebraic manipulation to yield

fακ2SC(X)(z) =
H(z − n)

(η + 1)n+α

n+α−2∑
k1=0

...
n−1∑
kα=0

(
α∏
j=1

(n+ α− j − 1)!

(n+ α− j − kj − 1)!(j + kj + 1)!kj!

)

× (z − n)(n−1)(n+α+1)−
∑α
j=1 kj−1

(z − cη)n(n+α)
det

[
(n+ α)!Gi(z, η)

α−i−1∏
`=0

(c̃j − `)

]
i=0,...,α
j=1,...,α

(96)

15It can be proved that the characteristic function of
∑n
j=1 λj/n

2 = tr(W)/n2 given by E
{
e−jωtr(W)/n2

}
=

1

(1+(1+ρ/n)jω/n2)(n+α)
(1+jω/n2)(n+α)(n−1)

converges to e−jω as n→∞ for fixed α. Therefore, following the Lévy’s continuity

theorem, we obtain tr(W)/n2 converges to 1 weakly (i.e., converges in distribution). The final claim follows by noting that

weak convergence to a constant amounts to convergence in probability to the same constant.
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where c̃j = n + α − j − kj − 1. Now noting the fact that fαV (v) = lim
n−→∞µn

3fακ2SC(X)(µn
3v) and

η = ρ/n, we apply the fundamental limiting arguments as n→∞ followed by some algebraic

manipulation to arrive at

fαV (v) = lim
n−→∞µn

3fακ2SC(X)(µn
3v)

=
e−

1
µv
−ρ

µα+1vα+2

∞∑
k1=0

...
∞∑

kα=0

(
α∏
j=1

1

(j + kj + 1)!kj!(µv)kj

)
lim
n−→∞Θ(n, v)H(v) (97)

where

Θ(n, v) = det

[
(n+ α)!Gi(µn3v, ρ

n
)

n3α+2
∑α
j=1 kj+3

α−i−1∏
`=0

(c̃j − `)

]
i=0,...,α
j=1,...,α

. (98)

To facilitate further analysis, we make use of the elementary row operations shown in [14,

Lemma A.1] on Θ(n, v) and expand the resultant determinant using its first column to obtain

Θ(n, v) = ∆α(c)
α∑
i=0

α−i∑
`=0

i∑
k=0

(−1)iS
(α−i−`)
α−i

(n+ α)!Gi+`(µn3v, ρ
n
)

n3α+2
∑α
j=1 kj+3

ak,in
k (99)

where c = {c1, ..., cα} with cj = j + kj , ak,i’s are constant coefficients independent of n with

a0,0 = 1, and S(m)
n is the Stirling number of the second kind with S(α)

α = 1 [88]. Noting the fact

that

lim
n−→∞(−1)iS

(α−i−`)
α−i

(n+ α)!Gi+`(µn3v, ρ
n
)

n3α+2
∑α
j=1 kj+3

ak,in
k =

eρ for i, ` = 0

0 otherwise
, (100)

we conclude lim
n−→∞Θ(n, v) = eρ∆α(c), which upon substituting into (97) gives

fαV (v) =
e−

1
µv

µα+1vα+2

∞∑
k1=0

...
∞∑

kα=0

(
α∏
j=1

1

(j + kj + 1)!kj!(µv)kj

)
∆α(c)H(v). (101)

Finally, following the developments in [26], we obtain (95) which concludes the proof.

The above limiting p.d.f. is significantly less complicated than that of the analytical expression

which can be obtained by taking the derivative of the limiting c.d.f. given in (94). It is note-

worthy that exactly the same limiting c.d.f. has been obtained in [26] when X is distributed

as uncorrelated complex Gaussian with rank-one mean and in [25] for X having independent

complex standard normal entries. Since the above limiting p.d.f. is independent of η, we can

expect it to coincide with the limiting p.d.f. corresponding to η = 0 case given in [14, Eq. 4.1].

Although the two expressions look different, a sanity check reveals that they are two different

representations of the same analytical expression.
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Figure 7 compares the analytical asymptotic c.d.f. given by Corollary 4 with the simulated data

points. This figure further highlights the advantage of the asymptotic formula since it compares

favourably with finite n results. Moreover, Fig. 8 depicts the comparison between the theoretical

limiting p.d.f. expression given by (95) and corresponding simulation results. Both figures reveal

the accuracy of our limiting expressions, particularly at the tail of the p.d.f. even for finite values

of n.

B. Limiting Distribution in the n/m→ c ∈ (0, 1) Regime

Here we derive the limiting distribution of suitably centered and scaled κ2
SC(X) as m,n→∞

such that n/m→ c ∈ (0, 1).

Since κ2
SC(X) is intimately related to the behavior of λ1 (i.e., the minimum eigenvalue) in this

regime, we need to focus on the limiting distribution of λ1. In this respect, as m,n→∞ such

that n/m→ c ∈ (0, 1), for correlated Wishart matrices with their covariance matrices having a

limiting spectral measure16, a Tracy-Widom type convergence result has been established in [92].

To be specific, following [92, Theorem 3] and noting that ν(dx) = δ1dx for the single-spiked

model (i.e., Σ = In + ηuu∗), we may write the limiting distribution of λ1, after some tedious

algebraic manipulation, as

lim
m→∞

Pr

{
1

m
1
3

c
1
6

(1−
√
c)

4
3

(
m(1−

√
c)2 − λ1

)
≤ t

}
= F2(t) (102)

where F2(t) denotes the famous Tracy-Widom distribution [81] corresponding to β = 2 (i.e.,

complex case)

F2(t) = exp

(
−
∫ ∞
t

(x− t)q2(x)dx

)
(103)

in which q(x) denotes the Hastings-McLeod solution of the homogeneous Painlevé II equation
d2

dx2
q(x) = 2q3(x)+xq(x) characterized by the boundary condition q(x) ∼ Ai(x) as x→∞ with

Ai(x) denoting the Airy function17. Since we are interested in the asymptotic characterization

16Let the eigenvalues of the covariance matrix Σ be 0 < %1 ≤ %2 ≤ . . . ≤ %n. Then we assume that the spectral measure

νn = 1
n

∑n
k=1 δ%k , where δx denotes the Direc measure at point x, converges weakly towards a limiting distribution ν as

m,n→∞ such that n/m→ c ∈ (0, 1) [92].
17The Airy function is characterized in turn by d2

dx2
Ai(x) = xAi(x) and Ai(+∞) = 0 [22].
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of κ2
SC(X), we consider the centered and scaled random variable (1−

√
c)

8
3

c
5
6m

1
3

(
κ2

SC(X)− mc
(1−
√
c)2

)
,

which can be rewritten as

(1−
√
c)

8
3

c
5
6m

1
3

(
κ2

SC(X)− mc

(1−
√
c)2

)
=
m

2
3 (1−

√
c)

8
3

c
5
6

(∑n
k=1 λk/m

2

λ1/m
− c

(1−
√
c)2

)
= m

2
3

(
1−
√
c
) 2

3 c
1
6

(c−1(1−
√
c)2
∑n

k=1 λk/m
2 − λ1/m)

λ1/m
.

Consequently, noting that λ1/m converges almost surely to (1 −
√
c)2 [52] and

∑n
k=1 λk/m

2

converges in probability to c18 given η = O(1), we may use Slutsky’s lemma [91], in view of

(102), to obtain

lim
m→∞

Pr

{
(1−

√
c)

8
3

c
5
6m

1
3

(
κ2

SC(X)− mc

(1−
√
c)2

)
≤ t

}
= F2(t). (104)

A similar procedure can be used to establish

lim
m→∞

Pr

{
m

5
3 c

7
6

(1−
√
c)

4
3

(
(1−

√
c)2

mc
− κ−2

SC (X)

)
≤ t

}
= F2(t). (105)

A careful inspection of the above c.d.f.s revels that properly centred κ2
SC(X) fluctuates on the

scale m
1
3 , whereas κ−2

SC (X) fluctuates on the scale m−
5
3 . Moreover, in the light of observation

that, for Σ = In, we have [92]

lim
m→∞

Pr

{
(1−

√
c)

8
3

c
5
6m

1
3

(
κ2

SC(X)− mc

(1−
√
c)2

)
≤ t

}
= F2(t), (106)

which is identically equal to (104), we conclude that κ2
SC(X) does not have discrimination power

to detect the presence of a weak signal. In other words, related to the CR spectrum sensing,

when ηsnr = γ||h||2/σ2 = O(1) (i.e., low SNR regime), the probability of detection of the test

statistic T converges to zero as m,n → ∞ such that n/m → c ∈ (0, 1). However, a sanity

check reveals that, for ηsnr = O(n) (i.e., high SNR regime), the test statistic T still retains its

detection power in the above asymptotic regime.

To further highlight the above asymptotic behavior, in Figs. 9 and 10, we plot the c.d.f.s

of m−
1
3 (1−

√
c)

8
3 c−

5
6

(
κ2

SC(X)− mc
(1−
√
c)2

)
and m

5
3 (1−

√
c)
− 4

3 c
7
6

(
(1−
√
c)2

mc
− κ−2

SC (X)
)

, respec-

tively. The results are shown for different m,n configurations with c = 0.25 and η = 1. The

18It can be proved that the characteristic function of
∑n
j=1 λj/m

2 = tr(W)/m2 given by E
{
e−jωtr(W)/m2

}
=

1

(1+(1+η)jω/m2)m(1+jω/m2)m(n−1) converges to e−jωc as m,n→∞ such that n/m→ c ∈ (0, 1) when η = O(1). Therefore,

following the Lévy’s continuity theorem, we obtain tr(W)/m2 converges to c weakly (i.e., converges in distribution). The final

claim follows by noting that weak convergence to a constant amounts to convergence in probability to the same constant.
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limiting Tracy-Widom distribution corresponding to β = 2 (i.e., complex case) is also shown

for comparison. As can be seen from the figures, the limiting c.d.f.s do not compare favourably

with finite dimensional results; particularly, for small m,n configurations. Nevertheless, as m

and n diverge, the Tracy-Widom c.d.f. serves as a good approximation.

Fig. 7. Comparison of simulated data points and the analytical asymptotic c.d.f. FαV (v) for different α.

Fig. 8. Comparison of simulated data points and the analytical asymptotic p.d.f. fαV (v) for different α.
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Fig. 9. The c.d.f. of m−
1
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√
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8
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5
6

(
κ2

SC(X)− mc
(1−
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)
for different m,n configurations with η = 1 and c = 0.25.

The limiting Tracy-Widom distribution corresponding to β = 2 (i.e., complex case) is also shown for comparison.
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for different m,n configurations with η = 1 and c = 0.25.

The limiting Tracy-Widom distribution corresponding to β = 2 (i.e., complex case) is also shown for comparison.
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V. CONCLUSIONS

This paper investigates the exact p.d.f. characterization of κ2
SC(X) for row correlated complex

Gaussian distributed X with the so called single-spiked covariance matrix. Capitalizing on the

powerful orthogonal polynomial approach from finite dimensional random matrix theory, we

derive an exact expression for the p.d.f. which contains the determinant of a square matrix

whose dimensions depend on the relative difference m− n (i.e., the degree of rectangularity of

X). To demonstrate the utility of this new expression, noting the significance of κ2
SC(X) as one of

the test statistics used in the CR blind spectrum sensing, we develop corresponding ROC curves

in various scenarios. It turns out that, when m = n, an explicit analytical relationship between

the probabilities of detection and false alarm can be obtained. Nevertheless, obtaining such an

analytical relationship for m 6= n scenario seems intractable. Subsequently, we characterize the

behavior of the scaled κ2
SC(X) in the asymptotic regime, where m,n → ∞ with m − n fixed,

by deriving the limiting c.d.f. and p.d.f. expressions. In particular, our analytical stochastic

convergence results reveal that, if η scales on the order of 1/n, then κ2
SC(X) scales on the order

of n3 in the former asymptotic regime. Although derived for asymptotically large m and n,

these limiting distributions compare favourably with finite m and n results as well. On the other

hand, we also establish a Tracy-Widom class of stochastic convergence result for κ2
SC(X) as

m,n→∞ such that n/m→ c ∈ (0, 1). In this respect, we show that properly centered κ2
SC(X)

fluctuates on the scale m1/3. Nevertheless, our analytical results reveal that κ2
SC(X) (also T (λ))

does not have discrimination power to detect a weak signal (i.e., when η = O(1) or equivalently

ηsnr = O(1)) in this asymptotic regime.

The next natural question is whether we can employ the same analytical machinery to extend

the above results to the case in which the covariance matrix has an arbitrary number of spikes.

An affirmative answer in this respect requires further research and therefore, remains as an open

problem.

APPENDIX A

PROOF OF COROLLARY 3

By substituting η = 0 in (62), we get

fακ2SC(X)(z) =
(n+ α)!H(z − n)

zn(n+α)

n+α−2∑
k1=0

...
n−1∑
kα=0

(
α∏
j=1

(n+ α− j − 1)!

(j + kj + 1)!kj!

)
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× (z − n)(n−1)(n+α+1)−
∑α
j=1 kj−1 det

[
Gi(z)

1

Γ(n+ i− j − kj)

]
i=0,..,α
j=1,..,α

(107)

where

Gi(z) =

G0(z) for i = 0

0 otherwise
, (108)

with

G0(z) =
Γ (n(n+ α))

Γ(n)Γ
(

(n− 1)(n+ α + 1)−
∑α

j=1 kj

) .

Now we expand the determinant using its first column to yield

fακ2SC(X)(z) =
(n+ α)!H(z − n)

zn(n+α)

n+α−2∑
k1=0

...
n−1∑
kα=0

(
α∏
j=1

(n+ α− j − 1)!

(j + kj + 1)!kj!

)

× (z − n)(n−1)(n+α+1)−
∑α
j=1 kj−1 Γ (n(n+ α))

Γ(n)Γ
(

(n− 1)(n+ α + 1)−
∑α

j=1 kj

)
× det

[
1

Γ(n+ i− j − kj)

]
i,j=1,..,α

. (109)

To facilitate further analysis, let us rearrange the terms in the determinant to obtain

fακ2SC(X)(z) = Γ (n(n+ α))

(
α∏
j=0

n+ j

)
(z − n)n(n+α)−α−2z−n(n+α)

(
α∏
j=1

1

(j + 1)!

)

×
n+α−2∑
k1=0

...
n−1∑
kα=0

(
α∏
j=1

(n+ α− j − 1)!(j + 1)!

(j + kj + 1)!kj!(n+ α− j − 1− kj)!
(z − n)−kj

)

× H(z − n)

Γ
(
n(n+ α)− α− 1−

∑α
j=1 kj

) det

[
(n+ α− j − 1− kj)!
(n+ i− j − kj − 1)!

]
i,j=1,..,α

(110)

which simplifies after some algebraic manipulations giving

fακ2SC(X)(z) = (n(n+ α)− 1)!

(
α∏
j=0

n+ j

(j + 1)!

)
(z − n)n(n+α)−α−2z−n(n+α)

×
n+α−2∑
k1=0

...
n−1∑
kα=0

(
α∏
j=1

(−1)kj
(−n− α + j + 1)kj

(j + 1)kjkj!
(z − n)−kj

)

× H(z − n)

Γ
(
n(n+ α)− α− 1−

∑α
j=1 kj

) det

[
α−i−1∏
`=0

(n+ α− j − kj − 1− `)

]
i,j=1,..,α

. (111)

Finally, we invoke [14, Lemma A.1] to further simplify the above determinant and apply some

algebraic manipulations to obtain (68), which concludes the proof.
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APPENDIX B

DERIVATION OF THE P.D.F. OF THE MINIMUM EIGENVALUE

Let the p.d.f be fαλ1(x). By integrating the joint p.d.f of the eigenvalues given in (12) in terms

of λ2, ..., λn, we get

fαλ1(x) =

∫
R
f(x, λ2, . . . , λn)dλ2 . . . dλn (112)

where R = {x ≤ λ2 ≤ . . . ≤ λn}. Noting that the integral is symmetric with respect to

λ2, . . . , λn, we change the ordered region of integration into an (n − 1)-fold set of unordered

regions, to obtain

fαλ1(x) =
Cn,α,η

(n− 1)!

∫
[x,∞)n−1

xαe−x
n∏
i=2

λαi e
−λi

n∏
i=2

(λi − x)2 ∆2
n−1(λ)

×


ecηx

n∏
i=2

(x− λi)
+

n∑
k=2

ecηλk

(λk − x)
n∏
i=2
i 6=k

(λk − λi)

 dλ2 . . . dλn. (113)

For further simplification, we split the above integral to yield

fαλ1(x) = Ã(x) + B̃(x) (114)

where

Ã(x) =
Cn,α,η

(n− 1)!
xαe−x(1−cη)

∫
[x,∞)n−1

n∏
i=2

λαi e
−λi (x− λi) ∆2

n−1(λ)dλ2 . . . dλn (115)

and

B̃(x) =
Cn,α,η

(n− 1)!
xαe−x

∫
[x,∞)n−1

n∑
k=2

ecηλk

(λk − x)
n∏
i=2
i 6=k

(λk − λi)

×
n∏
i=2

λαi e
−λi (λi − x)2 ∆2

n−1(λ)dλ2 . . . dλn. (116)

Let us now focus on simplifying Ã(x). To this end, we apply the variable transformations,

λi − x = yi−1, i = 2, . . . , n, to (115) with some algebraic manipulations to obtain

Ã(x) =
(−1)(α+1)(n−1)

(n− 1)!
Cn,α,ηx

αe−x(n−cη)R
(α)
n−1(−x) (117)
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from which we obtain in view of (27)

Ã(x) =
(−1)n−1

(n− 1)!
Cn,α,ηx

αe−x(n−cη)

n−2∏
j=0

(j + 1)!(j + 1)!
α−1∏
j=0

(n+ j − 1)!

j!

× det
[
L

(2)
n+i−j−1

]
i,j=1...α

. (118)

To further simplify B̃(x), noting that due to symmetry, each term in the sum contributes the

same amount to the total, we rewrite (116) after some algebraic manipulations as

B̃(x) =
Cn,α,ηx

αe−x

(n− 2)!

∫ ∞
x

∫
[x,∞)n−2

λα2 e
−λ2(1−cη)(λ2 − x)

n∏
i=3

λαi e
−λi(λi − x)2(λ2 − λi)

×∆2
n−2(λ)dλ3 . . . dλndλ2. (119)

Now it is convenient to introduce the variable transformations, λ2 − x = y and λi − x = yi−2,

i = 3, . . . , n, to yield

B̃(x) =
(−1)nα

(n− 2)!
Cn,α,ηx

αe−x(n−cη)

∫ ∞
0

(y + x)αe−y(1−cη)yT
(α)
n−2(y,−x)dy, (120)

from which we obtain in view of (34)

B̃(x) =
(−1)n

(n− 2)!
Cn,α,ηKn−2,αx

αe−x(n−cη)

∫ ∞
0

e−y(1−cη)y

× det
[
L

(2)
n+i−3(y) L

(j)
n+i−j−1(−x)

]
i=1,...,α+1
j=2,...,α+1

dy. (121)

Since only the first column of the above determinant depends on y, we rewrite the above integral

as

B̃(x) =
(−1)n

(n− 2)!
Cn,α,ηKn−2,αx

αe−x(n−cη) det
[
τi L

(j)
n+i−j−1(−x)

]
i=1,...,α+1
j=2,...,α+1

(122)

where

τi =

∫ ∞
0

ye−y(1−cη)L
(2)
n+i−3(y)dy. (123)

We may use the contiguity relation (17) and [88, Eq. 7.414.5] with some tedious algebraic

manipulations to obtain

τi = 1 + γi (124)
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where γi = (−1)n(η + 1)ηn−1(n + i − 1 − cη)(−η)i−1. Substituting this result back into (122)

and expanding the resultant determinant using the multi-linear property gives us

B̃(x) =
(−1)n

(n− 2)!
Cn,α,ηKn−2,αx

αe−x(n−cη) det
[
1 L

(j)
n+i−j−1(−x)

]
i=1,...,α+1
j=2,...,α+1

+
(−1)n

(n− 2)!
Cn,α,ηKn−2,αx

αe−x(n−cη) det
[
γi L

(j)
n+i−j−1(−x)

]
i=1,...,α+1
j=2,...,α+1

. (125)

Noting that (see (41))

det
[
1 L

(j)
n+i−j−1(−x)

]
i=1,...,α+1
j=2,...,α+1

= det
[
L

(j)
n+i−j−1(−x)

]
i,j=1,...,α

and in view of (118) we rewrite (125) as

B̃(x) = −Ã(x) +
(−1)n

(n− 2)!
Cn,α,ηKn−2,αx

αe−x(n−cη) det
[
γi L

(j)
n+i−j−1(−x)

]
i=1,...,α+1
j=2,...,α+1

. (126)

Consequently, we use (126) in (114) with some algebraic manipulations to arrive at

fαλ1(x) =
(n− 1)!xαe−x(n−cη)

(n+ α− 1)!(η + 1)α
det
[
(n+ i− 1− cη)(−η)i−1 L

(j)
n+i−j−1(−x)

]
i=1,...,α+1
j=2,...,α+1

. (127)

Finally, we make use of the index shift, i→ i− 1, j → j − 1, to conclude the proof.

APPENDIX C

DERIVATION OF THE C.D.F. OF THE MINIMUM EIGENVALUE

By definition, the c.d.f. of λ1 can be written as

Fα
λ1

(x) = Pr(λ1 ≤ x) = 1− Pr(λ1 ≥ x). (128)

As such, Pr(λ ≥ x) can be written as

Pr(λ1 ≥ x) =

∫
x≤λ1≤...≤λn

f(λ1, . . . , λn)dλ1 . . . dλn (129)

=
Cn,α,η
n!

∫
[x,∞)n

n∏
i=1

λαi e
−λi∆2

n(λ)
n∑
k=1

ecηλk
n∏
i=1
i 6=k

(λk − λi)
dλ1 . . . dλn (130)

where we have exploited the fact that the integral is symmetric with respect to λ1 . . . , λn. Now

it is worth observing that, due to symmetry, each term in the sum in the above expression

contributes an equal amount to the total. Therefore, we can further simplify (130) to yield

Pr(λ1 ≥ x) =
Cn,α,η

(n− 1)!

∫
[x,∞)n

λα1 e
−λ1(1−cη)

n∏
i=2

λαi e
−λi(λ1 − λi)∆2

n−1(λ)dλ1 . . . dλn. (131)
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To facilitate further analysis, we introduce the variable transformations, λ1−x = y and λi−x =

yi−1 for i = 2, . . . , n, to obtain

Pr(λ1 ≥ x) =
(−1)(n−1)α

(n− 1)!
Cn,α,ηe

−x(n−cη)

∫ ∞
0

(x+ y)αe−y(1−cη)Q
(α)
n−1(y,−x)dy (132)

where

Q(α)
n (a, b) =

∫
[0,∞)n

n∏
i=1

(a− yi)(b− yi)αe−yi∆2
n(y)dy1 . . . dyn.

Following [26, Eq. A.4], we obtain a closed-form solution to Q(α)
n (a, b) as

Q(α)
n (a, b) =

(−1)n+α(n+α)K̂n,α
(b− a)α

det
[
L

(0)
n+i−1(a) L

(j−2)
n+i+1−j(b)

]
i=1,...,α+1
j=2,...,α+1

(133)

where

K̂n,α =

∏α+1
j=1 (n+ j − 1)!

∏n−1
j=0 j!(j + 1)!∏α−1

j=1 j!

Consequently, we use (133) in (132) to obtain

Pr(λ1 ≥ x) =
(−1)nα

(n− 1)!
Cn,α,ηe

−x(n−cη)K̂n−1,α

∫ ∞
0

e−y(1−cη)

× det
[
L

(0)
n+i−2(y) L

(j−2)
n+i−j(−x)

]
i=1,...,α+1
j=2,...,α+1

dy. (134)

Observing that only the first column of the above determinant depends on y, we can further

simplify the above integral to yield

Pr(λ1 ≥ x) =
(−1)nα

(n− 1)!
Cn,α,ηe

−x(n−cη)K̂n−1,α det
[
νi L

(j−2)
n+i−j(−x)

]
i=1,...,α+1
j=2,...,α+1

(135)

where

νi =

∫ ∞
0

e−y(1−cη)L
(0)
n+i−2(y)dy = (η + 1)(−η)n+i−2 (136)

with the last equality follows from [88, Eq. 7.414.6]. Therefore, (135) becomes, after some

algebraic manipulations

Pr(λ1 ≥ x) =
e−x(1−cη)

(η + 1)α
det
[
(−η)i−1 L

(j−2)
n+i−j(−x)

]
i=1,...,α+1
j=2,...,α+1

. (137)

Substituting this result into (128) followed by the index shift, i → i− 1, j → j − 1, concludes

the proof.
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[89] A. Erdélyi, Higher Transcendental Functions. New York: McGraw-Hill, 1953, vol. 1.

June 1, 2022 DRAFT



46

[90] Wolfram Research, “Hypergeometric3f2.” [Online]. Available: https://functions.wolfram.com/PDF/Hypergeometric3F2.pdf.

[91] A. W. Van der Vaart, Asymptotic Statistics, ser. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge:

Cambridge University Press, Jun. 2000.

[92] W. Hachem, A. Hardy, and J. Najim, “Large complex correlated Wishart matrices: Fluctuations and asymptotic

independence at the edges,” Ann. Probab., vol. 44, no. 3, pp. 2264–2348, May 2016.

June 1, 2022 DRAFT


