A RELIABLE POTABLE WATER PURIFICATION SYSTEM USING NANOMATERIAL-INCORPORATED MATRIX FOR HOUSEHOLDS IN CKDu PREVALENT AREAS

Madhusha Ishanthi Sudasinghe

158051P

Degree of Doctor of Philosophy

Department of Civil Engineering

University of Moratuwa

Sri Lanka

November 2021

A RELIABLE POTABLE WATER PURIFICATION SYSTEM USING NANOMATERIAL-INCORPORATED MATRIX FOR HOUSEHOLDS IN CKDu PREVALENT AREAS

Madhusha Ishanthi Sudasinghe

158051P

Thesis submitted in partial fulfilment of the requirement for the Degree Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

November 2021

DECLARATION

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other media. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate:

UOM Verified Signature

Date: 15.11.2021

Madhusha I. Sudasinghe

The above candidate has carried out research for PhD thesis under my supervision.

Name of the supervisor: Prof. M. W. Jayaweera

UOM Verified Signature

Signature of the supervisor: - *	Date: 15.11.2021.
Name of the co-supervisor: Prof. J. M. A. Manatunge	
<i>UOM Verified Signature</i> Signature of the co-supervisor:	Date: 15.11.2021
Name of the co-supervisor: Prof. W. B. Gunawardana	
Signature of the co-supervisor:	Date: 15.11.2021

ABSTRACT

Chronic kidney disease of unknown aetiology (CKDu) in Sri Lanka is a national concerning health hazard as those affected face high mortality rates per year. One hypothesis on the disease pathogenesis is long-term exposure to fluoride, hardness, and cadmium in drinking water and their synergic effects, which causes nephrotoxic health hazards. Removal of fluoride, hardness, and cadmium is paramount in providing safe drinking water to the community in CKDu areas. However, available water treatment technologies in such areas do not offer an appropriate solution to drinking water issues. Hence, there are prerequisite to developing a reliable water purification unit to provide safe drinking water. This study investigated the best combination of materials to remove fluoride, hardness, cadmium, and faecal coliform in water to develop a reliable water purification unit to protect the community health and enhance their well-being.

Firstly, nephrotoxic risk factors in drinking water, their threshold levels, and the level of components required to remove complying with the required drinking water guideline values were evaluated. Water samples collected reported hardness in the range of $111.73 \pm 1.41 - 680.33 \pm 1.53$ mg/L as CaCO₃ and fluoride 0.72 ± 0.03 mg/L and 2.84 ± 0.05 mg/L. The cadmium concentrations reported below the detection limit of 0.025 mg/L. Literature reported that fluoride (0.1-13.7 mg/L) and hardness (63.6-1921.0 mg/L) concentrations in water are very high. Fluoride concentrations in most CKDu prevalent areas exceed the drinking water guideline value (1.5 mg/L). The World Health Organisation does not declare a health concern permissible value to hardness in water. The cadmium level was reported in trace level in potable water less than the permissible drinking water guideline value (0.003 mg/L). Nephrotoxic drinking water guideline values should be declared for CKDu prevalent areas to control the spreading of nephrotoxic health hazards. In non-CKDu prevalent areas, potable water hardness values were often reported below the level of 120.0 mg/L and fluoride around 0.2 mg/L. Hence, potable water consumption with a fluoride level of around 0.2 mg/L, hardness 120.0 mg/L and cadmium 0.003 mg/L will control the occurrence of CKDu.

Available water treatment technologies introduced in CKDu prevalent areas were evaluated to identify their effectiveness in removing fluoride, hardness, and cadmium. Reverse osmosis, two-layer and seven-layer filter units have been introduced, treating potable water as a short-term

solution for the disease. The reverse osmosis unit removes most of the ions in water, retaining beneficial ions less in hardness 4.0–20.0 mg/L, high in fluoride 0.29–5.5 mg/L for human intake. The other two filters (two-layer and seven-layer filter units) do not remove fluoride and hardness effectively and add more ions into treated water due to the leachability in some minerals in the media. Treated water does not meet the required drinking water guideline values, highlighting a new requirement for water treatment units.

The risk assessment for RO treated water was conducted to identify non-carcinogenic health effects in long term consumption. Hazard's quotient values of different age categories did not exceed the value one (1 > HQ) for a short duration of water consumption. Children (Age category 1-9 years) are highly vulnerable to non-carcinogenic health hazards, and their HQ value exceeded one (HQ > 1) within a short period for fluoride (80 days), calcium (1,440 days), magnesium (2,160 days), and cadmium (360 days) before other age categories. HI mean values with higher concentrations elaborated that multicomponent concentration combinations bring adverse health effects on females in 1–9 and 10–19 years of age categories and males after 20 years of age. With mixture of component, age category 1–9 years within one month, age category 2–90 years withing three months. The higher concentration value of components makes people vulnerable for adverse health hazard within short period of exposure. Long-run consumption of RO water causes non-carcinogenic health effects. Hence, developing a new water treatment unit is of utmost importance to provide safe drinking water.

The modified fly ash (Zeolite) (ZEOL), MgO loaded alumina (MOMA), silver oxide nanoparticle + graphene oxide composite (SONPs + GO) proposes the best combination of materials to remove hardness, fluoride, and faecal coliform in potable water after conducting batch and fixed-bed column studies. The fluoride (Q = 18.76 mg/g) and hardness (Q = 263.16mg/g) experimental data aligned with the Langmuir model for batch studies. The fluoride and hardness data corroborated with the Thomas model for fixed-bed column studies. The length of unused bed values was calculated as 1.62 cm, 1.00 cm, and 0.81 cm for ZEOL, MOMA, and SONPs + GO when each material's breakthrough points were considered the maximum allowable concentration. The height of the ZEOL bed required to remove hardness for three months of service period was calculated as 29.09 cm with the mass of adsorbent 2.63 Kg, 18.86 cm adsorbent bed height including the mass of 1.37 Kg of MOMA, and 6.48 cm with the mass of 1.09 Kg of SONPs + GO. The cost of 1.0 L of treated water production was approximately Rs. 8.80 and the total cost for 10.0 L of water (daily consumption of a family) was estimated at Rs. 88.00. If a family of five household members consumes water for three months, the cost of treated water production was calculated as Rs. 7,920.00 (monthly cost Rs. 2,640.00). The best combination of multi-layer materials is a promising water treatment unit to remove fluoride, hardness, and faecal coliform in drinking water. Therefore, the fabrication of a multi-layer home filter unit using ZEOL, MOMA, and SONPs + GO is recommended to provide safe, clean potable water for the community in CKDu prevalent areas.

Keywords: Adsorption, Faecal coliform, Fluoride, hardness, isotherms, kinetics, nanomaterial, risk assessment

ACKNOWLEDGEMENT

First, I extend my deepest gratitude and admiration to my supervisors, Prof. M. W. Jayaweera, Prof. J. M. A. Manatunge, and Prof. W. B. Gunawardana Environmental Engineering Division, Department of Civil Engineering, University of Moratuwa for their excellent supervision, generous help, indispensable guidance throughout the study, valuable time, energy, and sincere effort extended to train me as a researcher.

A special appreciation to the Senate Research Committee (SRC), the University of Moratuwa, for graciously awarding the research fellowship and providing the necessary research funds to undertake this research study.

I want to extend my sincere gratitude to the former heads and the present Head/ Department of Civil Engineering, University of Moratuwa, for providing me with a valuable opportunity to conduct the research along with all the necessary facilities to carry out research activities within a conducive environment.

I am very grateful to the former heads and the present head, academic staff, Department of Materials Science and Engineering, University of Moratuwa for providing me with the necessary laboratory facilities, workshop facilities and other essential facilities available in the Department.

I am genuinely thankful to Mr E. K. Zoysa, Mrs N. S. Gunathilake, Mr Justin Silva, Mr D. Bandara, academic support and non-academic staff members in the Environmental Engineering Division, Department of Civil Engineering and Mr M. T. M. R. Jayaweera, Mr M. A. P. C. Gunawardana, and Mr R. R. P. Perera, non-academic staff, Department of Materials Science and Engineering, University of Moratuwa for their generous and amicable support during the laboratory analysis and other research activities.

My special thanks to Ms P. D. N. Sigera for being an assistive partner in my research life and supporting me to accomplish all laboratory activities with standard quality.

I want to extend my sincere gratitude to Ms T. Wimalarathna, Ms G. Dhanushika, Ms S. Gunawardana, Dr A. Witharana and my colleagues in the Environmental Engineering Division, for ensuring my research journey was blissful, joyous, and filled with affection and care.

Finally, I am grateful to my loving husband for his patience and support through my research endeavours and day to day activities, standing by me through thick and thin, sharing my thoughts, giving me courage, and always bringing positive vibes into my heart to complete the research study. I should thank my dearest mother, brothers, and family members who always shower me with love, affection, care, and inspiration, which tremendously helped me complete my studies successfully.

TABLE OF CONTENT

DECLARATIC	DNI
ABSTRACT	
ACKNOWLEI	DGEMENTV
TABLE OF CO	DNTENTVIII
LIST OF FIGU	RESXIII
LIST OF TABI	LESXXIII
LIST OF ABBI	REVIATIONXXVI
1. INTRODUC	TION1
1.1.	Chronic kidney disease of unknown aetiology and risk on human health1
1.2.	Problem statement
1.3.	Research questions
1.4.	Research objectives7
1.5.	Outline of the thesis
2. LITERATUI	RE REVIEW9
2.1.	Difference between CKD and CKDu9
2.2.	Geographical distribution of CKDu10
2.3.	Proposed possible causal factors of CKDu12
2.4.	Potential health risk due to the daily intake of nephrotoxic risk factors16
2.4.1.	Individual effects of nephrotoxic risk factors on human health16
2.4.2.	Combined effects of nephrotoxic risk factors on human health17
2.5.	Different drinking water guideline values for nephrotoxic risk factors20
2.6.	Water treatment technologies available in CKDu prevalent areas and their
	drawbacks

2.7.	Different water treatment techniques to remove nephrotoxic risk factors in water
2.8.	Summary of adsorbents used to remove fluoride, hardness, and cadmium in
	potable water in Sri Lanka
2.9.	Summary of the literature review
3. RESEARCH	METHODOLOGY
3.1.	Objective 01: To identify different nephrotoxic risk factors, their concentrations,
	threshold levels of nephrotoxicity, and the extent to which the removal is
	required in potable water
3.1.1.	Identification of possible nephrotoxic risk factors in potable water and their
	concentrations
3.1.2.	Identification of threshold levels of nephrotoxicity and the extent to which the
	removal is required in potable water40
3.1.3.	Analytical methods used for nephrotoxic risk factors
3.2.	Objective 02: To evaluate the performance of commercially available domestic
	water purification techniques/systems/units to delineate their limitations and
	drawbacks
3.2.3.	Identification of commercially available domestic water purification systems42
3.2.4.	Identification of different water purification units in operation and abandoned 42
3.2.5.	Chemical and physical characteristics of existing water purification units43
3.2.6.	Removal of possible nephrotoxic risk factors by existing water purification units
3.2.7.	Performance evaluation of existing water purification units
3.3.	Objective 03: To assess the health risk of people who consume potable water
	from such commercially available units in CKDu prevalent areas48
3.3.3.	Characterization of raw, treated and, rejected water in commercial RO unit48
3.3.4.	Health risk assessment - reactions nature of fluoride, calcium, magnesium
	(hardness), and cadmium in the human body

	3.3.5.	Household survey for the assessment of exposure	50
	3.3.6.	Health risk assessment due to the consumption of RO treated water	50
	3.4.	Objective 04: To investigate the applicability of the best combination of	
		adsorbent materials in a multi-layered water purification unit capable of	
		lessening the health impacts of selected nephrotoxic risk factors concerning	
		ingestion of potable water in CKDu prevalent areas5	;3
	3.4.1.	Selection of different materials to remove nephrotoxic risk factors	54
	3.4.2.	Synthesis of selected materials	55
	3.4.3.	Characterisation of materials	53
	3.4.4.	Batch adsorption studies to remove nephrotoxic risk factors	54
	3.4.4.	1. Single-solute studies	54
	3.4.4.	2. Multi-solute studies	0'
	3.4.5.	Inhibition of faecal coliform in potable water using nanomaterials7	'2
	3.4.6.	Desorption and regeneration studies	'5
	3.4.7.	Fixed-bed column studies	'6
	3.4.7.	1. Selection of materials for fixed-bed column studies	7
	3.4.7.	2. Fixed-bed column studies to remove nephrotoxic risk factors	32
	3.4.7.	3. ZEOL, MOMA, and SONPs + GO characterization using the pycnometer	er
		method8	36
	3.4.7.	4. Calculation of fixed-bed column process parameters8	39
	3.4.7.	5. Application of mathematical models for fixed-bed column studies9)4
	3.4.8.	Design a home filter unit and cost calculations for 1.0 L of treated water	
		production	97
4. RESU	LTS A	ND DISCUSSIONS)8
	4.1.	Objective 01: To identify different nephrotoxic risk factors, their concentration	s,
		threshold levels of nephrotoxicity, and the extent to which the removal is	
		required in potable water)8
	4.1.1.	Nephrotoxic risk factors and their concentrations)8

4.1.2. Threshold levels of possible hephrotoxic fisk factors and the extent to which	
removal is required1	00
4.1.3. Key findings of objective 011	08
4.1.4. Limitations of the objective 011	09
4.2. Objective 02: Evaluation of performance in commercially available domestic water filter units to delineate their limitation and drawbacks1	10
4.2.1. Different water filters in operation and abandoned in CKDu prevalent areas1	10
4.2.2. Summary of household's survey1	12
4.2.3. Different components in the water filter units available in CKDu prevalent are	as 14
4.2.4. Effectiveness of water filter units in removing hardness and fluoride1	21
4.2.5. Performance evaluation of the existing water purification units	32
4.2.6. Key findings of objective 021	34
4.2.7. Limitation of the study1	35
4.2.7. Limitation of the study	35
4.2.7. Limitation of the study	35 : 37
 4.2.7. Limitation of the study	.35 : .37 37
 4.2.7. Limitation of the study	.35 .37 .37 .42
 4.2.7. Limitation of the study	35 37 37 42
 4.2.7. Limitation of the study	35 37 37 42 44
 4.2.7. Limitation of the study	 35 r 37 37 42 44 49
 4.2.7. Limitation of the study	 35 r 37 37 42 44 49 50
 4.2.7. Limitation of the study	 35 a a
 4.2.7. Limitation of the study	 35 37 37 42 44 49 50 59 60

nephrotoxic risk factors in potable water for households in CKDu prevalent
areas
4.4.1. Characterisation of materials synthesized in the laboratory
4.4.2. Batch adsorption studies
4.4.3. Adsorption isotherms and kinetic models for different adsorbents
 4.4.4. Regeneration studies of MOMA, nZVI, ZEOL and SONPs + GO
4.4.5 Kinetic models for fixed-bed column operation 256
4.4.8. Batch adsorber versus fixed bed
4.4.9. Calculations for home filter design and cost of production for 1.0 L treated
water
4.4.10. Key findings of the objective 04
4.4.11.Limitation of the study
5. CONCLUSION AND RECOMMENDATIONS
5.1. Conclusion of the study
5.2. Recommendations of the study
5.3. Future studies needed
References
APPENDIX I
APPENDIX II
APPENDIX III
APPENDIX IV
APPENDIX V
APPENDIX VI
APPENDIX VII

LIST OF FIGURES

Figure 2.1: Distribution of CKDu prevalent areas in Sri Lanka	1	1
---	---	---

Figure 2.2: Different components in the RO filter unit23

- Figure 3.5: Schematic diagram for nZVI synthesis process56Figure 3.6: Steps for the nZVI synthesis process57

Figure 3.12: Steps for SONPs synthesis process
Figure 3.13: Schematic diagram for the synthesis process of ZEOL
Figure 3.14: Steps for the ZEOL synthesis process
Figure 3.15: Road map for the laboratory experiments in removing E. coli in potable water
Figure 3.16: Schematic diagram for fixed-bed column studies
Figure 3.17: Order of composition in the fixed-bed column
Figure 3.18: Experimental diagram and experimental setup: Phase 1 – ZEOL in single- layer studies with single-solute for hardness removal
Figure 3.19: Experimental diagram and experimental setup: Phase 1 – MOMA in single- layer studies with single-solute for fluoride removal
Figure 3.20: Experimental diagram and experimental setup: Phase 1 – SONPs + GO in single-layer studies with single-solute for <i>E. coli</i> removal
Figure 3.21: Phase I – The fixed-bed column for single-solute studies with a single layer
Figure 3.22: Phase II – (a) Experimental set up and (b) descriptive methodology of the fixed-bed column for multi-solute studies with a single layer
Figure 3.22: Establishment of breakthrough curves and determination of different breakthrough time
Figure 4.1: Distribution pattern of hardness concentration in CKDu non-prevalent areas (ten concentration points from the study and the rest were taken from the literature) (SLS and USGS represent the permissible hard water level of Sri Lankan drinking water standards and hard water classification of United States Geological Survey, respectively)
Figure 4.2: Distribution pattern of hardness concentration in CKDu prevalent areas (ten concentration's points from the study and the rest were taken from the literature)

- Figure 4.6: ESEM-EDAX analysis of different layers in seven-layer filter (a_i) & (a_{ii}) micro-ceramic filter dome, (b_i) & (b_{ii}) activated carbon and silver impregnated granular activated carbon, (c_i) & (c_{ii}) mineral sand, and minerals stones, (d_i) & (d_{ii}) silica sand, (e_i) & (e_{ii}) far-infrared balls......116
- Figure 4.7: XRD analysis of the seven-layer and two-layer filter units117

- Figure 4.10: ESEM-EDAX analysis of clay filter (a) Bottom layer, and (b) Top layer 120

- Figure 4.13: Removal effectiveness of seven-layer filter unit in the removal of fluoride

Figure 4.15: Removal effectiveness of two-layer filter unit in the removal of hardness
Figure 4.16: Removal effectiveness of two-layer filter unit in the removal of fluoride 127
Figure 4.17: Removal effectiveness of two-layer filter unit in the removal of cadmium
Figure 4.18: Removal effectiveness of RO filter unit in the removal of hardness130
Figure 4.20: Nature of the calcium reaction in the human body145
Figure 4.21: Nature of the magnesium reaction in the human body146
Figure 4.22: Nature of the fluoride reaction in the human body147
Figure 4.23: Nature of the cadmium reaction in the human body148
Figure 4.24: XRD analysis of nZVI162
Figure 4.25: ESEM image of nZVI before adsorption163
Figure 4.26: EDAX image of nZVI before adsorption (Note: EDAX was performed on
the all-surface area)164
Figure 4.27: ESEM image of nZVI after adsorption164
Figure 4.28: EDAX image of nZVI after adsorption (Note: EDAX was performed on all
surface areas)165
Figure 4.29: FT–IR analysis of nZVI165
Figure 4.30: XRD analysis of MOMA and MESA167
Figure 4.31: ESEM analysis of MESA168
Figure 4.32: EDAX analysis of MESA168
Figure 4.33: ESEM analysis of MOMA169
Figure 4.34: EDAX analysis of MOMA169
Figure 4.35: ESEM analysis of MOMA after fluoride adsorption
Figure 4.36: EDAX analysis of MOMA after fluoride adsorption
Figure 4.37: FT–IR analysis of MESA, MOMA, and MOMA + F

Figure 4.38: XRD analysis of GO	172
Figure 4.39: ESEM analysis of GO	173
Figure 4.40: EDAX analysis of GO	173
Figure 4.41: FT–IR analysis of GO	174
Figure 4.42: XRD analysis of SONPs	175
Figure 4.43: ESEM analysis of SONPs	176
Figure 4.44: EDAX analysis of SONPs	176
Figure 4.45: XRD analysis of SONPs + GO	177
Figure 4.46: ESEM analysis of SONPs + GO	178
Figure 4.47: ESEM analysis of SONPs + GO	178
Figure 4.48: FT–IR analysis of SONPs, and SONPs + GO	179
Figure 4.49: XRD analysis of ZEOL	180
Figure 4.50: ESEM analysis of fly ash	181
Figure 4.51: EDAX analysis of fly ash	181
Figure 4.52: ESEM analysis of ZEOL	182
Figure 4.53: EDAX analysis of ZEOL	182
Figure 4.54: FT–IR analysis of ZEOL	183
Figure 4.55: Percentage of cadmium removal without calcium and in the prese	nce of
calcium changing the nZVI dosage	185
Figure 4.56: Percentage of cadmium and calcium removal changing pH in the se	olution
	186
Figure 4.57: Percentage of cadmium removal changing the contact time	187
Figure 4.58: Cadmium and calcium removal using nZVI dosage 4.0 g/L	using
combinations of cadmium (mg/L) and calcium (mg/L) a). 1.0, 11	0.4 b).
1.5, 149.6 c). 4.9, 206.4 d). 15.39, 248.8 e). 20, 293.6 f). 24.75, 396.8	3188
	100

Figure 4.59: Removal of fluoride from potable water changing the adsorbent dosage.190

Figure 4.60: Removal of fluoride from potable water changing pH in the solution191
Figure 4.61: Removal of fluoride changing initial fluoride concentration
Figure 4.62: Removal of fluoride from potable water changing initial fluoride and hardness concentration
Figure 4.63: Removal of hardness changing the dosage of ZEOL (Hardness concentration - 500.0 mg/L)
Figure 4.64: Removal of hardness changing contact time (hardness concentration - 500.0 mg/L)
Figure 4.65: Removal of hardness changing pH in the solution (hardness concentration - 500.0 mg/L)
Figure 4.66: Removal of hardness changing the initial hardness concentration
Figure 4.67: Removal of hardness changing the initial fluoride concentration
Figure 4.68: Distribution pattern of SONPs through the culture media
Figure 4.69: Growth inhibition zone diameter of <i>E. coli</i> bacteria using an inhibition zone method with a range of SONPs + GO dosage
Figure 4.70: Formation of growth inhibition zone of <i>E coli</i> bacteria with SONPs + GO
Figure 4.71: Disinfection potential of E. coli bacteria by the well-diffusion method with a range of SONPs + GO dosage
Figure 4.72: Growth inhibition zone diameter of <i>E. coli</i> bacteria using a well-diffusion method with a range of SONPs + GO dosage
Figure 4.73: Disinfection potential of <i>E.coli</i> using broth-dilution (Optical density) method with a range of SONPs + GO dosage
Figure 4.74: Percentage of growth inhibition with broth-dilution (Optical density) method

XVIII

Figure 4.75: Removal effectiveness of <i>E. coli</i> bacteria varying dosage of SONPs + GO composite
Figure 4.76: Mechanism of how SONPs + GO composite inhibit bacterial growth (Image source: WWW.Gettyimages.com)
Figure 4.77: Adsorption isotherm models of nZVI for cadmium (a) Langmuir and (b) Freundlich
Figure 4.78: Possible adsorption mechanisms of nZVI with cadmium (solution pH 8)
Figure 4.79: Possible adsorption mechanisms of nZVI with calcium(solution pH 8)211
Figure 4.80: Adsorption isotherm and kinetic models of nZVI for cadmium (a) BET, (b) Dubinin-Radushkevich, and (c) Temkin and (d) Pseudo second order212
Figure 4.81: Adsorption isotherm models of MOMA for fluoride (a) Langmuir and (b) Freundlich
Figure 4.82: Possible adsorption mechanisms of MOMA with fluoride (solution pH 4)
Figure 4.83: Adsorption isotherm and kinetic models of MOMA for fluoride (a) BET, (b) Dubinin-Radushkevich, and (c) Temkin and (d) Pseudo second order
Figure 4.85: Adsorption isotherm and kinetic models of ZEOL for hardness (a) BET, (b) Dubinin-Radushkevich, and (c) Temkin and (d) Pseudo second order219
Figure 4.86: Percentage of cadmium adsorption by nZVI with three different eluting agents NaOH, HCl, and EDTA
Figure 4.87: Percentage of fluoride adsorption by MOMA with three different eluting agents NaOH, HCl, and EDTA
Figure 4.88: Percentage of hardness adsorption by ZEOL with three different eluting agents NaOH, HCl, and EDTA

- Figure 4.90: Breakthrough curves of ZEOL in the fixed-bed column with different flow rates 1.0 mL/min, 2.0 mL/min, and 3.0 mL/min in bed height 3.5 cm228
- Figure 4.91: Breakthrough curves of ZEOL in the fixed-bed column with different flow rates 1.0 mL/min, 2.0 mL/min, and 3.0 mL/min in bed height 4.5 cm230
- Figure 4.92: Breakthrough curves of ZEOL in the fixed-bed column with different flow rates 1.0 mL/min, 2.0 mL/min, and 3.0 mL/min in bed height 5.5 cm232
- Figure 4.93: Breakthrough curves of MOMA in the fixed-bed column with different flow rates 1 mL/min, 2 mL/min, and 3 mL/min in bed height 1.0 cm.....233
- Figure 4.94: Breakthrough curves of MOMA in the fixed-bed column with different flow rates 1.0 mL/min, 2.0 mL/min, and 3.0 mL/min in bed height 1.5 cm
- Figure 4.95: Breakthrough curves of MOMA in the fixed-bed column with different flow rates 1.0 mL/min, 2.0 mL/min, and 3.0 mL/min in bed height 2.0 cm

- Figure 4.99: Breakthrough curves of ZEOL in the fixed-bed column with different bed heights 3.5 cm, 4.5 cm, and 5.5 cm with a flow rate of 1.0 mL/min......242

- Figure 4.100: Breakthrough curves of ZEOL in the fixed-bed column with different bed heights 3.5 cm, 4.5 cm, and 5.5 cm with a flow rate of 2.0 mL/min......243
- Figure 4.101: Breakthrough curves of ZEOL in the fixed-bed column with different bed heights 3.5 cm, 4.5 cm, and 5.5 cm with a flow rate of 3.0 mL/min......244
- Figure 4.102: Breakthrough curves of MOMA in the fixed-bed column with different bed heights 1.0 cm, 1.5 cm, and 2.0 cm with a flow rate of 1.0 mL/min.246
- Figure 4.103: Breakthrough curves of MOMA in the fixed-bed column with different bed heights 1.0 cm, 1.5 cm, and 2.0 cm with a flow rate of 2.0 mL/min.247
- Figure 4.104: Breakthrough curves of MOMA in the fixed-bed column with different bed heights 1.0 cm, 1.5 cm, and 2.0 cm with a flow rate of 3.0 mL/min.247

- Figure 4.115: Best fitted curves of Thomas model for fixed bed column studies for multi-solute with single-layer, linear curve fitting (a) MOMA 1 mL/min,
 (b) MOMA 2 mL/min, (c) MOMA 3 mL/min, and non-linear curve fitting (d) MOMA 1 mL/min, (e) MOMA 2 mL/min, (f) MOMA 3 mL/min
- Figure 4.117: Best fitted curves of Yoon-Nelson model for fixed-bed column studies for multi-solute with single-layer, linear curve fitting (a) ZEOL 1 mL/min,
 (b) ZEOL 2 mL/min, (c) ZEOL 3 mL/min, and non-linear curve fitting
 (d) ZEOL 1 mL/min, (e) ZEOL 2 mL/min, (f) ZEOL 3 mL/min....270

LIST OF TABLES

Table 2.1: Different stages of CKDu and treatment processes required10
Table 2.2: Possible causal factors of CKDu in different countries 13
Table 2.3: Possible causal factors of CKDu in Sri Lanka
Table 2.4: Nephrotoxic effects of nephrotoxic risk factors in potable water
Table 2.5: Different drinking water guideline values for nephrotoxic risk factors20
Table 2.6: Different unit processes in the RO filter unit
Table 2.7: Materials and their removal capacities and kinetics parameters in the removal of fluoride 30
Table 2.8: Materials and their removal capacities and kinetics parameters in the removal of hardness
Table 2.9: Materials and their removal capacities and kinetics parameters in the removal of cadmium
Table 2.10: Materials and their removal capacities and kinetics parameters in the
removal of faecal coliform
Table 2.11: Different materials employed to remove fluoride, hardness, and cadmium in
potable water of CKDu prevalent areas in Sri Lanka
Table 3.1: Different concentrations of nephrotoxic risk factors corresponding to different seasons
Table 3.2: List of key performance indicators in multi-criteria analysis 46
Table 3.3: Concentration of fluoride, calcium, magnesium (Hardness), and cadmiumconcentrations considered for the risk assessment
Table 3.4: Different analytical techniques used to characterise materials 63
Table 3.5: Materials selected for fixed-bed column studies 79
Table 3.6: Measurement to determine the material characteristics using the pycnometer

Table 4.1: Summary of different type of water purification systems 110
Table 4.2: Water purification systems in operation and abandoned in CKDu prevalent
areas
Table 4.3: Key performance indicators considered to evaluate the performance of water
filters available in CKDu prevalent areas133
Table 4.4: Water quality characteristics of raw, treated and rejected RO water138
Table 4.5: Average daily intake of drinking water and their body weight for different age
categories (based on a household survey)149
Table 4.6: Mean hazard quotient (HQ) values for different age category
Table 4.7: Hazard quotient (HQ) values for different concentrations of nephrotoxic risk
factors
Table 4.8: Hazard index for multiple elements in different concentration combinations
Table 4.9: Exposure duration which exceeds hazard quotient value $HQ > 1$ 156
Table 4.10: Partial adsorption of cadmium and calcium during competitive adsorption in
multi-solute studies
Table 4.11: Equilibrium constants and thermodynamic parameters of
single-solute studies
Table 4.12: Equilibrium constants and thermodynamic parameters for kinetics models in
single-solute studies
Table 4.13: Performance of materials selected for removing hardness and fluoride226
Table 4.14: Performance of materials selected for removing E. coli
Table 4.15: Material characteristics of ZEOL, MOMA, and SONPs + GO227
Table 4.16: Rate constants and maximum adsorption capacity of Adams-Bohart model
for ZEOL for single-layer with multi-solute studies
Table 4.17: Rate constants and maximum adsorption capacity of Adams-Bohart model
for MOMA for single-layer with single-solute studies259

Table 4.18: Rate constants and adsorption capacity of the Thomas model for ZEOL 263
Table 4.15: Rate constants and adsorption capacity of the Thomas model for MOMA265
Table 4.19: Rate constants and sorption capacity of the Yoon-Nelson model for ZEOL
Table 4.20: Rate constants and sorption capacity of the Yoon-Nelson model for MOMA
Table 4.21: Length of unused bed values for the removal of hardness, fluoride, and 275
E. coli and adsorber height for the desired engineering breakthrough time
Table 4.22: Calculations for home filter design

LIST OF ABBREVIATION

CKDu	- Chronic kidney disease of unknown aetiology
CKD	- Chronic Kidney Disease
WHO	- World health organisation
RO	- Reverse Osmosis
HQ	- Hazard quotient
MEN	- Mesoamerican nephropathy
BEN	- Balkan endemic nephropathy
CIN	- Chronic interstitial nephropathy
GFR	- Glomerular filtration rate
NCP	- North central province
CAN	- Chronic agrochemical nephrology
CINAC	- Chronic interstitial nephritis of agricultural communities
CKDmfo	- CKD of multifactorial origin
NSAIDs	- Nonsteroidal anti-inflammatory drugs
DOC	- Dissolved organic carbon
Cd	- Cadmium
ROS	- Reactive oxygen species
O_2^-	- Superoxide anion
ROO	- Peroxyl radicals
H_2O_2	- Hydrogen peroxide
R -NO [.]	- Peroxynitrite
OH [.]	- Hydroxyl radicals
O [.]	- Singlet oxygen
(CH ₃) ₂ AsOO ⁻	- Dimethyl peroxyl radicals

$(CH_3)_2As^{-1}$	- Dimethyl arsenic radicals
Ca	- Calcium
Mg	- Magnesium
F	- Fluoride
SLS	- Sri Lanka Standards
US EPA	- United States Environmental Protection Agency
NPDWRs	- National Secondary Drinking Water Regulations
MDP	- Meta-phenylenediamine
ТМС	- Trimesoyl Chloride
nZVI	- Nano zero valent iron
CFU	- Colony forming unit
MTZ	- Mass transfer zone
XRD	- X-ray powder diffraction
ESEM	- Environmental scanning electron microscope
EDAX	- Energy Dispersive Spectroscopy
FT–IR	- Fourier-transform infrared spectroscopy
USGS	- United States Geological Survey
SMART	- Specific, measurable, attainable, relevant, and time-bound
CaCO ₃	- Calcium carbonate
ADD	- Average daily dose
HI	- Hazard index
С	- Concentration
IR	- Intake rate
ED	- Exposure duration
BW	- Body weight

XXVII

AT	- Average time
ZEOL	- Zeolite
GO	- Graphene oxide
FeONs	- Iron oxide nanoparticles
MESA	- Mesoporous alumina
Al ₂ O ₃	- Alumina
COMA	- Calcium oxide loaded mesoporous alumina
MOMA	- Magnesium oxide loaded mesoporous alumina
TiO ₂	- Titanium dioxide
SONPs	- Silver oxide nanoparticles
МО	- Microorganism
ACS	- American chemical society
PEG	- Polyethylene glycol
DI	- Deionized
BET	- Brunauer-Emmett-Teller
IAST	- Ideal adsorption solution theory
EDTA	- Ethylenediaminetetraacetic acid
ICP-MS	- Inductively coupled plasma mass spectrometry
USA	- United states of America
MPN	- Most probable number
E. coli	- Escherichia coli
EOM	- Electronic optical microscopy
EBCT	- Empty bed contact time
BV	- Bed volume

XXVIII

H_{MTZ}	- Length of mass transfer zone
ANOVA	- Analysis of variance
O & M	- Operation and maintenance
NGO	- Non-governmental organization
NaF	- Sodium fluoride
CaCO ₃	- Calcium carbonate
MgCO ₃	- Magnesium carbonate
IS	- Inner sphere
OS	- Outer sphere
DNA	- Deoxyribonucleic acid
RNA	- Ribonucleic acid
NAOH	- Sodium hydroxide
HCl	- Hydrochloric acid
EDTA	- Ethylenediaminetetraacetic acid
BTC	- Breakthrough curve