COCONUT FIBER REINFORCED POLYMER COMPOSITE FOR NON-LOAD BEARING PANEL WALLS

P. D. Dharmaratne

198049E

Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

September 2022

COCONUT FIBER REINFORCED POLYMER COMPOSITE FOR NON-LOAD BEARING PANEL WALLS

P. D. Dharmaratne

198049E

Dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

September 2022

Declaration of candidate and supervisor

I declare that this is my work and this thesis/dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic, or another medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

UOM Verified Signature

20-06-2022

Signature:

Date:

The above candidate has carried out research for the Ph.D. Dissertation under my supervision.

Prof. R. U. HalwaturaProf. (Ms.) A. H. L. R. NilminiDepartment of Civil EngineeringFaculty of TechnologyUniversity of MoratuwaUniversity of Sri Jayewardenepura

Dr.(Mrs) R Jayasinghe

Faculty of Technology

University of Sri Jayewardenepura

Abstract

The study's main aim was to develop a lightweight walling panel for apartment buildings by employing coconut [coir] fiber with waste polyethylene. In this study, the flexural performance of coconut fiber reinforced polymer [CFRP] sandwich panels with different core configurations has studied experimentally and numerically. The numerical investigation was carried out using finite element analysis software "ANSYS 17.2". The coconut fiber reinforced polymer sandwich panel was developed with thin CFRP sheets for the outer faces and cell arrangement for the internal core structure which was made by the same CFRP sheets. The sequences of cells with different core structures were considered to determine the optimum solution for flexural behavior. The first part of this study was the investigation of coconut fiber's physical, mechanical, and chemical properties by using an experimental investigation and a literature review. The next step was to develop the CFRP composites. In this study, the coir fiber was used as reinforced material, and the waste polyethylene was utilized as a matrix material. Composite was developed using hand-layup techniques by varying the coir length and coir weight fractions. This composite material was analyzed using ASTM standards for tensile and bending performance. The sample which optimum results obtained relevant to the coir length and weight fraction were used to develop a composite sandwich panel of 400mm x 400mm in size. The most suitable manufacturing conditions were also studied. The flexural properties of this panel were inspected using experimental and numerical methods. The three-point bending test was carried out to investigate the maximum failure stresses for the panel sample. The next part of this study is to develop the numerical models for the three-point bend test using finite element software. Then, the experimental results obtained from the three-point bend test and numerical outcomes are compared and validated. In the end, the numerical analysis is expanded to examine the sample panel's flexural performance of different cell arrangements. Finally, the failure stresses and the volume at minimum failure stress were identified for each cell configuration. This result concluded that the best cell configuration with minimum weight for wall panels was the result. The proposed wall panel should be durable and low-cost. Therefore, service characteristics and production costs were analyzed. Further, to extend this research, the proposed wall system's life cycle cost and embodied energy were analyzed to identify the long-term benefits of the proposed walling system.

Keywords: Coir fiber, Polymer material, Sandwich wall panel, Mechanical properties, Physical properties.

Acknowledgment

First and foremost, I would like to express my heartfelt gratitude to my research supervisor, Professor R. U. Halwatura, for giving support, guidance, suggestions, and valuable comments to upgrade my research carrier and overall research work. And also wishes to acknowledge Prof. (Ms.) A.H.L.R. Nilmini and Dr. (Ms.) R Jayasinghe has given support to successful research as my co-supervisor.

Next, my sincere gratitude delivers to Prof. S.M.A Nanayakkara (Former Head, Department of Civil Engineering), Dr. L.L. Ekanayake (Senior Lecturer, Department of Civil Engineering), and Prof. (Mrs.) J.C.P.H. Gamage (Research Coordinator, Department of Civil Engineering) for their continuous encouragement, comments, and guidance as my examiners of bi-annual review panels.

And also, I would like to acknowledge Prof. (Mrs.) C Jayasinghe (Head, Department of Civil Engineering), Prof. S Walpalage, (Head, Department of Chemical and Process Engineering), Prof. B. A. J. K Premachandra, (In-charge, Australian, waste-based composite laboratory), Dr. N. D Wanasekara, (Head, Department of Textile and Apparel Engineering), Mr. Sivahar, (Head, Department of Materials science and Engineering), and all academic and non-academic staff of the University of Moratuwa, who continuously given support to successful the research work.

I wish to extend my sincere appreciation for the support given by Technical officers and Lab-Attendants of all relevant Departments at the University of Moratuwa and all staff members, especially Ms. J. P. B. Priyantha Silva, Mrs. W. B. U. Rukma, and Mr. J. A. N. D. Perera in Construction Management Division, Mrs. T.L.K Kumari, Technical officer and Mr. W. L Kumara Lab attendant of the Applied Mechanics Laboratory of the Department of Mechanical Engineering, and all research assistants in Pro- green Laboratory.

Then, I wish to extend my heartfelt gratitude to Dr. (Mrs.) H. Galabada for her invaluable encouragement and guidance in successful this research work. The author wishes to thank all other contributors for completing this project successfully. Finally, I would like to acknowledge the sacrificial dedication of my loving wife, Mrs. Nilakshi Udugama, for her firm support throughout my studies and my son Jaanuka and daughter Supunika for patiently sacrificing some of their entitled time

Table of contents

Declaration of candidate and supervisori
Abstractii
Acknowledgmentiii
Table of contentsiv
List of figuresviii
List of tablesxii
1 INTRODUCTION 1
1.1 General 1
1.2 Research gap
1.3 Aim and objectives
1.4 Methodology 5
1.5 Main findings 6
1.6 Organization of the thesis
2 LITERATURE REVIEW
2.1 General
2.2 Importance of vertical construction
2.3 Available walling materials and panel walls
2.4 Fiber
2.4.1 Coconut fiber
2.4.2 Different usage of coir fibers
2.4.3 Physical and mechanical properties of coconut fibers
2.4.4 Chemical properties of the coir fibers
2.5 Matrix material

	2.5	.1	Polymer	. 17
	2.5	.2	Waste polyethylene	18
	2.6	Cor	nposite material	18
	2.6	.1	Different composite materials	. 19
	2.7	Pan	el wall	22
	2.7	.1	Existing panel walls	22
	2.8	Cha	pter summary	31
3	DE	VEL	OPMENT OF COMPOSITE	32
	3.1	Ger	neral	32
	3.2	Rav	v material characterization	32
	3.2	.1	Characterization of coir fiber	33
	3.2	.2	Characterization of LDPE polyethylene	39
	3.2	.3	Results and discussion of material characterization	40
	3.2	.4	Summary of material characterization	48
	3.3	Mix	design for composite material	49
	3.3	.1	Theoretical overview	49
	3.3	.2	Conditioning of the raw materials for composite preparation	50
	3.3	.3	Investigation of the most suitable polyethylene to fiber ratio	51
	3.3	.4	Summary and discussion	60
	3.4	Inve	estigation of production criteria	. 61
	3.4	.1	Investigation of optimum temperature	61
	3.4	.2	Investigation of the optimum pressure	62
	3.4	.3	Summary and discussion	63
	3.5	Sele	ection of optimum fiber length	63
	3.5	.1	Preparation of samples	64

3.5.2	Preparation of test specimen	66
3.5.3	Experimental procedure for testing mechanical properties	66
3.5.4	Results and discussion	68
3.5.5	Summary of production criteria	75
3.6 Ser	viceability characteristics of composites	75
3.6.1	Investigation of water absorption properties	
3.6.2	Investigation of flammability characteristics	
3.6.3	Summary of serviceability checks	
3.7 Cha	apter Summary	
4 DEVEI	OPMENT OF SANDWICH PANEL WALL	
4.1 Ger	neral	
4.2 Sof	tware validation	
4.2.1	Experimental method	91
4.2.2	Analytical calculation	
4.2.3	Numerical simulation	
4.2.4	Discussion for validation	
4.3 Sel	ection of optimum core configuration	
4.3.1	Engineering data	
4.3.2	Finite element model	
4.3.3	Support conditions	
4.3.4	Loadings	
4.3.5	Solving and outputs	
4.3.6	Results and discussion	
4.4 Cha	apter Summary	110

5 PREPARATION OF SAMPLE PANELS AND ANALYSIS OF FLEXURAL				
PERF	PERFORMANCE			
5.1 General				
5.2	Sai	ndwich panel preparation and testing111		
5.2.1		Preparation of panel manually112		
5	5.2.2	Testing of manually prepared samples113		
5	5.2.3	Panel wall preparation using the mold114		
5	5.2.4	Testing of molded sample117		
5	5.2.5	Comparison of flexural strength with available panel walls117		
5.3	Ch	apter Summary118		
6 FINANCIAL FEASIBILITY AND EMBODIED ENERGY				
6.1	Ge	neral		
6.2	Eva	aluate the cost of the product		
6.3	Lif	fe cycle cost (LCC) calculation 122		
6.4	Em	nbodied Energy of panel wall		
6	5.4.1	Embodied energy of FRPC panel wall127		
6	5.4.2	Embodied energy of selected durra panel		
6.5	Ch	apter Summary131		
7 (CONC	LUSION AND RECOMMENDATIONS132		
7.1	Re	commendations for future research		
References				
Annex 1				

List of figures

Figure 2-1: Classification of fibers	12
Figure 2-2: Coconut tree, seed, and coir fiber	12
Figure 2-3: Longitudinal and cross-section of a coir fiber	13
Figure 2-4: brown and white coir	13
Figure 2-5: Stress-strain variation for coir fiber	15
Figure 2-6: Stress-strain curve for natural fibers	15
Figure 3-1: Development process of composite	32
Figure 3-2: Available coconut fibers	35
Figure 3-3: Plasma sputtering apparatus and SEM equipment	37
Figure 3-4: Image of coir fiber through the microscope	41
Figure 3-5: Cross sectional micrographs of coir fiber	42
Figure 3-6: Longitudinal SEM micrographs of brown coir	43
Figure 3-7: Thermogram of brown coir fiber	44
Figure 3-8: FTIR spectra for the coir fiber	45
Figure 3-9: XRD spectrum of brown coir fiber	46
Figure 3-10: FTIR spectrum of waste polyethylene	48
Figure 3-11: Raw material used to manufacture the composite	50
Figure 3-12: Schematic diagram for preparation of composites	53
Figure 3-13: Composite development process	52
Figure 3-14 Equipments for manufacturing composites	53
Figure 3-15: Weighted raw material samples and sample preparation steps	53
Figure 3-16: Preparation of composite	53
Figure 3-17: Sample preparation for testing	54

Figure 3-18: Test samples before and after testing	56
Figure 3-19: Variation of tensile strength with coir weight fractions	57
Figure 3-20: Variation of bending strength with coir fraction	58
Figure 3-21: Longitudinal SEM micrographs of brown coir fiber	59
Figure 3-22: SEM micrographs of the fracture surface of composites	59
Figure 3-23: Tensile strength variation with varying temperature	61
Figure 3-24: Tensile strength variation with varying pressure	62
Figure 3-25: Deform of matrix material surrounding a fiber	63
Figure 3-26: Prepared coir samples into required length	64
Figure 3-27: The sample preparation process	65
Figure 3-28: Equipment and composite sample	65
Figure 3-29: Test specimen preparation in the carpentry shop	66
Figure 3-30: Equipment used for testing	67
Figure 3-31: Tensile strength variation with fiber length for fiber content	70
Figure 3-32: Tensile strength variation with coir fraction for different fiber length	70
Figure 3-33: SEM micrographs of the fracture surface after tensile tests	71
Figure 3-34: Variation of young's modulus with varying fiber length and content	71
Figure 3-35: Flexural strength variation with fiber percentage	72
Figure 3-36: Impact strength variation with fiber content	73
Figure 3-37: Composite specimens immersed in water	80
Figure 3-38: Variation of water absorption with time in different fiber content	81
Figure 3-39: Variation of water absorption with different fiber content	81
Figure 3-40: Variation of water absorption on waterproof composite	83
Figure 3-41: Water absorption behavior of composite	83
Figure 3-42: Flammability test process	84

Figure 3-43: Average burning rate of FRPC with different wt. content	86
Figure 4-1: Experimental test setup for the 3-point bend test	91
Figure 4-2: Force Vs. Strain graph for the 3-point bending test	91
Figure 4-3: Schematic diagram for 3-point bend test	92
Figure 4-4: Force Vs. Elongation graph for tensile test	93
Figure 4-5: Discontinuous and randomly oriented fiber-reinforced composites	94
Figure 4-6: Numerical results from Ansys software	95
Figure 4-7: Flow diagram for finite element modeling	97
Figure 4-8: Finite element model for sandwich panel	98
Figure 4-9: Boundary conditions of the model	98
Figure 4-10: Applied load on the model	99
Figure 4-11: Graphical representation of maximum stress variation with core size	ze 101
Figure 4-12: Max deformation of honeycomb panels	103
Figure 4-13: Max deformation of square panels	103
Figure 4-14: Max deformation of triangular panels	104
Figure 4-15: Max deformation of rectangular panels	104
Figure 4-16: Maximum deformation of circular panels	105
Figure 4-17: Deformation variation with different cell sizes	106
Figure 4-18: Volume of panel wall Vs. maximum bending stress	108
Figure 4-19: Total deformation Vs. core sizes in square panel	109
Figure 5-1: Mild steel mold with cover plates and prepared composite sheets	111
Figure 5-2: Manual sandwich panel preparation process.	112
Figure 5-3: Different types of glue.	113
Figure 5-4: Sample arrangement for the testing work	113
Figure 5-5: De-bonding failure between core and face sheet	114

Figure 5-6: Graphical interpretation of mold	115
Figure 5-7: Aluminium plates 450mm x 250 mm x 30mm	115
Figure 5-8: Aluminum sheet smoothing process	115
Figure 5-9: Casting work process of the mold and male and female molds	116
Figure 5-10: Process to prepare the panels	116
Figure 5-11: Three-point bend test setup	117
Figure 5-12: The 3-point bend test for durra panel	118

List of tables

Table 2-1: Physical and mechanical properties of coconut fibers	15
Table 2-2: Chemical properties of coir fiber	16
Table 2-3: Advantages and disadvantages of thermoplastic and thermosets	
composites	17
Table 2-4: Summary of different wall panels	23
Table 2-5: Properties of EPS panel	25
Table 2-6: Properties of durra panel	28
Table 2-7: Advantages of physical properties of Acotec precast wall panels	29
Table 2-8: Comparison of physical properties of Acotec panel	29
Table 2-9: Physical properties of Acotec precast wall panels	30
Table 2-10: Properties of 3D micro panels	30
Table 3-1: Measured diameter of the coir	41
Table 3-2: Density of fibers	42
Table 3-3: Tensile properties of coir fiber and other natural fibers	47
Table 3-4: ASTM Standards for mechanical test	54
Table 3-5: Mechanical test parameters	55
Table 3-6: Variation of tensile strengths	57
Table 3-7: Variation of flexural properties	58
Table 3-8: Mix proportions of composite samples	66
Table 3-9: Size of samples, total number of samples, and test standards	67
Table 3-10: Prepared specimen before undergoing mechanical test	68
Table 3-11: Mechanical properties of different fiber-reinforced composites	74
Table 3-12: Burning rate and results	85

Table 4-1: Young's modulus calculation for five test specimens	94
Table 4-2: Maximum failure stresses in three different methods	96
Table 4-3: Selected different core arrangements and sizes	97
Table 4-4: Core arrangement with core configurations	100
Table 4-5: Summary of von mises stress in all panels	102
Table 4-6: Summary of deformation in different cell arrangements	107
Table 5-1: Flexural strength of available panels	118
Table 6-1: The current market price of the durra pannel	122
Table 6-2 Details for the LCC calculation in novel panel	125
Table 6-3: Details for the LCC calculation in Durra panel	126
Table 6-4: EE for material transportation to laboratory	129
Table 6-5: EE to develop the composite	129