OPEN TECHNOLOGIES BASED TANK MANAGEMENT MODEL FOR FLOOD RISK REDUCTION

Emeshi Jayani Warusavitharana

168033X

Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Town & Country Planning

University of Moratuwa

Sri Lanka

November 2020

DECLARATION OF THE CANDIDATE & SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

E.J. Warusavitharana

The above candidate has carried out research for the PhD thesis under my supervision.

Signature of the supervisor: Date:....

Prof. P.K.S. Mahanama

Abstract

Analysis of climate induced phenomenon is data intensive and the data collected from very sparse network of professional weather stations have become incapable to estimate the magnitude of the climate induced events. Manual stations, offline data, low spatial and temporal resolution of data, high cost of modelling software and state-owned stations' data, unavailability of pre-determined parameter values, lack of trust on technology and lack of expertise knowledge, are the barriers exist in most developing countries, which evade inclusion of hydrological modelling approaches for tank / reservoir water release decisions. Presently, in Sri Lanka, the reservoir water is released once it reaches to a particular threshold. The public is informed few hours prior to the opening of reservoir gates. This current practicing way of releasing water from the reservoirs increases the potential for dam failures and public outrage, and thus strains reservoir operators to open the spill gates during emergency periods. Therefore, for a low-income country, a total open-source solution, combined with low-cost open-source hardware, free and open-source software and open standards was seen as the only possible way to overcome the flood risk associated with reservoirs. Thanks to the 4ONSE (4 times Open and Non-conventional technologies for Sensing the Environment) project, a dense open-source sensor network has been deployed in Deduru Oya watershed following a new deployment approach. Deduru Oya reservoir was chosen to develop the tank management model, as it is the main player of controlling the floods in the lower basin. The tank management decision support system presented in this research is supported by a hydrological model developed from SWAT open-source tool, fed with 4ONSE big data. Further, this research introduces a novel approach to find the dominant parameters and their values at any spatial and temporal scale. The calibration and validation results have revealed the potential of the open technologies-based tank management approach in controlling the reservoir floods.

Keywords:

4ONSE, reservoir flood control, Deduru Oya, open-source technologies, hydrological modelling

DEDICATION

This thesis is dedicated to the memory of my beloved father.

ACKNOWLEDGEMENTS

This research would not have been possible without encouragement and support of many great individuals. Foremost, I would like to express my deep gratefulness to my supervisors Prof. P.K.S. Mahanama, Deputy Vice Chancellor, University of Moratuwa and Prof. Massimilano Cannata, Professor in Engineering Geomatics, University of Applied Sciences and Arts of Southern Switzerland (SUPSI) for their guidance and constant encouragements, helpful comments, motivations, enthusiasm, patience and offering me the opportunity to work in the 4ONSE project as the PhD candidate. I gratefully acknowledge the Swiss Agency for Development and Cooperation (SDC) and Swiss National Science Foundation (SNSF) for providing necessary funds to carry out this research.

My deep appreciation goes to Prof Rangajeewa Rathnayaka, Head, Department of Town & Country Planning for his valuable inputs, continuous encouragements and support given me always to accomplish my degree program successfully. A special acknowledgement for Mr B.H. Sudantha, Dean, Faculty of Information Technology, for his tremendous effort to launch 40NSE network in Deduru Oya basin and for his great motivations.

My sincere thanks go to Dr Lochandaka Ranathunga, Senior Lecturer, Department of Information Technology and specialist of my progress reviewing committee. His valuable advices at every progress review help me to improve my research to great extent. I would like to express my special gratitude to Plnr Susantha Amarawickrama, Senior Lecturer & Research Coordinator of Department of Town & Country Planning for her dedication and constant motivation for completing my progress reviews and viva-voce examination successfully and for her kind assistance and helpful advices given me all the time in every aspect related to my PhD study. I also take this opportunity to thank Dr Shaleeni Coorey, Director, Postgraduate Studies for her kind assistance and guidance. I would gratefully appreciate the examiners of my viva-voce examination, Prof R.K.L. Mervin Dharmasiri, Prof K.G.P.K. Weerakoon and Dr Shiromani Jayawardena and the chairperson Prof. R.A.R.C. Gopura for their valuable feedback and time. Each of their thoughtful comments have largely contributed to strengthen my final thesis. Further, I would like to acknowledge all the other team members of the 4ONSE project, especially, Dr Daniele Strigaro, Dr Macus Hoffmann, Mr Ramesh Warusavitharana, Ms Piyumi Tasheema, Ms Sandaru Weerasinghe and Mr Manoj De Silva for their support, assistance and friendship. I am most grateful to Engineers of Irrigation Department, especially Mr Deshapriya and Mr Dashan for all their assistance and providing necessary data to develop my hydrological model successfully.

Moreover, my thanks goes to all the academic and non-academic staff members of Department of Town & Country Planning, especially Dr Rizvi Noordeen, Ms Malani Herath, Dr Shanaka Kariyawasam and Dr Gayani Ranasinghe for their continuous support and motivation. A special thanks goes to all the staff members of Faculty of Graduate Studies, especially Prof Dileeka Dias, Dean, Faculty of Graduate Studies for the continuous support.

Finally, I would like to thank all my family members, especially my mother, father, husband and daughter for their immense sacrifice, inspiration and for both moral and spiritual support. At last but not least my thanks go to all my close relatives, especially my sister, brother, brother in law, Chuti bappa and Chandima mamma.

TABLE OF CONTENTS

DECLARATION OF THE CANDIDATE & SUPERVISOR
Abstractii
DEDICATIONiii
ACKNOWLEDGEMENTSiv
TABLE OF CONTENTS
LIST OF FIGURESix
LIST OF TABLES
LIST OF ANNEXURES
LIST OF ABBREVIATIONSxv
CHAPTER 1 INTRODUCTION 1
1.1 Background of the study 1
1.2 Research Problem
1.3 Research Questions 7
1.4 Research Objectives
1.5 Conceptual Framework 8
1.6 Limitations of the Research
1.7 Organization of the other chapters
CHAPTER 2 LITERATURE REVIEW 12
2.1 Overview
2.2 Tank Management and Flood Control 12
2.3 Approaches on estimating the reservoir / tank water levels
2.4 Hydrologic Models, Hydrologic Cycle and Water Balance Equation
2.5 Types of Hydrologic Models
2.6 Regionalization, Parameterization, Calibration, Validation and Uncertainty Assessment of Hydrological Models
2.7 Existing Hydrometeorological Network of Sri Lanka and the Decision-making Setup
2.8 Internet of Things (IoT), Open-Source Technologies and Environmental Monitoring33
2.9 Deployment of an experimental weather station network in a river basin
CHAPTER 3 STUDY AREA 40
3.1 Overview
3.2 4ONSE Project 40

3.2.1 Introduction to 4ONSE project	40
3.2.2 System Architecture of the 4ONSE Open-Source Stations	41
3.2.3 Quality of the 4ONSE weather data	45
3.2.4 Quality of the 4ONSE water level data	50
3.3 Case Study Area	54
3.4 Installation of 40NSE sensor network in Deduru Oya basin	63
CHAPTER 4 RESEARCH DESIGN	64
4.1 Overview	64
4.2 Application of combined open source technologies and selection of suitable open source hydrological modelling tool for reservoir flood control	
4.3 An approach to determine the optimum locations for open-source weather station network for hydrological modelling	
4.4 Parameter optimization at sub-catchment level and different temporal scales	88
4.4.1 Development of SWAT model	88
4.4.2 Parameter optimization with SWAT-CUP	101
4.5 The approach of applying outputs of the hydrological model for reservoir flood control	110
CHAPTER 5 ANALYSIS & FINDINGS	118
5.1 Overview	118
5.2 Hydrological model operated by combined open-source technologies	118
5.3 Optimum locations of the 4ONSE open-source sensor network	119
5.4 Optimization of model parameters	129
5.4.1 Issues encountered when calibrating the model	129
5.4.2 Optimization of model parameters at daily time step	132
5.4.3 Optimization of model parameters at hourly time step	139
5.4.4 Parameter comparison between daily and hourly models	149
5.4.4 Parameter comparison between wet and dry periods	149
5.5 Application of tank management model	151
5.5.1 Application of 4ONSE data in the hydrological model for water pre-release decisions at Deduru Oya reservoir	151
5.5.2 Application of tank management model to a different river basin	154
5.5.3 A demonstration of obtaining ERA5 data derived from numerical weather prediction models	156
CHAPTER 6 CONCLUSION	160
6.1 Contributions of the Research	160

6.2 Directions for Future Research	163
REFERENCES	167
ANNEXURES	182

LIST OF FIGURES

Figure 1: Conceptual Framework	9
Figure 2: Schematic representation of a tank cascade system (Panabokke, et.al, 2002)	. 14
Figure 3: Hydrological Cycle	. 18
Figure 4: Diagrammatic representation of the runoff process (Ward, 1972)	. 21
Figure 5: Types of hydrological models (Singh, 1988)	
Figure 6: Schematic representation of watershed in lumped, semi-distributed and fully	
distributed models	. 24
Figure 7: Schematic representation of estimating the Px using arithmetic average method.	. 36
Figure 8: Schematic representation of estimating Px based on the Thiessen polygon method	od
	. 37
Figure 9: Schematic representation of estimating Pavg based on the Isohyetal method	. 38
Figure 10: 4ONSE (a) weather station and (b) river gauge	. 43
Figure 11: Screenshot of the istSOS application	. 45
Figure 12: Comparison of rainfall at low altitude – daily interval	. 47
Figure 13: Comparison of rainfall at high altitude – 10 minutes interval	. 47
Figure 14: Comparison of relative humidity - 10 minutes interval	. 48
Figure 15: Comparison of temperature - 10 minutes interval	. 48
Figure 16: Comparison of air pressure - 10 minutes interval	. 49
Figure 17: Measurements of the MB7062 Ultrasonic sensor at 10 minutes interval	. 51
Figure 18: Comparison of water level data at Amunugama – daily interval	. 51
Figure 19: Comparison of water level data at Amunugama – 10 minutes interval	. 52
Figure 20: Comparison of water level data at Maspotha - daily interval	. 52
Figure 21: Comparison of water level data at Maspotha - 10 minutes interval	. 53
Figure 22: Climatic zones of Sri Lanka	. 54
Figure 23: Deduru Oya basin and its major tanks	. 55
Figure 24: State-owned weather stations of Deduru Oya basin	. 56
Figure 25: Monsoons and Inter-monsoons of Sri Lanka	. 57
Figure 26: Monthly average rainfall of Deduru Oya basin	. 57
Figure 27: Discharge volumes measured at Amunugama, Maspotha and Ethiliyagala river	
gauges during 2015, 2017 & 2018	
Figure 28: Timeline representing the 4ONSE deployment and application 4ONSE data in	the
model	
Figure 29: QSWAT version 1.9 interface	
Figure 30: Interface of the SWAT-Editor Tool	. 69
Figure 31: Txt files of four weather parameters	
Figure 32: An example for pcp.txt file	. 72
Figure 33: An example for tmp.txt file	. 72
Figure 34: (a) Format of the hourly precipitation file of Batalagoda station (b) Format of t	he
temperature file of Batalgoda station	
Figure 35: SWAT-CUP 5.2.1 interface	
Figure 36: Components of a watershed	
Figure 37: DEM based watershed delineation in QSWAT	
Figure 38: SRTM DEM representing the study area	. 81

Figure 39: Elevation profile: A-B	82
Figure 40: Elevation profile: C-D	82
Figure 41: Stream network and major tanks of the study area	83
Figure 42: Overall Process of watershed delineation in QSWAT	84
Figure 43: Selected CFSR locations at Deduru Oya basin	86
Figure 44: Overall approach of finding optimum locations for the weather stations	88
Figure 45: Sub-catchments of upper watershed	89
Figure 46: Reclassified land uses of the Deduru Oya basin as per the SWAT land use	classes
	92
Figure 47: GSMB's soil classes for Deduru Oya basin	
Figure 48: World soil classes for Deduru Oya basin	94
Figure 49: Snippet of the HRU report of Deduru Oya sub-catchment	95
Figure 50: 4ONSE weather stations belong to four upper sub-catchments	96
Figure 51: Approach of developing the hydrological model	101
Figure 52: Manual calibration with SWAT	103
Figure 53: Local sensitivity of CN2 parameter	105
Figure 54: The approach of parameter optimization	109
Figure 55: An example of applying CANMX value for HRUs contain with Coconut 1	anduse
in Deduru Oya sub-catchment	
Figure 56: Snippet of the output.rch file	115
Figure 57: Overall methodology of parameter optimization	117
Figure 58: Framework of application of combined open-source technologies	119
Figure 59: Variation of number of sub-basins for different thresholds	120
Figure 60: Coincided boundary with map prepared by Department of Agrarian Devel	opment
	121
Figure 61: Outlets and reservoir points marked in the QSWAT model	122
Figure 62: Delineated boundary to deploy the 4ONSE stations	123
Figure 63: Selected locations for 4ONSE stations, variation of entropy values and loc	
of sub-basins' centroids of some sub-basins	
Figure 64: Locations of the 4ONSE stations in Deduru Oya basin	
Figure 65: Google map view of Moragoda anicut and Hakwatuna Oya	
Figure 66: Water level measurement at Moragoda anicut	130
Figure 67: Simulated and Observed flow of Kimbulwana Oya sub-catchment at daily	
step	
Figure 68: Observed and simulated flow patterns of (a) Deduru Oya sub-catchment (b)	-
Maguru Oya sub-catchment	
Figure 69: Observed and simulated daily flow for Deduru Oya sub-catchment during	
period of 1 st August to 06 th October 2019	
Figure 70: Observed and simulated daily flow for Maguru Oya sub-catchment during	
period of 1 st August to 28 th August 2019	
Figure 71: Observed and simulated hourly flow of Deduru Oya sub-catchment during	
period of 1 st June – 15 th June 2019	
Figure 72: Observed and simulated hourly flow of Deduru Oya sub-catchment during	
period of 15 th June – 30 th June 2019	144

Figure 73: Observed and Simulated hourly flow for Deduru Oya sub-catchment during the
period of 4 th August to 9 th August 2019 144
Figure 74: Observed and Simulated hourly flow for Deduru Oya sub-catchment during the
period of 1 st August to 15 th August 2019 145
Figure 75: Observed and Simulated hourly flow for Deduru Oya sub-catchment during the
period of 16 th August to 23 rd August 2019 145
Figure 76: Observed and Simulated hourly flow for Maguru Oya sub-catchment during the
period of 23 rd August to 27 th August 2019 146
Figure 77: istSOS view of rainfall data in Rambadagalla and Batalagoda stations during the
months of September and October in 2019 146
Figure 78: Simulated and observed flow of Deduru Oya sub-catchment during 1 st June to 8 th
June 2019 148
Figure 79: Rainfall of Paragahadeniya weather station during 1st June to 8th June 2019 148
Figure 80: Variation of parameter values during the dry and wet periods in Deduru Oya sub-
catchment 150
Figure 81: Steps of extracting data from ERA5 158
Figure 82: Post processing of data

LIST OF TABLES

Table 1: List of most widely used open source tools for hydrologic modelling, water	
resources management and hydraulic modelling	. 17
Table 2: Recommended minimum coverage area per rain gauge	. 35
Table 3: Sensors of the 4ONSE stations	. 42
Table 4: Average cost incurred in building 4ONSE weather station and river gauge	. 43
Table 5: Cost of the other portable wireless weather stations available in the international	
market	. 44
Table 6: Locational information of 3 Davis Vantage Pro2 stations	. 45
Table 7: R ² values with reference to 4ONSE weather data comparison	. 49
Table 8: R ² values with reference to 4ONSE river gauge data comparison	. 53
Table 9: Monthly average rainfall of several stations in Deduru Oya basin	. 57
Table 10: Reported news items on heavy showers occurred in Deduru Oya basin	. 60
Table 11: Input variables / processes of weather and hydrology aspects of SWAT model .	. 67
Table 12: Models and methods used in SWAT weather generator	. 69
Table 13: Simulation type and required data	. 70
Table 14: istSOS quality indexes	. 70
Table 15: Tested model configurations	. 76
Table 16: Open-source tools used in this research	. 77
Table 17: Required data to delineate the watershed and sub-basin boundaries	
Table 18: Classification scale of Kringing layers	. 87
Table 19: Required data for the SWAT model	
Table 20: Land uses of the basin and the corresponding SWAT land use categories	
Table 21: Options available in SWAT model to simulate the hydrologic processes	
Table 22: Output files of SWAT	
Table 23: Options need to apply in the model for hourly simulation	
Table 24: RCH numbers to streams which provide inflow to the Deduru Oya reservoir	
Table 25: Approximate time of concentration of each sub-catchment	
Table 26: Information of the 4ONSE weather stations installed in Deduru Oya basin	
Table 27: Information of the 4ONSE river gauges installed in Deduru Oya basin	
Table 28: Regionalized parameters of Deduru Oya and Maguru Oya sub-catchments	
Table 29: Regionalized parameters and their optimal values	
Table 30: Sensitive parameters & their ranges related to daily simulation at Deduru Oya s	
catchment	
Table 31: Sensitive parameters & their ranges related to daily simulation at Maguru Oya	
sub-catchment	137
Table 32: Statistical results related to daily simulation	
Table 33: Sensitive parameters of Deduru Oya sub-catchment with reference to hourly tir	
step	
Table 34: Sensitive parameters of Maguru Oya sub-catchment with reference to hourly tin	
step	
Table 35: Statistical results related to hourly simulation	
Table 36: Parameter values received for dry and wet periods	
Table 37: 4ONSE weather data at 4 stations in Dedruru Oya sub-catchment	
Table 38: Results of the scenario generation	
č	

Table 39: Key data parameters available in the ERA5 dataset for hourly data estimation . 157 $\,$

LIST OF ANNEXURES

Annexure 1: Comparison of QSWAT, WEAP and HEC-HMS hydrological modeling tools	182
Annexure 2: SWAT land use database	195
Annexure 3: SWAT soil database	197
Annexure 4: Definitions of the variables and the statistical values required for SWAT weather generator and the calculated values for the Deduru Oya river basin	199
Annexure 5: SWAT's input parameters, their levels and definitions	204
Annexure 6: Number of the day in the year (J)	215
Annexure 7: Example code for extracting data from ERA5	216

LIST OF ABBREVIATIONS

Abbreviation	Description
40NSE	4 times Open and Non-conventional technologies for Sensing the Environment
ALPHA_BF	Baseflow alpha factor
ALPHA_BNK	Baseflow alpha factor for bank strorage (days)
ARMA	Autoregressive Moving Average Model
AAT	All-at-a-time global sensitivity analysis
AWS	Automated Weather Stations
CANMX	Maximum canopy storage
CeNSE	Central Nervous System for the Earth
CFSR	Climate Forecast System Reanalysis
CH_D	Depth of main channel from top of bank to bottom (m)
CH_K(1)	Effective hydraulic conductivity in tributary channel alluvium
CH_K(2)	Effective hydraulic conductivity in main channel alluvium
CH_L(1)	Longest tributary channel length in sub-basin
CH_L(2)	Length of main channel (km)
CH_N(1)	Manning's "n" value for the tributary channels
CH_N(2)	Manning's "n" value for main channel
CH_S(1)	Average slope of tributary channels
CH_S(2)	Average slope of main channel along the channel length
CH_W(1)	Average width of tributary channels
CH_W(2)	Average width of main channel at top of bank

CN	Curve Number
CN2	Initial SCS runoff curve number for moisture condition II)
CNCOEF	Plant evapotranspiration curve number coefficient
DEEPST	Initial depth of water in the deep aquifer
DEM	Digital Elevation Model
EPCO	Plant uptake compensation factor
ERA5	ECMWF Reanalysis 5 th Generation
ESCO	Soil evapotranspiration compensation factor
EVRCH	Reach evaporation adjustment factor
FAO-UNESCO	Food and Agricultural Organization - United Nations Educational, Scientific and Cultural Organization
FFCB	Initial soil water storage
	ç
FREEWAT Management	Free and Open Source Software for Water Resources
FREEWAT Management GAML	
Management	Free and Open Source Software for Water Resources
Management GAML	Free and Open Source Software for Water Resources Green and Ampt Mein Larson
Management GAML GIS	Free and Open Source Software for Water Resources Green and Ampt Mein Larson Geographic Information System
Management GAML GIS GSMB	Free and Open Source Software for Water Resources Green and Ampt Mein Larson Geographic Information System Geological Survey and Mines Bureau
Management GAML GIS GSMB GW_DELAY	Free and Open Source Software for Water Resources Green and Ampt Mein Larson Geographic Information System Geological Survey and Mines Bureau Ground water delay time
Management GAML GIS GSMB GW_DELAY GW_REVAP	Free and Open Source Software for Water Resources Green and Ampt Mein Larson Geographic Information System Geological Survey and Mines Bureau Ground water delay time Groundwater "revap" coefficient
Management GAML GIS GSMB GW_DELAY GW_REVAP GW_REVAP	Free and Open Source Software for Water Resources Green and Ampt Mein Larson Geographic Information System Geological Survey and Mines Bureau Ground water delay time Groundwater "revap" coefficient Groundwater "revap" coefficient

HEC-HMS System	Hydrologic Engineering Center - Hydrologic Modelling
HEC-RAS	Hydrologic Engineering Center – River Analysis System
HP	Hewlett-Packard
HRU	Hydrological Response Unit
HRU_SLP	Average slope steepness
HYMOD	Hydrological MODel
IBM	International Business Machines
IFAS	Integrated Flood Analysis System
IHACRES	Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data
IHDM	Institute of Hydrology Distributed Model
INSAT	Indian National Satellite System
IoT	Internet of Things
iRIC	International River Interface Cooperative
ISBA	Interaction Sol-Biosphère-Atmosphère
istSOS	Instituto scienze della Terra Sensor Observation Service
IWMI	International Water Management Institute
LAT_TTIME	Lateral flow travel time
MIKE-SHE	MIKE System Hydrologique European
MSK_CO1	Muskingum coefficient for normal flow
MSK_CO2	Muskingum coefficient for low flow
MSK_X	Weighting factor for wedge storage

NCEP	National Centers for Environmental Prediction
NN	Neural Networks
NSE	Nash-Sutcliffe Efficiency
OGC-SOS	Open Geospatial Consortium – Sensor Observation Service
OV_N	Manning's "n" value for overland flow
OAT	One-at-a-time local sensitivity analysis
PAWS	Process-based Adaptive Watershed Simulator
PCR-GLOBWB	PCRaster Global Water Balance
PET	Potential Evapotranspiration
PIHM	Penn State Integrated Hydrologic Modelling System
PRMS	Precipitation-Runoff Modelling System
QGIS	Quantum GIS
RCHRG_DP	Deep aquifer percolation factor
REVAPMN	Threshold depth of water in the shallow aquifer for
	percolation to the deep aquifer to occur
SCS	Soil Conservation Service
SHALLST	Initial depth of water in the shallow aquifer
SHE	System Hydrologique European
SUFI-2	Sequential Uncertainties Fitting Version 2
SLSOIL	Slope length for lateral subsurface flow
SLSUBBSN	Average slope length
SLURP	Semi-distributed Land Use-based Runoff Processes
SOL_ALB	Moist soil albedo

SOL_AWC	Available water capacity of the soil layer
SOL_BD	Moist bulk density
SOL_CRK	Potential or maximum crack volume of the soil profile expressed as a fraction of the total soil volume
SOL_K	Saturated hydraulic conductivity
SOL_Z	Depth from soil surface to bottom of layer
SRTM	Shuttle Radar Topography Mission
SURLAG	Surface runoff lag coefficient
SWAT	Soil and Water Assessment Tool
SWAT-CUP	SWAT-Calibration and Uncertainty Procedures
SWIM	Soil and Water Integrated Model
TOPMODEL	Topography based Hydrological Model
TRNSRCH	Fraction of transmission losses from main channel that enter deep aquifer
USDA	United States Department of Agriculture
USGS	United States Geological Survey
WEAP	Water Evaluation and Planning System
WMO	World Meteorological Organization
WUDEEP month	Average daily water removal from the deep aquifer for the
WUSHAL month	Average daily water removal from the shallow aquifer for the