Modeling of Ground-level Ozone Formation in Urban Air-sheds of Sri Lanka

Doctor of Philosophy Thesis

G. B. S. Perera

Department of Mechanical Engineering University of Moratuwa, Sri Lanka

May 2022

Modeling of Ground-level Ozone Formation in Urban Air-sheds of Sri Lanka

A dissertation submitted to the Department of Mechanical Engineering, University of Moratuwa in partial fulfilment of the requirements for the Degree of Doctor of Philosophy

by

Gamage Bimalka Sajeevi Perera

Supervised by:

Dr. A. G. T. Sugathapala

Dr. M. M. I .D. Manthilake

Prof: S. C. Lee

Department of Mechanical Engineering University of Moratuwa, Sri Lanka

May 2022

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

.....

Gamage Bimalka Sajeevi Perera

Date:....

We endorse the declaration by the candidate.

.....

Dr. A.G.T. Sugathapala

Date:....

Dr. M. M. I .D. Manthilake

Date:....

.....

Prof. S. C. Lee

Date:....

TABLE OF CONTENT

Page No

Declaration	iii
Abstract	viii
Acknowledgement	ix
List of Figures	xi
List of Tables	xvii
List of Abbreviations	XX
1.0 CHAPTER 1: INTRODUCTION	1
1.1 BACKGROUND	2
1.2 PROBLEM STATEMENT	4
1.3 AIM AND OBJECTIVES	5
1.4 METHODOLOGY	6
1.5 RESULTS AND DISCUSSION	8
1.6 CONCLUSIONS AND FUTURE DIRECTIONS	10
2.0 CHAPTER 2: URBAN AIR POLLUTION	12
2.1 OVERVIEW OF AIR POLLUTION	12
2.2 TYPES AND HEALTH IMPACTS OF AIR POLLUTANTS	13
2.3 VOLATILE ORGANIC COMPOUNDS	18
2.3.1 Definitions and Classifications of VOCs	18
2.3.2 Sources of Volatile Organic Compounds	19
2.3.3 Health impacts of Volatile Organic Compounds	22
2.3.4 Measurement methods used in VOCs	23
2.4 AIR QUALITY GUIDELINES AND STANDARDS	25

2.4.1 Air Quality Guidelines	25
2.4.2 Air Quality Standards	26
2.4.3 Sri Lankan Air Quality Standards	27
2.5 AIR QUALITY MANAGEMENT IN SRI LANKA	28
2.5.1 National commitment on Air quality Management in Sri Lanka	28
2.5.2 Air Quality Monitoring in Sri Lanka	30
2.5.3 Previous ambient air pollution status in Colombo	31
2.5.3 Air Quality Research Studies in Sri Lanka	34
3.0 CHAPTER 3: AIR QUALITY MODELS FOR PHOTOCHEMICAL	40
DEGRADATION	40
3.1 CHEMISTRY OF THE TROPOSPHERE	40
3.2 TROPOSPHERIC CHEMICAL REACTIONS	41
$3.2.1 \text{ NO}_{\text{X}} - \text{O}_{3} \text{ Cycle}$	41
3.2.2 Tropospheric VOCs transformation processes	42
$3.2.3 \text{ NO}_3$ Initiated reaction	47
3.2.4 O_3 initiated reactions	48
3.3 FACTORS AFFECTING THE PHOTOLYSIS	50
3.4 EVOLUTION OF THE PHOTOCHEMICAL MODELING	52
3.5 IDENTIFIED RESEARCH GAPS IN AIRQUALITY MODELING IN PHOTOCHEMICAL DEGRADATION	55
4.0 CHAPTER : METHODOLOGY	57
4.1 BASIC APPROACH IN PRESENT METHODOLOGY	57
4.2 PHASE I- METHOD OF DEVELOPMENT OF URBAN AIR SHED	59
MODEL	
4.2.1 Overview of urban air-shed model	59

4.2.2 Method of data analysis from existing air quality data from relevant	60
data sources	
4.2.3 Method of identification of trend patterns	61
4.2.4 Method of development of chemical and mathematical relationship	61
4.2.5 Method of identification of association of influential parameters	62
4.2.6 Method of urban air-shed model development	63
4.2.7 Method of model calibration	63
4.3 PHASE II- METHOD OF ANALYSIS IN COLOMBO AIR-SHED	64
4.3.1 Method of monitoring of air quality and meteorological parameters	64
in Colombo air-shed	
4.3.2 Method of identification of $NO_X - VOC - O_3$ sensitivity and model	68
validation using Colombo air-shed	
4.3.3 Method of data collection of operational schedules	68
4.3.4 Method of vehicle performance characteristics	69
4.3.5 Method of TVOC measurements & GCMS analysis	70
5.0 CHAPTER 5: ANALYSIS OF DEVELOPMENT OF URBAN AIR-SHED	73
MODEL	
5.1 BASIC APPROACH IN ANALYSIS OF DEVELOPMENT OF URBAN	73
AIR SHED MODEL	
5.2 ANALYSIS OF EXISTING AIR QUALITY DATA FROM RELEVANT	75
DATA SOURCRS	
5.2.1 Analysis of ambient air quality data in different urban air shed	75
5.2.2 NOx-VOC-O ₃ Sensitivity in five locations in Sri Lanka	77
5.2.3 Validation of the identified trend patterns	86
5.3 ANALYSIS OF DEVELOPMENT OF THEORETICAL MODEL	90

5.3.1 Analysis of development of chimical and mathamatical relationship	91
5.3.2 Analysis of association of influential parameters	94
5.3.3 Analysis of development of the Model	102
5.4 EVALUATION OF THE MODEL	104
5.4.1 Model applications to the measured data	104
5.4.2 Model calibration	109
6.0 ANALYSIS OF COLOMBO AIR-SHED	111
6.1 BASIC APPROACH OF ANALYSIS OF COLOMBO AIR-SHED	111
6.2 ANALYSIS OF AIR POLLUTANTS	113
6.2.1 Analysis of roadside and on-road TVOC monitoring in Colombo	113
6.2.2 Analysis of 24 hour air quality monitoring in Colombo	116
6.2.3 $NO_X - VOC - O_3$ Sensitivity and Model validation using urban air-	127
shed in Colombo	
6.3 ANALYSIS OF SOURCE PARAMETERS	140
6.3.1 Analysis of operational schedule data	140
6.3.2 Analysis of vehicle performance characteristics	153
6.3.3 Analysis of TVOC monitoring data & GCMS spectra	161
7.0 CONCLUSIONS AND FUTURE DIRECTIONS	167
7.1 CONCLUSIONS	167
7.1.1 Limitations/ Constraints	169
7.1.2 Contribution to the Knowledge	169
7.2 FUTURE DIRECTIONS	170
REFERENCES	171
ANNEXURES	206

ABSTRACT

Physical phenomenon of the relation among ground-level ozone (O₃), oxides of nitrogen (NOx) and volatile organic compounds (VOC) is governed by complex nonlinear photochemistry. To predict and control O_3 concentration, it is vital to know, how O_3 concentration changes in response to prescribed changes in source emissions of NO_X and VOCs. In this research, a theoretical model was developed and validated for ground-level O₃ formation in urban air-sheds of Sri Lanka. Hourly averaged weekly results of ambient pollutant concentration data of eleven cities in the base years 2013, 2014 and 2015 in Sri Lanka was assessed and an urban air shed model was developed. The model was calibrated using influential parameters measured. Then Colombo as the most complicated urban air-shed in Sri Lanka was analyzed in detail. Model was validated using measured 24-hour air quality monitoring data from the mobile air quality monitoring stations at major traffic locations in Colombo in the year 2018 and 2019. Operational schedules of emission sources including train scheduled data, working hours of the thermal power plants, and vehicle counts were conducted at identified critical locations in Colombo to investigate the responsible sources. Gases from the exhaust line of different types of vehicles was collected and analyzed using Gas Chromatography Mass Spectroscopy (GCMS).

Results confirm that there exist two regimes of NO_x-VOC-O₃ sensitivity as NO_xsensitive regime and VOC-sensitive regime. The urban air-shed model is capable of estimating the ground-level steady state ozone concentration (O_{3ss}) and contributions from each regime. The univariate linear regression model using predicted and observed O₃ values confirmed that O_{3ss} concentration was significantly correlated with the predicted O₃ concentration. Analysis of urban air shed in Colombo also confirms the predicted and observed O_{3ss} concentration were significantly correlated. This research provides a detailed understanding of photochemical degradation on formation of ground-level O₃ in urban air-sheds of Sri Lanka and provides critical information for the scientific community and decision-makers to formulate air pollution mitigation policies.

ACKNOWLEDGEMENT

First and foremost, I wish to express my deepest gratitude to my research supervisor, Dr. A. G. T. Sugathapala, Senior Lecturer, Department of Mechanical Engineering, University of Moratuwa (UOM) for his great insights, sense of humour and intellectual guidance that conferred to me in the realization of this dissertation. I also warmly acknowledge the contributions made by my co-supervisor, Dr. M. M. I. D. Manthilake, Senior Lecturer, Department of Mechanical Engineering, UOM, throughout my Ph.D. study period. I am very grateful to Prof. S. C. Lee, Professor, Department of Civil and Environmental Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, for external supervision and technical support.

My sincere thanks go to Prof. K. R. R. Mahanama, Former, Dean, Faculty of Sciences, University of Colombo as the Chairman of the Board of Studies for his intellectual guidance and reserving time for the progress reviews from his busy schedule. Most importantly, I gratefully acknowledge the funding received for my Ph.D. from the National Sciences Foundation, Sri Lanka under the grant number NSF/SCH/2012/06. I extend my grateful appreciation to all the officers in the Post Graduate Office (PGS), Faculty of Engineering and, Faculty of Graduate Studies (FGS) UOM, Sri Lanka for assisting in numerous ways to complete my academic works on time with guidance and excellent cooperation. I acknowledge the contributions made by the Department of Mechanical Engineering to complete this work successfully. My sincere thanks go to the people who serve in the Central Environmental Authority (CEA), Air Resource Management Centre of Ministry of Environment (AirMAC, MoE), Industrial Technology Institute (ITI), VET Project office of the Department of Motor Traffic (DMT), National Building Research Organization (NBRO) and University of Colombo, for assistance with collection of data, providing ambient air quality data, resources and equipment, and technical support.

Last but not least, many thanks go to colleagues, friends, and many individuals, for their assistance in achieving this goal. My heartiest gratitude goes to my husband, Dr. Y.L.S. Nandasena and two children Y. L. Sithika Nimsara and Y. L. Senuka Manuthaka for their kind cooperation in making this educational process a success. I could not have made it without your support.

LIST OF FIGURES

Figure 1: Work flow chart of the Thesis outline	1
Figure 2: PM_{10} , NO_2 , CO , SO_2 and O_3 24 hour average values from 2003 to	32
2008 at Colombo Fort Air Pollution Monitoring Station	
Figure 3: VOCs role in atmospheric chemistry	42
Figure 4: O ₃ reactivity with alkenes	49
Figure 5: Typical Ozone isopleth plot	50
Figure 6: Over-role framework of the Methodology	57
Figure 7: Flow of the of Methodology Sections	58
Figure 8: Flow chart of the development of urban air shed model	59
Figure 9: Equipment's of the mobile monitoring station of CEA	60
Figure 10: Selected air quality monitoring locations in Sri Lanka	62
Figure 11: Selected locations of this research in Colombo	64
Figure 12: Measurements from MiliRAE Lite portable VOC monitor	65
Figure 13: Directions of on road TVOC measurements pathways in Colombo	66
Figure 14: 24 hour ambient air quality monitoring in Colombo	67
Figure 15: Taking vehicle counts at Colombo	69
Figure 16: TVOC measurements using Photo Ionization Detector	71
Figure 17: Preparation of air bag measurement of a vehicle	72
Figure 18: Air bag measurement procedure	72
Figure 19: Over-role frame-work of analysis of development of urban air	73
-shed model	
Figure 20: Flow of the analysis of development of urban air shed model	74

Sections

Figure 21: O_3 , THC, CH ₄ , NMHC, NO, NO ₂ and NO ₂ concentration variation	78
within the week at Colombo	
Figure 22: Temperature, solar radiation, pressure, relative humidity and the	79
wind speed during the week at Colombo	
Figure 23: Wind Rose at Colombo	79
Figure 24: O_3 , THC, CH_4 , NMHC, NO, NO_2 and NO_2 concentration variation	81
within the week at Ratnapura	
Figure 25: Temperature, solar radiation, pressure, relative humidity and the	82
wind speed during the week at Ratnapura	
Figure 26: NO concentration vs wind direction at Rathnapura	82
Figure 27: Wind Rose at Ratnapura	82
Figure 28: O_3 , THC, CH ₄ , NMHC, NO, NO ₂ and NO ₂ concentration variation	84
within the week at Anuradhapura	
Figure 29: Temperature, solar radiation, pressure, relative humidity and the	85
wind speed during the week at Anuradhapura.	
Figure 30: Wind Rose at Anuradhapura	85
Figure 31: O_3 , NO, NO ₂ and NO _X concentration and meteorological	87
parameter variation within the week at Matara	
Figure 32: O_3 , NO, NO ₂ and NO _X concentration and meteorological	88
parameter variation within the week at Nuwara Eliya	
Figure 33: District vise $NO_X - VOC - O_3$ sensitivity for Sri Lankan cities	89
Figure 34: Calculation of the steady state Ozone concentration in both	93
regimes	

Figure 35: 2D Visualization of measured NO_X and VOC concentration	95
variation	
Figure 36: 2D Visualization of measured O_3 and NO_X concentration variation	95
Figure 37: 2D Visualization of measured VOC and O_3 concentration variation	96
Figure 38: 3D Visualization of measured NO_X , NMCH and O_3 concentration	96
variation	
Figure 39: 2D Visualization of measured O_3 concentration and Temperature	98
Figure 40: 2D Visualization of measured O_3 concentration and Solar	100
Radiation	
Figure 41: 2D Visualization of measured O_3 concentration and Wind Speed	101
Figure 42: Comparison of measured steady state $O_{3_{SS}}$ with the calculated	104
steady state O _{3ss} in Anuradhapura	
Figure 43: Comparison of measured steady state $O_{3_{SS}}$ with the calculated	105
steady state O _{3 ss} in Kurunegala	
Figure 44: Comparison of measured steady state $O_{3_{SS}}$ with the calculated	105
steady state 03 _{ss} in Colombo	
Figure 45: Comparison of measured steady state $O_{3_{SS}}$ with the calculated	106
steady state O _{3 ss} in Rathnapura	
Figure 46: Comparison of measured steady state $0_{3_{SS}}$ with the calculated	106
steady state O _{3 SS} in Jaffna	
Figure 47: Comparison of measured steady state $O_{3_{SS}}$ with the calculated	107
steady state $O_{3_{SS}}$ in selected five locations in Sri Lanka	

Figure 48: Comparison of measured steady state $0_{3_{ss}}$, calculated steady state	108
O_{3}_{ss} concentration and wind speed in selected five locations in Sri	
Lanka	
Figure 49: Over-role frame-work of the analysis of Colombo air-shed	111
Figure 50: Flow of the sections of analysis of Colombo air-shed	112
Figure 51: Comparison of air pollutant data and wind-rose of the six	119
locations in Colombo	
Figure 52: Comparison of air pollution levels with train scheduled data	120
during a day at Fort location	
Figure 53: Air pollutants variation with in a day in Borella	121
Figure 54: Air pollutants variation with in a day in Grandpass	122
Figure 55: Air pollutant variation with in a day in Narahenpita	123
Figure 56: Air pollutant data variation with in a day in Fort	124
Figure 57: Air pollutant data variation with in a day in Kollupitiya	125
Figure 58: Air pollutant data variation with in a day in Nugegoda	126
Figure 59: O_3 , THC, CH ₄ , NMHC, NO, NO ₂ and NO _X concentration variation	128
of the six locations in Colombo within a day	
Figure 60: Temperature, solar radiation, pressure, relative humidity, wind	129
speed and wind-rose of the six locations in Colombo within a day	
Figure 61: Contributions of O_3 from NOx Sensitive Regime & VOC	130
Sensitive Regime of the six locations in Colombo within a day.	
Figure 62: Comparison of measured O_3 concentration with calculated O_3	131
concentration in the city of Colombo	

Figure 63: O_3 , THC, CH_4 , NMHC, NO, NO_2 and NO_X concentration variation	134
within a day in Borella	
Figure 64: O_3 , THC, CH_4 , NMHC, NO, NO_2 and NO_X concentration variation	135
within a day in Grandpass	
Figure 65: O_3 , THC, CH_4 , NMHC, NO, NO_2 and NO_2 concentration variation	136
within a day in Narahenpita	
Figure 66: O_3 , THC, CH_4 , NMHC, NO, NO_2 and NO_X concentration variation	137
within a day at Fort	
Figure 67: O_3 , THC, CH_4 , NMHC, NO, NO_2 and NO_X concentration variation	138
within a day at Kollupitiya	
Figure 68: O_3 , THC, CH_4 , NMHC, NO, NO_2 and NO_X concentration variation	139
within a day at Nugegoda	
Figure 69: Number of all types of vehicles per hour in three days average in	141
eight locations in Colombo	
Figure 70: Average vehicle counts in each vehicle types in hours in	142
Maradana	
Figure 71: Average vehicle counts of each vehicle type per hour in Borella	143
Figure 72: Average vehicle count of each vehicle type per hour in Grandpass	144
Figure 73: Average vehicle counts of each vehicle types per hour in	145
Narahenpita	
Figure 74: Average vehicle counts of each vehicle type per hour in Fort	146
Figure 75: Average vehicle counts of each vehicle types per hour in	147
Kollupitiya	
	 within a day in Borella Figure 64: O₃, THC, CH₄, NMHC, NO, NO₂ and NO_x concentration variation within a day in Grandpass Figure 65: O₃, THC, CH₄, NMHC, NO, NO₂ and NO₂ concentration variation within a day in Narahenpita Figure 66: O₃, THC, CH₄, NMHC, NO, NO₂ and NO_x concentration variation within a day at Fort Figure 67: O₃, THC, CH₄, NMHC, NO, NO₂ and NO_x concentration variation within a day at Kollupitiya Figure 68: O₃, THC, CH₄, NMHC, NO, NO₂ and NO_x concentration variation within a day at Kollupitiya Figure 68: O₃, THC, CH₄, NMHC, NO, NO₂ and NO_x concentration variation within a day at Nugegoda Figure 69: Number of all types of vehicles per hour in three days average in eight locations in Colombo Figure 70: Average vehicle counts in each vehicle types in hours in Maradana Figure 71: Average vehicle counts of each vehicle type per hour in Grandpass Figure 73: Average vehicle counts of each vehicle types per hour in Fort Narahenpita Figure 74: Average vehicle counts of each vehicle type per hour in Fort Figure 75: Average vehicle counts of each vehicle types per hour in Fort

XV

Figure 76: Average vehicle counts of each vehicle types per hour in	148
Dehiwala	
Figure 77: Average vehicle count of each vehicle type per hour in Nugegoda	149
Figure 78: Railway tracks of the incoming and outgoing trains passing	151
Colombo Fort Railway Station	
Figure 79: Comparison of the fuel economy with the vehicle counts in	154
Colombo	
Figure 80: Idling and accelerated HC levels based on the year of	156
manufacture	
Figure 81: Idling and accelerated HC levels based on the vehicle current	156
mileage	
Figure 82: Active vehicle fleet by Revenue License from 2002 – 2018	160

LIST OF TABLES

Table 1: Health effects of criteria air pollutants	15
Table 2: Definitions and classifications of VOCs	18
Table 3: Measurements method of VOCs	24
Table 4: WHO Ambient Air Quality Guidelines	25
Table 5: USEPA National Ambient Air Quality Standards	26
Table 6: Sri Lankan Ambient Air Quality Standards	27
Table 7: Results of the 1998 to 2008 for the pollutant exceedance of	33
the national standards and the WHO guideline values in Sri	
Lanka	
Table 8: Comparison of widely used photochemical models	54
Table 9: Comparison of 24-hour average concentration of air pollutants	76
at five locations in Sri Lanka	
Table 10: O_3 Concentration variation with different categories of	98
Temperature	
Table 11: ANOVA test of 0_3 concentration variation with different	99
categories of Temperature	
Table 12: O_3 concentration variation with different categories of Solar	99
Radiation	
Table 13: ANOVA test of 0_3 concentration variation with different	100
categories of Solar Radiation	

Table 14: O_3 concentration variation with different categories of Wind	101
Speed	
Table 15: ANOVA test of 0_3 concentration variation with different	101
categories of Wind Speed	
Table 16: Univariate linear regression results using predicted and	109
observed 0_3 values	
Table 17: Multivariate regression results using wind speed as an	109
additional independent variable	
Table18: Multivariate regression results adding wind speed as a	110
variable which could interact with O_3 level	
Table 19: TVOC hourly beside the road measurements in selected	114
locations in Colombo	
Table 20: TVOC hourly on- road measurements in between selected	115
locations in Colombo	
Table 21: Comparison of 24-hour average values of air pollutants at six	118
locations in Colombo	
Table 22: Univariate linear regression model using predicted and	131
observed 0_3 values in Colombo	
Table 23: Comparison of first five major vehicle fleet types in eight	150
locations in Colombo	
Table 24: The power plant schedule with the air quality monitoring	152
Days	
Table 25: Use of fuel type and capacity breakdown of thermal power	152
generation at the power plants in Kelanithissa	
Table 26: Average usage and fuel economy of different type of	153

Vehicles

Table 27: Fuel economy with passenger km of different type of	155
Vehicles	
Table 28: Idling and accelerated HC levels based on the Number of	156
Cylinders	
Table 29: Idling and accelerated HC levels based on the Number of	157
Strokes	
Table 30: Cross tabulation of province and the vehicle stroke category	158
Table 31: Variation between the active vehicle fleet by Revenue	161
License with total registration	
Table 32: Ambient TVOC monitoring results of selected sites	163
measured from Photo Ionization Detectors (PID)	
Table 33: GCMS analysis of vehicle emission samples from different	165
types of vehicles in Sri Lanka	

LIST OF ABBREVIATIONS

AEA	Atomic Energy Authority
AirMAC	Air Resource Management Centre
ATS	American Thoracic Society
CAI-Asia	Clean Air Initiatives in Asia
CB4	Carbon Bond Mechanism 4
CB5	Carbon Bond Mechanism 5
CEA	Central Environmental Authority
CEB	Ceylon Electricity Board
CFC-11 (CCl ₃ F)	Chlorofluorocarbons
CFC-12 (CCl ₂ F ₂)	Chlorofluorocarbons
CNG	Compact Natural Gas
CH ₃ CN	Methyl Cyanide
CH ₄	Methane
СМС	Colombo Municipal Council
СО	Carbon monoxide
CO ₂	Carbon dioxide
°C	Celsius
COPD	Chronic obstructive pulmonary disease
DMT	Department of Motor Traffic
FID	Flame Ionization Detection
FIDs	Flame Ionization Detectors
FSRU	Floating Storage Regasification Unit
FT	Free troposphere
GC	Gas Chromatograph

GCMS	Gas Chromatograph/Mass Spectrometer
GHG's	Greenhouse Gases
GOSL	Government of Sri Lanka
GWP	Global warming potential
НСНО	Formaldehyde
HCN	Hydrogen Cyanide
HEI	Health Effects Institute
HO ₂	Hydro-peroxy radicals
IAP	Indoor air pollution
IARC	International Agency for Research on Cancer
IPCC	Intergovernmental Panel on Climate Change
IT	Interim targets
ITI	Industrial Technology Institute
JICA	Japan International Cooperation Agency
LRT	Light Rail Transport
LNG	Liquid Natural Gas
LPG	Liquid Petroleum Gas
MCM	Master Chemical Mechanism
MIM	Mainz Isoprene Mechanism
MW	Mega Watt
$\mu g/m^3$	Micro gram for cubic meter
μm	Micro meter
mm	Mile meter
MOF	Ministry of Finance
MTBE	Methyl Tertiary Butyl Ether

N_2	Nitrogen
N ₂ O	Nitrous oxide
N ₂ O ₅	Dinitrogen pentoxide
NBRO	National Building Research Organization
NEA	National Environmental Act
NH ₃	Ammonia
NO	Nitrogen oxide
NO ₂	Nitrogen dioxide
NO ₃	Nitrate radical
NOU	National Ozone Unit
NO _X	Oxides of nitrogen
O(1D)	Excited oxygen atom
O(3P)	Ground state oxygen atom
O2	Oxygen
O ₃	Ozone
ОН	Hydroxyl radical
OVMs	Organic Vapour Monitors
OVOCs	Oxygenated Volatile Organic Compounds
PBL	Planetary Boundary Layer
PCBs	Polychlorinated biphenyls
PID	Photo Ionization Detection
PIDs	Photo-Ionization Detectors
PM	Particulate matter
PM ₁₀	Particulate matter less than 10 microns (μ m) in diameter
PM _{2.5}	Particulate matter less than 2.5 microns (μ m) in diameter

POCP	Photochemical Ozone Creation Potentials
POPs	Persistent Organic Pollutants
РРСР	Photochemical PAN Creation Potentials
ppm	Parts per million
pptv	Parts-per-trillions by volume
PTR-MS	Proton-transfer-reaction mass spectrometry
R	Alkyl radical
RACM	Regional Atmospheric Chemistry Mechanism
RO	Alkoxy radical
RO ₂	Peroxy radicals
RPM	Respirable Particulate Matter
RTS	Rapid Transit System
SAPRC	Statewide Air Pollution Research Centre
SEI	Stockholm Environment Institute
SLAQI	Sri Lanka Air Quality Index
SLVET	Sri Lanka vehicle emission testing program
SMEs	Small and Medium Enterprises
so ₂	Sulfur dioxide
SOA	Secondary organic aerosols
SPM	Suspended Particulate Matter
SVOCs	Semi Volatile Organic Compounds
TSP	Total Suspended Particulates
UK	United Kingdom
UNEP	United Nations Environment Programme
USA	United States America

USEPA	United States Environmental Protection Agency
UV	Ultra-Violet
VOC	Volatile Organic Compound
VOCs	Volatile Organic Compounds
VOHAPs	Volatile Organic Hazardous Air Pollutants
vol/vol	Volume to volume
VVOCs	Very Volatile Organic Compounds
WHO	World Health Organization
WRMPPP	Western Region Mega Polis Plan