A PARAMETRIC APPROACH TO OPTIMIZE SOLAR ACCESS FOR ENERGY EFFICIENCY IN HIGH-RISE RESIDENTIAL BUILDINGS IN DENSE URBAN TROPICS

Nadeeka Jayaweera

178001H

Thesis submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy in Architecture

Department of Architecture

University of Moratuwa

Sri Lanka

April 2022

Declaration page

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. Also, I hereby grant to University of Moratuwa the nonexclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

UOM Verified Signature Signature: Date: 03.04.2022

The above candidate has carried out research for the PhD thesis under my supervision. Name of the supervisor: Dr. R.M.K.U. Rajapaksha

UOM Verified Signature Signature of the supervisor: Date: April 06 2022

Name of the supervisor: Dr. M.M.I.D. Manthilake

Signature of the supervisor: **UOM Verified Signature**

Date: 07/04/2022

Abstract

Solar access in buildings is a topic predominantly investigated in the urban contexts at higher latitudes and to a much lesser extent in the tropics. Existing research focuses on ensuring unobstructed solar access, whereas, in the tropics, unobstructed solar access is avoided in buildings due to external heat gain. In addition, most regulations for high-rise residential buildings in the tropics are inadequate to ensure sunlight exposure for residents. Four research objectives were formulated in this study to investigate the definition, typology, planning and architectural issues of solar access in high-rise residential buildings in dense urban tropics.

This study investigated the shading effect of the urban context on solar access in terms of energy savings and daylight in high-rise residential buildings in the tropical city of Colombo, Sri Lanka. The methodology consisted of three phases. In Phase I, three simulation models of 11, 21 and 31 floors (SM1, SM2, and SM3) were developed based on the archetypal high-rise residential building characteristics in Sri Lanka.

In Phase II, the study demonstrated a parametric urban context for the simulation models utilizing simulation software *Rhino3D* and the *Grasshopper* interface. *Archsim* and *DIVA4* plugins were used to simulate the effects of the urban context on spatial daylight autonomy (sDA), annual energy use for cooling, and annual day-time lighting energy use. A multi-objective optimization process applying the Pareto-front identified the thresholds for optimum solar access.

Phase III of the study investigated the daylight and energy performance of external shading scenarios of a high-rise residential building in a dense urban context.

This study defined the optimum solar access for a perimeter zone in a high-rise residential building that achieves 75 sDA _(3001x|50) with corresponding annual energy savings of 28%-36% in the east-west and 8%-12% in the north-south directions. The prescribed building setback curves for ensuring optimum solar access were validated with three calibrated case studies located in Colombo, Sri Lanka. All case studies demonstrated 50% of interior spaces (living rooms and bedrooms) with 55 sDA _(3001x/50) and annual energy savings of 26-31% in east-west and 8%-15% in the north-south direction. The Floor area ratios (FAR) calculated for optimum building density for SM1, SM2, and SM3 were 4.2, 6.5, and 8.4, respectively.

The best performance external shading scenario in the vertical façade of the 11-floor Simulation model 2 (vertical and horizontal shading on the nineteenth floor, horizontal shading only for the eleventh floor, and no shading for the second floor) satisfied 75 sDA (3001x|50) at all floors with corresponding energy savings of 16%-20%. The best performance scenario was applied to a 17-floor case study building located in Colombo, Sri Lanka. The simulation results indicated that 58% of the spaces had over 75 sDA for both Baseline and Best performance scenarios, while an increase in energy savings of 1%-3% was found in the Best performance scenario compared to the Baseline scenario of the case study.

This research study redefined solar access for the tropics, prescribed building setbacks for optimum solar access and informed optimum building density for the high-rise residential building typology. The study also identified the best performance external shading scenario for a high-rise residential building façade in the urban context. The research outcomes established in this study provide a much-needed platform to initiate the dialogue on solar rights in dense urban tropics.

Keywords: tropics, urban context, high-rise residential; energy savings, daylight, parametric

Dedication

I would like to dedicate this thesis to my parents.

Acknowledgement

I would like to express my sincere gratitude towards my supervisors, Dr. R.M.K.U Rajapaksha and Dr. M.M.I.D. Manthilake for their guidance for my research from the inception.

This research study was conducted under the purview of a MoU, which was signed between the University of Moratuwa and the Condominium Management Authority of Sri Lanka to promote sustainable development of high-rise residential buildings in Sri Lanka. I would like to thank Prof. A. Jayawardane, former Vice-Chancellor of the Moratuwa University and Mr. C. Wijeweere, former Chairman of the CMA, signatories to the MoU. In addition, I would also like to acknowledge Mr. J D N C Dissanayake, Deputy General Manager (Regulatory), and other staff members of the CMA for their assistance given during the survey of high-rise residential buildings. I am also grateful to the Senate Research Council of the University of Morautwa for the National Development Grant (SRC/2017/ND/01), which provided the financial assistance to enable the objectives of the MoU. My special thanks go to Prof. Stephen Lau of the University of Hong Kong for arranging my visit to the National University of Singapore to broaden my exposure. I am also very grateful to Prof. R. Halwathura, chairman of the progress review committee for his guidance during the progress reviews. I would also like to thank Dr. S. Cooray, Director of the Higher Degrees Committee of the Architecture Faculty and Dr. W. Gamage, Research Coordinator for the Department for their support. I would like to thank Mr. S. Mendis, Mr. J. Senavirathne, Mr. P. Obadage, Ms. A. Mahanama, Ms. J. Nadaraja and Mr. S. Rodrigo for their assistance in collecting field data for this research study. I am also grateful to Mr. C. Masakorala, technical officer at the Department, and the Supplies Division of the University of Morautwa for their assistance to purchase equipment for this study. I would also like to thank the staff members of the Periodicals Section of the Library of the University of Moratuwa for their assistance in obtaining much-needed reference materials. Finally, I would like to thank my family and friends for their patience and support during the research study.

Table of Contents

Declaration]	pageii
Abstract	
Dedication	iv
Acknowledge	ementv
Table of Con	tentsvi
List of Figur	esx
List of Table	sxv
List of Abbro	eviationsxvii
1 Introdu	ction1
1.1 The	changing paradigm of house form in urban tropics 1
1.2 Hig	h-rise residential developments in Sri Lanka
1.3 Inte	gration of high-rise residential developments into the cityscape of Colombo 6
1.3.1 Region	Scattering of high-rise residential developments in the Colombo Metropolitan
1.3.2	Issues in high-rise residential developments in small land plots 10
1.3.3	Restrictions to solar access due to lack of building setback
1.4 The	challenges in energy efficiency in the residential sector in Sri Lanka 16
1.5 Res	earch problem, scope, objectives, and questions
1.6 The	sis structure
1.7 Sun	nmary
2 Literatu	re review23
2.1 The	high-rise residential building typology
2.1.1	Physical characteristics of the high-rise residential building typology25
2.2 Sola	ar access in buildings
2.2.1	Solar access in dense urban contexts
2.2.2	Indoor daylight in dense urban contexts
2.3 Ene	rgy efficiency in buildings
2.3.1	Energy efficiency in the residential sector
2.3.2	Energy efficiency in the residential sector in the tropics
2.3.3	Energy efficiency in dense urban contexts
2.4 Para	ameters of investigation in the urban context
2.4.1	Measures of residential density
2.4.2	Parameters of investigation in the urban context on solar access

	2.5 Approaches in the simulation of the urban context	50
	2.5.1 Parametric models for simulating the urban context	52
	2.6 Optimization methods for building energy and daylight performance	58
	2.7 The daylight and energy performance of the high-rise residential building envint the tropics	elope 61
	2.7.1 Energy and daylight performance of external shading devices	63
	2.7.2 Static external shading as architectural features	68
	2.8 Identification of gaps in the literature review and summary	72
3	Methodology	,
	Phase I	76
	3.1 Survey of high-rise residential developments in the Colombo metropolitan reg and its suburbs	gion 76
	3.2 Characteristics of the archetypal high-rise residential building	79
	Phase II	84
	3.3 Developing a parametric urban context for the Simulation models in the tropic	cs.84
	3.4 Selection of metrics and simulation tools to quantify the effects of the urban	
	context on solar access	86
	3.4.1 Selection of simulation tools	89
	3.5 Thermal zone model	90
	3.6 Daylight and day-time lighting energy model	93
	3.7 Optimization process	96
	3.8 Development and validation of the building setback curves for optimum solar access 97	
	3.8.1 Calibration method for case studies	98
	3.8.1.1 Case study 1	99
	3.8.1.2. Case study 2	103
	3.8.1.2. Case study 3	106
	3.8.2 Modelling the impact of contextual shading due to the building setback of daylight and energy use of the case studies	on 110
	3.8.2.1 Modelling the effects of contextual shading on Case study 1	111
	3.8.2.2 Modelling the effects of contextual shading on Case study 2	116
	3.8.2.3 Modelling the effects of contextual shading on Case study 3	119
	Phase III	123
	3.9 Simulating the impact of the urban context on the daylight and energy perform of external shading devices	nance 123

3.9	9.1	Characteristics of the external shading scenarios1	23
3.9	9.2	Characteristics of the urban context	25
3.9	9.3	The thermal and daylight model 1	25
3.10 of ex	Moo ternal	delling the impact of the urban context on the daylight and energy performance shading devices in Case study 2	ce 28
3.11	Sun	nmary 1	29
4 Re	esults,	analysis and discussion	
Phase	e II		30
4.1 Simu	Con alation	nparison of the spatial daylight autonomy (sDA) at different floor levels in th models	e 30
4.1	1.1	Estimating the average daylight levels for the Simulation model 1	32
4.2 mode	Con els	nparison of annual cooling energy use at different floor levels in the Simulati	on 33
4.3 mode	Con els	nparison of total annual energy use at different floors in the Simulation	34
4.3	3.1	Estimating the average total annual energy use for the Simulation model 1	35
4.4	Day	light analysis	37
4.5	Ann	nual energy use characteristics1	39
4.6	Ann	nual energy savings analysis 1	40
4.7	Opt	imization of spatial daylight autonomy (sDA) and energy savings 1	42
4.8	Pres	scribing building setback curves for optimum solar access 1	47
4.9 studi	Val	idation of the building setback curves for optimum solar access with case	49
4.9	9.1	Calibration of the indoor mean air temperature of the case studies 1	49
4.9	9.2	Calibration of indoor hourly illuminance of the case studies 1	51
4.9	9.3	Analysis of the effects of contextual shading on Case study 1 1	53
4.9	9.4	Analysis of the effects of contextual shading on Case study 2 1	56
4.9	9.5	Analysis of the effects of contextual shading on Case study 3 1	59
4.10 tropio	Opt cs	imum building density for the high-rise residential building typology in the 16	55
Phase	e III		68
4.11 exter	The nal sha	e impact of the urban context on the daylight and energy performance of ading devices	68
4.1 (SI	11.1 M2)	Impact of contextual shading on different floor levels in Simulation model 2	2 69

	4.11	.2 Comparison of energy savings from balconies at different floor levels 169)
	4.12	Daylight analysis of external shading scenarios 170)
	4.13	Energy analysis of external shading scenarios 172	,
	4.14	Identifying the best performance external shading scenario	
	4.15	Application of design principles to the Case study 2 177	
	4.16	Design options based on the best performance shading scenario 179)
	4.17	Summary 183	
5	Con	clusion	
	Phase	I	
	5.1	Characteristics of the archetypal high-rise residential building in Sri Lanka 184	
	Phase	II	
	5.2 dense	The impact of the urban context on solar access in high-rise residential buildings in urban tropics	
	Phase	III	
	5.3	The impact of the urban context on the performance of external shading devices	
	5.4	Limitations of the study)
	5.5	Broader implications and further research)
R	eferenc	Ces	
A	ppendix	x A- The zoning plan-2020 of the Colombo Metropolitan region	
A	ppendix	x B- Building setback regulations in Sri Lanka	
A	ppendix	x C- Building setback regulations in Singapore for condominiums	
A st	ppendix udy and	x D- Comparison of urban density parameters, solar access indicators, climate of l building typology	
A th	ppendiz e samp	x E (I) - Details of the high-rise residential buildings (between 15 and 65 units) in le survey	214
A su	ppendix irvey	x E (II-)Details of the high-rise residential buildings (over 65 units) in the sample	
A	ppendix	x F- External shading scenarios	
A SI	ppendix M3	x G- Effects of the urban context on spatial daylight Autonomy (sDA) in SM2 and	
A	ppendix	x H- Effects of the urban context on cooling energy use in SM2 and SM3	
A	ppendix	x I- Effects of the urban context on total annual energy use in SM2 and SM3	
A	ppendix	x J– Simulation results of the daylight grid for the best performance scenario in	<i></i>
	use stat	*, •, •, •, •, •, •, •, •, •, •, •, •, •,	

List of Figures

Figure 1.1: The Colombo Metropolitan Region (CMR)	3
Figure 1.2: Number of condominiums with CMA certificate	5
Figure 1.3: Location of high-rise residential buildings in CMR and suburbs	8
Figure 1.4: High-rise residential building construction in -low-rise neighbourhood	9
Figure 1.5: Low-rise and high-rise neighbourhoods with clear boundaries in Singapore	10
Figure 1.6: High-rise residential buildings constructed up to the street line	11
Figure 1.7: The practice of donating land to the road to increase the number of floor levels	
of the high-rise-residential building in narrow roads	11
Figure 1.8: An aerial view of Havelock City Complex in Colombo 05	12
Figure 1.9: Comparison of plot coverage	12
Figure 1.10: Comparison of FAR	13
Figure 1.11: Comparison of side setbacks for an 8-storey building	14
Figure 1.12: Lack of solar access in an 8-floor residential building in Dehiwela	15
Figure 1.13: A new high-rise residential building of 40-floors being constructed close to an	
existing high-rise residential building affecting the view and solar access of the latter	15
Figure 1.14: Total electricity generation by source in Sri Lanka	16
Figure 1.15: Domestic sector electricity use 2005-2016 in Sri Lanka	17
Figure 2.1: Voisin plan for Paris (1922-1925) by Le Corbusier	26
Figure 2.2: Unite de Habitation, Marseille by Le Corbusier	27
Figure 2.3: Habitat '67, Montreal, Canada	28
Figure 2.4: Maximizing the green space – Comparison of Interlace, Singapore and typical	
development of equal density	29
Figure 2.5: Angle of incidence	31
Figure 2.6: The sun path and shadows simulated in DIVA4 software	32
Figure 2.7: Daylight in an indoor environment	34
Figure 2.8: Heat gain in a building	41
Figure 2.9: Breakdown of household energy consumption in Singapore-2017	42
Figure 2.10: Building density measurements	46
Figure 2.11: Solar access indicators in studies	47
Figure 2.12: Climate of study	48
Figure 2.13: Building typology of study	49
Figure 2.14: Urban density measures in studies	49
Figure 2.15: Simulation tools and statistical methods for quantifying the effects of the urban	
context on solar access	51
Figure 2.16: -Different configuration for the urban fabric	53
Figure 2.17: Example generalized context	54
Figure 2.18: Floor area ratio (FAR) variations. FAR was modified in each iteration by	
increasing the number of floors	55

Figure 2.19: Variation of the aspect ratio H/W of the single urban districts for the high-rise	
apartment blocks (a) and the row house (b)	56
Figure 2.20: Addition of an opposing building at various distances to reduce the VDF _{ave}	57
Figure 2.21: Conceptual sketch of Pareto-front, Utopia point and Knee point.	60
Figure 2.22: The relationship of the microclimate (urban context), form, and envelope of a	
building	61
Figure 2.23: Horizontal shadow angle64	
Figure 2.24: Vertical shadow angle	64
Figure 2.25: Overhangs, reveals, and balconies in a high-rise residential building in	
Singapore	68
Figure 2.26: The 10th-floor plan of Clearpoint	
Figure 2.27: An ariel view of the extended balconies	69
Figure 2.28: The B.S.R. tower, Tel Aviv	70
Figure 2.29: The 10th floor plan of Acrueil ZAC	
Figure 2.30: Acrueil ZAC	71
Figure 3.1: Research methodology	75
Figure 3.2: Scatter plot of high-rise residential buildings over 15 units in the Colombo	
metropolitan region and its suburbs	77
Figure 3.3: Sample selection for the survey of high-rise residential buildings	77
Figure 3.4: Comparison of plan forms in the building sample	79
Figure 3.5: Comparison of floor levels of high-rise residential buildings in the sample	80
Figure 3.6: Linear width and length of high-rise residential towers in the sample	81
Figure 3.7: Box plots of the living room, bedroom and window dimensions of the high-rise	
residential buildings in the sample	81
Figure 3.8: Window composition of the typical floor levels in the archetypal high-rise	-
residential building	82
Figure 3.9: Simulation models	83
Figure 3.10: Global Horizontal Illuminance (lux) for Colombo visualized in <i>Grasshopper</i>	84
Figure 3.11: Dry-bulb temperature in Colombo visualized in <i>Grasshopper</i>	84
Figure 3.12: Illustration of Simulation model 2 facing the parametric obstruction in the west	-
at 34 m	85
Figure 3.13: Relationship between solar access and energy use in buildings in dense urban	
tropics	86
Figure 3.14: Thermal zone model for the 19th floor in SM2	91
Figure 3.15: Simulation path for the thermal model in SM2 in <i>Grasshopper</i>	92
Figure 3.16: <i>DIVA4</i> grid for simulating sDA in the 19 th floor for SM2 facing the obstruction	/ _
at 20 m in the east	93
Figure 3 17: Simulation path for the daylight model for SM2 facing east in <i>Grasshopper</i>	95
Figure 3.18: Steps leading to the optimization process in the study and relevant software	96
Figure 3.19: Data collection in a bedroom in Case study 1 utilizing <i>Hobo</i> data loggers	100
Figure 3.20: Location of data loggers (indicated by A. B. C) 1.15 m above ground in a	100
bedroom in Case study 1	100
Figure 3.21: Thermal zone for the bedroom in Case study 1 in Archsim	101
Figure 3.22: Indoor mean air temperature simulation for a bedroom in Case study 1 in	101
Grasshopper	101
Standbypol	101

Figure 3.23: Daylight grid for the bedroom in Case study 1 in DIVA4	102
Figure 3.24: Simulation path for point- in time hourly illuminance simulation for a bedroom	
in Case study 1 in Grasshopper	103
Figure 3.25: Data collection in a bedroom in Case study 2 utilizing <i>Hobo</i> data loggers	103
Figure 3.26: Location of data loggers (indicated by A, B, C) 1.15 m above ground in a	
bedroom in Case study 2	104
Figure 3.27: Thermal zone for the bedroom in Case study 2 in <i>Rhino3D</i>	104
Figure 3.28: Indoor mean air temperature simulation for a bedroom in Case study 2 in	
Grasshopper	105
Figure 3.29: Daylight grid for the bedroom in Case study 2 in DIVA4	105
Figure 3.30: Simulation path for point- in time hourly illuminance simulation for a bedroom	
in Case study 2 in Grasshopper	106
Figure 3.31: Data collection in a bedroom in Case study 3 utilizing <i>Hobo</i> data loggers	107
Figure 3.32: Location of data loggers (indicated by A,B,C) 1.15 m above ground in Case	
study 3	107
Figure 3.33: Thermal zone for the bedroom in Case study 3 in Archsim	107
Figure 3.34: Indoor mean air temperature simulation for a bedroom in Case study 3 in	
Grasshopper	108
Figure 3.35: Daylight grid for the bedroom in Case study 3 in DIVA4	109
Figure 3.36: Simulation path for point- in time hourly illuminance simulation for Case study	
3 in Grasshopper	109
Figure 3.37: Thermal zone for a typical floor in Case study 1 in Archsim	113
Figure 3.38: Simulation path for annual energy use for cooling in a typical floor of Case	
study 1 in Grasshopper	114
Figure 3.39: 7th-floor daylight grid in Case study 2 for the optimized urban context	115
Figure 3.40: Simulation path for sDA and day-time lighting energy in a typical floor of Case	
study 1 in Grasshopper	115
Figure 3.41: Thermal zones for a typical floor in Case study 2 in Archsim	117
Figure 3.42: Simulation path for annual energy use for cooling in a typical floor of Case	
study 2 in Grasshopper	117
Figure 3.43: 10th-floor daylight grid in Case study 2 for the optimized urban context	118
Figure 3.44: Simulation path for sDA and day-time lighting energy in a typical floor of Case	
study 2 in Grasshopper	118
Figure 3.45: Thermal zones in a typical floor in Case study 3	120
Figure 3.46: Simulation path for annual energy use for cooling in a typical floor in Case	
study 3 in Grasshopper	121
Figure 3.47: 6th-floor daylight grid in Case study 3 in the optimized urban context	122
Figure 3.48: Simulation path for sDA and day-time lighting energy in a typical floor of Case	;
study 3 in Grasshopper	122
Figure 3.49: Shading scenarios C1, C14 and C27	124
Figure 3.50: Simulation model 2 with a high-rise, high-density context developed for	
optimum solar access	125
Figure 3.51: Thermal models for no shading (C1), horizontal shading (C14) and combined	
shading (C27)	126
Figure 3.52: Simulation path for cooling energy for Simulation model 2	126

Figure 3.53: Simulation path for the daylight in Simulation model 2	127
Figure 3.54: Baseline model for C_2128	3
Figure 3.55: Best performance scenario for C_2	128
Figure 4.1: Illustration of the Simulation model 1 facing the parametric obstruction in the	
west at 50m	131
Figure 4.2: The shading impacts of the obstruction on spatial daylight autonomy (sDA) for	
Simulation model 1 (SM1) in each cardinal direction	131
Figure 4.3: The shading impacts of the obstruction on cooling energy use for Simulation	
model 1 (SM1) in each cardinal direction	133
Figure 4.4: The shading impacts of the obstruction on total energy use for Simulation model	
1 (SM1) in each cardinal direction	134
Figure 4.5: Shading effects of the obstruction on average sDA for the three Simulation	
models in the east	137
Figure 4.6: Shading effects of the obstruction on average sDA for the three Simulation	
models	138
Figure 4.7: Shading effects of the obstruction on average sDA for the three Simulation	
models	138
Figure 4.8: Shading effects of the obstruction on average sDA for the three Simulation	
models	138
Figure 4.9: Shading effects of the obstruction on cooling energy use (CE) and total energy	
use (CE+LE) in Simulation model 1	139
Figure 4.10: Shading effects of the obstruction on cooling energy use (CE) and total energy	
use (CE+LE) in Simulation model 2	140
Figure 4.11: Shading effects of the obstruction on cooling energy use (CE) and total energy	
use (CE+LE) in Simulation model 3	140
Figure 4.12: - Shading effects of the obstruction on cooling energy (CE) savings and total	
energy (CE+LE) savings in Simulation model 1	141
Figure 4.13: Shading effects of the obstruction on cooling energy (CE) savings and total	
energy (CE+LE) savings in Simulation model 2	141
Figure 4.14: Shading effects of the obstruction on cooling energy (CE) savings and total	
energy (CE+LE) savings in Simulation model 3	141
Figure 4.15: Pareto-front visualization for sDA and energy savings in simulation models	
facing obstruction in the east	143
Figure 4.16: Pareto-front visualization for sDA and energy savings in simulation models	
facing obstruction in the west	143
Figure 4.17: Energy savings corresponding to 75 sDA for the three Simulation models in an	
urban context developed for optimum solar access	144
Figure 4.18: Comparison of ASE in Simulation models corresponding to 75 sDA	145
Figure 4.19: Comparison of annual energy savings for cooling and total energy savings	
corresponding to 75 sDA	146
Figure 4.20: Distance to the obstruction (m) for optimum solar access for the three	
Simulation models	147
Figure 4.21: Building setback for optimum solar access	148
Figure 4.22: Comparison of mean air temperature in Case study 1	149
Figure 4.23: Comparison of mean air temperature in Case study 2	150
- • •	

Figure 4.24: Comparison of mean air temperature in Case study 3	150
Figure 4.25: Comparison of illuminance data in Case study 1	152
Figure 4.26: Comparison of illuminance data in Case study 2	152
Figure 4.27: Comparison of luminance data in Case study 3	152
Figure 4.28: Floor area and window area of spaces simulated in Case study 1	153
Figure 4.29: Floor area and window area of spaces simulated in Case study 2	156
Figure 4.30: Floor area and window area of spaces simulated in Case study 3	160
Figure 4.31: Window to floor area ratios of the simulated spaces in the case studies	163
Figure 4.32: Comparison of minimum, optimum and maximum density and solar access	165
Figure 4.33: Floor area ratio for optimum solar access	167
Figure 4.34: Impact of the optimized urban context on the spatial daylight autonomy and	
annual energy savings at different floor levels in Simulation model 2	169
Figure 4.35: Energy savings due to balconies in Simulation model 2	169
Figure 4.36: Comparison of spatial daylight autonomy of different shading scenarios on the	
2nd floor	170
Figure 4.37: Comparison of spatial daylight autonomy of different shading scenarios on the	
11th floor	171
Figure 4.38: Comparison of spatial daylight autonomy of shading scenarios in the 19th floor	171
Figure 4.39: Comparison of energy savings of shading scenarios for cardinal directions	172
Figure 4.40: Application of the design principles in Simulation model 2	176
Figure 4.41: External shading devices in Design option 1 without the urban context	179
Figure 4.42: Effects of shading of the urban context on external shading devices in Design	
option 1	180
Figure 4.43: External shading devices in Design option 2 without the urban context	181
Figure 4.44: Effects of shading of the urban context on external shading devices in Design	
option 2	181
Figure 5.1: Holistic approach to optimizing solar access in dense urban tropics	189

List of Tables

Table 2.1: Household energy use in the United States of America -2009	39
Table 2.2: Comparison of energy savings of egg-crate, overhang and fins in residential	
buildings	66
Table 3.1: Materials of the building elements in the sample	83
Table 3.2: Thermal zone characteristics	91
Table 3.3: Thermal model assumptions	91
Table 3.4: Simulated floors	92
Table 3.5: Radiance parameter settings	94
Table 3.6: Surface reflectance values for materials of the building elements	94
Table 3.7: Characteristics of the case studies	98
Table 3.8: Thermal model settings and space characteristics in Case study 1	101
Table 3.9: Surface reflectance values for Case study 1	102
Table 3.10: Thermal model settings and space characteristics in Case study 2	104
Table 3.11: Surface reflectance values for Case study 2	106
Table 3.12: Thermal model settings and space characteristics in Case study 3	108
Table 3.13: Surface reflectance values for Case study 3	109
Table 3.14: Hypothetical context for case studies	111
Table 3.15: Spaces and floor levels modelled in Case study 1	112
Table 3.16: Cooling load settings for case studies	113
Table 3.17: Spaces and floor levels modelled in Case study 2	116
Table 3.18: Spaces and floor levels modelled in Case study 3	119
Table 3.19: External shading scenarios	124
Table 4.1: Measures of uncertainty in mean air temperature in case studies	150
Table 4.2: Measures of uncertainty in hourly illuminance in the case studies	151
Table 4.3: Spatial daylight autonomy (sDA) and energy savings in Case study 1 in an urban	
context based on the current building setback regulation	154
Table 4.4: Spatial daylight autonomy (sDA) and energy savings in Case study 1 in an urban	
context for optimum solar access	155
Table 4.5: Effects of contextual shading on spatial daylight autonomy (sDA) and energy	
savings in Case study 1	155
Table 4.6: Spatial daylight autonomy (sDA) and energy savings in Case study 2 in an urban	
context based on the current building setback regulation	157
Table 4.7: Spatial daylight autonomy (sDA) and energy savings in Case study 2 in an urban	
context for optimum solar access	158
Table 4.8: Effects of contextual shading on spatial daylight autonomy (sDA) and energy	
savings in Case study 2	159
Table 4.9: Spatial daylight autonomy (sDA) and energy savings in C_2 in an urban context	
based on the current building setback regulation	161
Table 4.10: Spatial daylight autonomy (sDA) and energy savings in Case study 3 in an	
urban context for optimum solar access	162
Table 4.11: Effects of contextual shading on spatial daylight autonomy (sDA) and energy	
savings in Case study 3	163

Table 4.12: Comparison of case studies for optimum solar access	164
Table 4.13:Façade facing obstruction in east	173
Table 4.14: Façade facing obstruction in west	173
Table 4.15: Façade facing obstruction in north	174
Table 4.16: Façade facing obstruction in south	174
Table 4.17: Annual Solar Exposure (ASE) levels for external shading scenarios	175
Table 4.18: Energy savings and spatial daylight autonomy in Case study 2 for the Baselin	e
scenario	177
Table 4.19: Energy savings and spatial daylight autonomy in Case study 2 for Best	
performance scenario	177
Table 4.20: Comparison of the Baseline and Best performance scenario on spatial daylig	ht
autonomy (sDA) and energy savings in Case study 2	178

List of Abbreviations

Abbreviation	Description
--------------	-------------

ASE	Annual sunlight exposure
ASHRAE	American society of heating, refrigerating and air-conditioning engineers
CBDM	Climate based daylight modelling
СМА	Condominium management authority of Sri Lanka
CV (RMSE)	Coefficient of variation of root mean square error
FAR	Floor area ratio
LEED	Leadership in energy and environmental design
NMBE	Normalized mean bias error
sDA	Spatial daylight autonomy
UDA	Urban development authority of Sri Lanka
UDI	Useful daylight illuminance
URA	Urban redevelopment authority of Singapore
UVA	Unobstructed vision area
VDF	Vertical daylight factor