EFFICIENT DEPICTION OF VIDEO FOR SEMANTIC RETRIEVAL APPLICATIONS BY DIMENSIONALITY REDUCTION OF VISUAL FEATURE SPACE

Amarakoon Mudiyanselage Randitha Ravimal Bandara

(128029E)

Degree of Doctor of Philosophy

Department of Information Technology

University of Moratuwa

Sri Lanka

March 2021

EFFICIENT DEPICTION OF VIDEO FOR SEMANTIC RETRIEVAL APPLICATIONS BY DIMENSIONALITY REDUCTION OF VISUAL FEATURE SPACE

Amarakoon Mudiyanselage Randitha Ravimal Bandara

(128029E)

Thesis submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy

Department of Information Technology

University of Moratuwa

Sri Lanka

March 2021

DECLARATION

I declare that this is my own work, and this thesis does not incorporate, without acknowledgment, any material previously submitted for a Degree or Diploma in any other University or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Similarly, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic, or other media. I retain the right to use this content in whole or part in future works (such as articles or books).

UOM Verified Signature

Signature:

Date: 2/3/2021

The above candidate has carried out research for the PhD thesis under my supervision. Name of the supervisor I: Dr. Lochandaka Ranathunga

Signature of the supervisor I: **UOM Verified Signature** Date: 2/3/2021

Name of the supervisor II: Associate Professor Dr. Nor Aniza Abdullah

Signature of the supervisor II: **UOM Verified Signature** Date: 2/3/2021

ABSTRACT

The retrieval of temporal digital visual data, either by a text or visual query, requires automatic interpretation, which includes high-level annotation by object detection and recognition for text query-based retrieval and low-level abstraction for visual querybased retrieval. Both the accuracy and the speed of the interpretation become crucial factors in real-world applications, due to the high density of visual data. This study has focused on reducing the complexity of visual data efficiently by dimensionality reduction techniques for the detection and recognition of objects in videos for both textual annotation and visual guery-based video frame retrieval. The contribution of the study includes three approaches, i.e., a novel visual feature descriptor based on colour dithering - namely Salient Dither Pattern Feature (SDPF), novel object segmentation method based on the proposed feature descriptor - namely Refining Superpixel and Histogram of oriented optical flow Clustering (RSHC) -, and a novel self-supervised local descriptor - namely Network-in-Network with Restricted Boltzmann Machine (NIN-RBM). The experimental results make it evident that the SDPF is rotation and scale invariant and computationally efficient yet shows similar object recognition accuracy to the state-of-the-art methods with minimum supervision. The results further revealed that RSHC has successfully utilized SDPF for accurately segmenting individual objects by using a very shallow history of motion. Furthermore, according to the results, NIN-RBM has shown the state-of-the-art correspondence matching performance over the existing deep-learned self-supervised binary descriptors, keeping the computation time at the minimum. The overall results support the conclusions that RSHC is capable of accurately segment objects in a video, and then SDPF can be successfully used for recognizing the segmented objects. Moreover, NIN-RBM can be used to reliably and rapidly retrieve video frames related to any visual query. Since NIN-RBM is a local descriptor, it can be further used for locating of high-level objects and estimating their poses precisely, to improve the details of semantics retrieved from video data.

Keywords: dimensionality reduction, colour dithering, deep learning, video segmentation, object recognition, correspondence matching, binary descriptor

ACKNOWLEDGEMENT

First and foremost, I consider it is my bounden duty to record here my sincerest gratitude and appreciation to my supervisor, Dr. Lochandaka Ranathunga for his productive cooperation, guidance, and supervision extended throughout this research project. If not for his encouragement and support, this project would never have been a reality. Similarly, I unreservedly thank my co-supervisor, Associate Professor Dr. N.A. Abdullah from the University of Malaya, Malaysia for guiding me to succeed in this endeavour.

I express my heartfelt thanks to the Vice-Chancellor of the University of Moratuwa, the Dean of the Faculty of Information Technology and the Head of the Department of Information Technology, the non-academic staff members of the Faculty of Information Technology, University of Moratuwa for the opportunity given to commence my research work at the University of Moratuwa and facilitating me to carry out the same successfully. Further, I extend my sincere gratefulness to the Vice-Chancellor of the University of Sri Jayewardenepura, the Dean of the Faculty of Applied Sciences and the Head of the Department of Computer Science, and my colleagues in the academic staff for their assistance in many ways, which was a blessing for completing this research study. Thanks, are also due to the chairman and the staff of the National Research Council, Sri Lanka for granting a research scholarship under grant number NRC/12-017 to financially support this endeavour. Also, I must be thankful to the Senate Research Committee of University of Moratuwa for the financial support provided to carry out this study. Furthermore, I am indebted to the CEO of LK Domain Registry for granting me the Prof. V.K. Samaranayake Research Grant in order to continue my research studies at the University of Malaya, Malaysia.

I declare my salutation and admiration for all the esteemed authors, researchers, and philosophers for their great theories, research, publications, and ideas, which have been an enormous support to enhance this research work.

The support and motivation provided by my postgraduate friends, Mr. K.A.S.H. Kulathilake, Mr. V. Senthooran, Mr. B. Hettige and Mrs. M. Sirisuriya who are

affiliated with the Faculty of Information Technology, University of Moratuwa, too deserve mentioning with a debt of gratitude.

I am grateful to my parents, my sister, and brother, for all their encouragement and support extended right throughout this endeavour. If not for them, this project might not have been a reality. Last but not least, it is the dedication of my loving wife and daughter who were bearing all the burdens without passing them to me throughout the past few years that made me complete this research. Finally, I am grateful to all those who assisted me in numerous ways during the course of this research.

Declaration	i
Abstract	ii
Acknowledgement	iii
Table of Contents	v
List of Figures	x
List of Tables	xiii
List of Abbreviations	xiv
Chapter 1 Introduction	1
1.1 Digital video	2
1.1.1 Background of digital videos	2
1.1.2 Secondary tools for video applications	2
1.2 Digital video understanding	4
1.2.1 Video from the human's point of view	4
1.2.2 Video from the machine's point of view	5
1.2.3 Different aspects of machine's understanding	6
1.3 Computer vision	7
1.3.1 Image processing	7
1.3.2 Artificial intelligence	8
1.4 Handcrafted vs learned features	9
1.5 General process of video data interpretation	9
1.6 Problem in brief	10
1.6.1 Text query based retrieval	12
1.6.2 Visual query based retrieval	12
1.6.3 Scope of the study	13
1.7 Study aim and objectives	14

TABLE OF CONTENTS

1.8 Organization of the thesis	16
1.9 Summary	17
Chapter 2 Research Background	
2.1 Scene and object recognition	
2.1.1 Handcrafted feature descriptors	
2.1.2 Dimensionality reduction	
2.1.3 Deep learned features	21
2.2 Video segmentation	
2.2.1 Semantic segmentation	23
2.2.2 Supervised and unsupervised segmentation	23
2.2.3 Data clustering	24
2.3 Known object detection	
2.3.1 Correspondence matching	
2.4 Binary-valued local feature descriptors	
2.5 Summary	
Chapter 3 Low-Dimensional Feature for Object Recognition	
3.1 Overview	
3.2 Colour dithering as a dimensionality reduction technique	
3.3 Salient Dither Pattern Feature (SDPF)	
3.3.1 SDPF feature point extraction	
3.3.2 SDPF descriptor	
3.4 Dither Density Descriptor (DDD)	44
3.5 Improved Hessian based salient dither pattern feature (HSDPF)	
3.5.1 HSDPF descriptor	
3.5.2 Classification of SDPF descriptor	59
3.6 Summary	59

Chapter 4 Objects Segmentation	60
4.1 Overview of the proposed methods to segmentation	60
4.2 K-means based feature clustering for segmentation	61
4.2.1 Selection of properties	61
4.2.2 Attributes of the data for clustering	63
4.2.3 Estimation of K in K-means	65
4.3 Segmentation of video frames to an unknown number of objects	66
4.3.1 Simple Linear Iterative Clustering	67
4.3.2 Histogram of Oriented Optical Flow	68
4.3.3 Clustering feature points	68
4.3.4 Refining process of superpixels	72
4.4 Summary	74
Chapter 5 Correspondence Matching for Object Detection	75
5.1 Overview	75
5.2 Training NIN model	77
5.3 Training RBM	80
5.4 Calculate representative code	82
5.5 Fine tuning NIN	84
5.6 Summary	85
Chapter 6 Experimental Setup and Validation Methods	87
6.1 Evaluation of object recognition	87
6.1.1 Datasets	87
6.1.2 Evaluation metrics	88
6.1.3 Assessing the invariant properties of SDPF	91
6.2 Evaluation of segmentation	91
6.2.1 Datasets	92

6.2.2 Evaluation metrics	
6.3 Evaluation of correspondence matching	
6.3.1 Datasets	
6.3.2 Evaluation metrics	
6.4 Summary	
Chapter 7 Results and Discussion	
7.1 Invariant properties of SDPF	
7.1.1 Rotational invariance assessment	
7.1.2 Scale invariance assessment	
7.2 Assessing the performance of SDPF and SDPF-DDD	
7.2.1 Assessing the classification performance of HSDPF	
7.2.2 Assessment of the cost of HSDPF	
7.3 Experimental results of object segmentation	
7.3.1 Segmentation with an estimated number of objects	
7.3.2 Segmentation without estimating the number of objects	
7.4 Evaluation of correspondence matching of NIN-RBM	
7.4.1 Evaluation of instance retrieval	
7.4.2 Tasks from the HPatches benchmark	
7.4.3 Evaluation of the cost of computation	
7.5 Summary	
Chapter 8 Conclusion and Recommendations	
References	
APPENDIX A : Table of pre-calculated error diffusion coefficient vectors	s 159
APPENDIX B : Analysis oF T_K , the fraction of the average dissimilarities	3160
APPENDIX C : Nearest neighbour classification of SDPF	
APPENDIX D : Number of objects vs number of SDPF points	

APPENDIX E : Performance of HSDPF on segmented objects	163
APPENDIX F : Modified Network in Network model	164
APPENDIX G : Sample images of inputs and internal response of NIN-RBM	165
APPENDIX H : Sample Images from the Datasets	171
APPENDIX I : Publications based on this research study	173

LIST OF FIGURES

Figure 1.1: Two major sub-processes used in video retrieval applications, namely (1) text query based
retrieval by annotation and indexing, and (2) visual query based retrieval by correspondence matching.
The focus of the study is shown inside the blue frame
Figure 3.1: 3x3 neighbor dither patterns with the anatomy of a single dither pattern
Figure 3.2: The analogy of the function $F_c(x)$ to hue and intensity value quantization
Figure 3.3 The set of SDPF points allocated to the set of distance bins. The yellow markers show the
SDPF points, whereas the green cross marker is the centroid. The coloured bands are the distance bins
Figure 3.4: The experimental results to find the optimal dimension for SDPF descriptor
Figure 3.5: Coding grayscale with dither density utilizing a single bit per pixel. The spatial density is
calculated using square-shaped regions
Figure 3.6: Splitting the dither image to several binary images based on the dither colours
Figure 3.7: The experimental results of finding the optimal number of colours and circular regions 46
Figure 3.8: Improved ED-Dithering algorithm preserves the colour contrast. (a) two regions with
slightly different colours (b) Linearly quantized (c) Enlarged dither patterns (d) ED colour dithering-
based quantization
Figure 3.9: Dither colour set in RGB space
Figure 3.10: Binary search tree of dither colours
Figure 3.11: Different permutations of the same set of colours with the resultant overall colours 50
Figure 3.12: Different instances of an object in the SDPF algorithm. (a) the original image, (b) dithered
image (c) extracted SDPF points, (d) calculated dominant orientation
Figure 3.13: The accuracy vs. the dimension over distance axis k_d and chromatic axis k_c . (a) $k_a = 4$, (b)
$k_a = 8$, (c) $k_a = 12$ and (d) $k_a = 15$
Figure 4.1: Relative motion difference of feature points detected at different depth with a moving
camera. (a) front view (b) top view
Figure 5.1: The novel NIN-RBM hybrid model with the proposed learning method
Figure 5.2: Newly adapted NIN model by replacing the last pooling layer

Figure 7.1: A sample of images that were used to evaluate the invariant properties
Figure 7.2: Probability of rotated images classified in their true image class, obtained for example image
1
Figure 7.3: Probability of rotated images classified in their true image class, obtained for example image
2
Figure 7.4: Average probability of rotated images classified in their true image classes (considering all
the images)
Figure 7.5: Resized versions of an input with the scaling factor
Figure 7.6: Mean probability of predicting an input to its ground truth 103
Figure 7.7: Comparison of retrieval precision; (a) ten visual concepts in Corel dataset, (b) six visual
concepts in Caltech dataset
Figure 7.8: Comparison of recall; (a) ten visual concepts in Corel dataset, (b) six visual concepts in
Caltech dataset
Figure 7.9: Comparison of F1 Scores; (a) ten visual concepts in Corel dataset, (b) six visual concepts in
Caltech dataset
Figure 7.10: The performance of recognizing objects; (a) dataset: ALOI-View, (b) dataset: Coil-100
dataset, in terms of class average precision
Figure 7.11: The performance of recognizing objects in ALOI-ill in terms of class average precision
Figure 7.12: Sample images from five object categories in ALOI-ill dataset. Each column contains two
images from a single object category, captured under different illumination conditions 111
Figure 7.13: Performance of recognizing objects that are in different orientation in ALOI-View. (a)
without data augmentation (b) with data augmentation
Figure 7.14: Comparison of the three algorithms with the sequence 16E5. (a) Completeness measure.
(b) Spatial accuracy measure
Figure 7.15: Clustering SDPF points in a video frame using K-means. (a) source frame (b) optical flow
of SDPF (c) clustered SDPF (d) ground truth segments
Figure 7.16: Performance of RSHC, K-means-8D and EM over consecutive frames in the sequence
16E5. (a) Completeness measure. (b) Spatial accuracy measure

Figure 7.17: Clustering SDPF points in a video frame using the proposed methods. (a) Source frame.
(b) manual segmentation (c) K-means-8D clustered (d) clustered with RSHC 123
Figure 7.18: Correct and incorrect output of NIN-RBM for Brown Dataset. First row shows four sample
pairs of matched patches from Yosemite, the second one from Notre Dame and the last row of is from
liberty subsets
Figure 7.19: ROC of binary-valued descriptors with all combinations of all cross-category training and
testing configurations with Browns dataset
Figure 7.20 Performance over the three tasks namely retrieval, verification and matching. The coloured
circular bullets indicates the performance over the three different challenging levels found in HPatches
dataset. binary-valued or real-valued categories are denoted with different backgound colours 139
Figure 7.21: Mean time taken for feature encoding. Dataset: CIFAR-10

LIST OF TABLES

Table 7.1. Dimension and average extraction time of feature descriptors 104
Table 7.2: Averaged results obtained from the experimental setups of seven visual descriptors with the
two datasets
Table 7.3 Computational cost of the descriptors 114
Table 7.4. Computational details of HSDPF. 116
Table 7.5: The average completeness and the average spatial accuracy error of the segmentation with
unknown number of objects
Table 7.6. Comparison of patch matching performance of NIN-RBM. 125
Table 7.7 Results of correspondence matching task with RomePatches. 133
Table 7.8 Performance over instance retrieval task with Holidays, Oxford and Paris in terms of mAP
%
Table 7.9 Model size and number of parameters of the base models. 140

LIST OF ABBREVIATIONS

Acronym	Definition
ALOI	Amsterdam Library of Object Images
ANN	Artificial Neural Network
ARM	Advanced RISC (Reduced Instruction Set Computing) Machine
BOW	Bag of Words
BRIEF	Binary Robust Independent Elementary Features
BRISK	Binary Robust Invariant Scalable Keypoints
CCTV	Closed-Circuit Television
CDPC	Compact Dither Pattern Code
CIELAB	International Commission on Illumination. L, A and B are colour components
CIFAR	Canadian Institute for Advanced Research
CKN	Convolutional Kernel Network
CNN	Convolutional Neural Network
CNNH	Convolutional Neural Network with Hashing Layer
CPU	Central Processing Unit
CUDA	Compute Unified Device Architecture
DBD-MQ	Deep Binary Descriptor with Multi-Quantization
DBSCAN	Density-Based Spatial Clustering of Applications with Noise
DDD	Dither Density Descriptor
DNN	Deep Neural Network
DSH	Deep Supervised Hashing

Acronym	Definition
EHD	Edge Histogram Descriptor
FAST	Features from Accelerated Segment Test
FC-GPHOG	Fused Colour-Gabor Pyramidal Histogram of Oriented
	Gradient
FREAK	Fast Retina Key- point
GAP	Global Average Pooling
GBRBM	Gaussian-Bernoulli Restricted Boltzmann Machine
GPHOG	Gabor Pyramidal Histogram of Oriented Gradient
GPU	Graphic Processing Unit
HOG	Histogram of Oriented Gradients
HOOF	Histogram of Oriented Optical Flow
HSDPF	Hessian based Salient Dither Pattern Feature
HSV	Hue Saturation Value
HTD	Homogeneous Texture Descriptor
IFV	Improved Fisher Vector
ILSVRC	ImageNet Large Scale Visual Recognition Challenge
ITQ	Iterative Quantization
LAP	Local Average Pooling
LDA	Linear Discriminant Analysis
LDB	Local Difference Binary
LPP	Locality Preserving Projection
LSH	Local Sensitivity Hashing
MLP	Multi-Layer Perceptron

Acronym	Definition
NIN	Network in Network
NIN-RBM	Network in Network with Restricted Boltzmann Machine
ORB	Oriented FAST and Rotated BRIEF
PCA	Principle Component Analysis
PHOG	Pyramidal Histogram of Oriented Gradient
RAM	Random Access Memory
RBF	Radial Basis Function
RBM	Restricted Boltzmann Machine
ReLU	Rectified Linear Unit
RFD	Receptive Fields Descriptor
RGB	Red, Green, and Blue
ROC	Receiver Operating Characteristics
RPi	Raspberry Pi
RSHC	Refining Superpixels using HOOF and Colour
SDPF	Salient Dither Pattern Feature
SGD	Stochastic Gradient Descent
SIFT	Scale Invariant Feature Transform
SIMD	Single Instruction Multiple Data
SKAR	Smoothed Keypoint-Matching Ratio
SLIC	Simple Linear Iterative Clustering
SURF	Speeded Up Robust Feature
SVM	Support Vector Machine

Acronym	Definition
TBD	Texture Browsing Descriptor
VGG	Visual Geometry Group