AN INVESTIGATION INTO OPTIMISING WATER FLOW OF INDUSTRIAL SYMBIOSIS: DEVELOPMENT AND APPLICATION OF A MODEL

Bhadra Harshini Mallawaarachchi

(198001C)

Degree of Doctor of Philosophy

Department of Building Economics, University of Moratuwa, Sri Lanka and

School of Architecture and Built Environment, Deakin University, Australia

October 2022

AN INVESTIGATION INTO OPTIMISING WATER FLOW OF INDUSTRIAL SYMBIOSIS: DEVELOPMENT AND APPLICATION OF A MODEL

Bhadra Harshini Mallawaarachchi

(198001C)

Thesis submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy

Department of Building Economics, University of Moratuwa, Sri Lanka and

School of Architecture and Built Environment, Deakin University,

Australia

October 2022

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Name of the Student: B.H. Mallawaarachchi

Signature: UOM Verified Signature Date: 19/10/2022

The above candidate has carried out research for the PhD thesis under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of the Supervisors:

Prof. Y.G. Sandanayake (Principal Supervisor – University of Moratuwa)

Dr. G. I. Karunasena (Principal Supervisor – Deakin University)

Prof. Chunlu Liu (Associate Supervisor – Deakin University)

Signature of the Principal Supervisor (University of Moratuwa) **UOM Verified Signature**

Prof. Y.G. Sandanayake

Date: 19.10.2022

ABSTRACT

An investigation into optimising water flow of industrial symbiosis: Development and application of a model

The concept of Industrial Symbiosis (IS) has obtained world concern as a new initiative for achieving collaborative benefits through exchange of resources between industries including water. Even though, these initiatives became prominent as successful projects in the early stages, many of them have resulted in failures in the long term without achieving the expected results due to deficiencies in IS planning. In the current process, no prior evaluation and optimisation are taking place before implementing the identified water synergies. There is therefore a need to have a standardised method to assess the optimum water flow of IS. Accordingly, the current study aimed to develop a model to assess the optimum water flow of IS. In order to achieve the aim, the research stands within the pragmatism philosophical stance. The abductive approach was applied as the appropriate research approach. Sequential exploratory research design was adopted consisting three phases: Phase I: Desk study; Phase II: Interviews with industry experts; and Phase III: Case study. Phase I - Desk study was conducted to collect and review the data from reliable published sources to identify water inputs and outputs of industrial entities. Based on the key literature reviewed, the conceptual model was developed by integrating mathematical formulae. In Phase II, sixteen interviews were conducted with industry experts in Sri Lanka to collect the data. The collected data were analysed using the code-based content analysis technique with the application of QSR International's NVivo. 12. As key findings derived from analysis, current methods & issues of industrial water management and enablers & barriers for initiating water exchange networks in Sri Lanka were identified. Furthermore, the conceptual model and mathematical formulae were also refined to the selected context. The applicability and feasibility of the model were evaluated during Phase III. An IS network in an export processing zone (EPZ) in Sri Lanka, comprising three geographically co-located industrial entities, was selected as a suitable case study. Seven semi-structured interviews were conducted with professionals within the selected case to collect the data, which were analysed using the mixed integer linear programming (MILP) approach. The assessment model was developed and tested using SageMath software. Finally, environmental, economic and social feasibility of the developed model were also determined. The developed model forms a unique foundation for assessing the optimum water flow of IS, applying in any context subject to context-specific enhancements. The novelty of the current research is its objective of reducing freshwater consumption of the IS network through maximum wastewater recovery in assessing the optimum water flow of IS. Thus, the research outcomes provide a role model for all developed and developing countries for reducing the environmental impact of industrialisation through optimum water sharing between industrial entities.

Key Words: Industrial Symbiosis, Mathematical Programming, Optimisation Modelling, Optimum Water Flow, Water Network

DEDICATION

I dedicate this piece of work to my beloved family who encouraged me, with emotional and spiritual effort in this endeavour...

ACKNOWLEDGEMENT

This research has been supported by a number of individuals with their utmost guidance and encouragement. I would like to acknowledge their appreciated contribution and to convey my gratitude to every one of them.

First and foremost, I would like to express my sincere gratitude to Prof. Y.G. Sandanayake (Head, Department of Building Economics), Dr. G.I. Karunasena and Prof. C. Liu for their thoughtful guidance, assistance and encouragement provided by being my research supervisors. You converted me to an improved version as a researcher as well as an academic.

Second, my heartfelt gratitude goes to Prof. Lalith de Silva, Professor, Department of Building Economics, University of Moratuwa; Prof. Dileeka Dias, Former Dean, Faculty of Graduate Studies, University of Moratuwa, Prof. Baskaran, Associate Dean (International and partnerships), Prof. Anthony Mills, Former Head, School of Architecture and Built Environment, Deakin University, Australia and Dr. Thanuja Ramachandra, Former Director – Faculty Higher Degrees Committee, Faculty of Architecture for initiating this Joint PhD program between Deakin University, Australia and University of Moratuwa, Sri Lanka. It was a greater opportunity to harvest new knowledge and research experience in two different research environments.

I also extend my gratitude to Prof. Ajith de Alwis, Dean, Faculty of Graduate Studies, University of Moratuwa, Dr. Dominic Ahiaga-Dagbui and Dr. Sanja Roods, Higher Degree Research (HDR) Coordinators, School of Architecture and Built Environment, Helen Woodball, Manager International Research Training and the Faculty Coordinators of the Faculty of Science, Engineering and Built Environment and HDR Advisors of Graduate Research Academy – Deakin Research, Deakin University, Australia, for their unfailing assistance and guidance. Furthermore, Ch.QS. Mr. H.S. Jayasena, Former Head of the Department, the Research Coordinators, my colleagues and other academic & non-academic staff members of the Department of Building Economics are also acknowledged for their kind assistance.

The greatest thanking thoughts convey to my research advisors, Prof. Thayaparan Gajendran and Dr. N.G.R. Perera for their valuable comments given by directing this research towards success. I further express my heartiest thanks to all the professionals in industry and academia who gave their immense contribution and editorial assistance during this research.

Finally, an immeasurable thanks of all must go to my beloved husband, mother, father, my little son, daughter and my nursemaid who supported unconditionally by being with me patiently.

TABLE OF CONTENT

DECLARATION	II
ABSTRACT	III
DEDICATION	IV
ACKNOWLEDGEMENT	V
TABLE OF CONTENT	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF EQUATIONS	XIII
LIST OF ABBREVIATIONS	XIV
LIST OF APPENDICES	XVI
LIST OF PUBLICATIONS AND AWARDS	XVII
CHAPTER 1: INTRODUCTION TO THE RESEARCH	1
1.1 Research Background	1
1.2 RESEARCH PROBLEM STATEMENT AND RATIONALE	
1.3 RESEARCH AIM AND OBJECTIVES	6
1.4 RESEARCH METHODOLOGY	6
1.5 SCOPE AND LIMITATIONS	8
1.6 SIGNIFICANCE OF THE RESEARCH	9
1.7 STRUCTURE OF THE THESIS	
1.8 Chapter Summary	10
CHAPTER 2: LITERATURE REVIEW	12
2.1 Introduction	12
2.2 CONCEPT OF INDUSTRIAL WATER MANAGEMENT (IWM)	12
2.2.1 The need of water for industries	12
2.2.2 Issues in obtaining water for industries	13
2.2.3 Wastewater discharge and related issues in industrial systems	14
2.2.4 Industrial water management (IWM)	15
2.3 THE CONCEPT OF INDUSTRIAL SYMBIOSIS (IS)	21
2.3.1 Evolution of industrial symbiosis concept	21
2.3.2 Industrial symbiosis in the context of circular economy	24
2.3.3 Definitions of industrial symbiosis	
2.3.4 Fostering industrial symbiosis	
2.3.5 Initiating procedure of industrial symbiosis systems	
2.4 RESOURCE EXCHANGE IN INDUSTRIAL SYMBIOSIS	35

2.5 WATER FLOW OF INDUSTRIAL SYMBIOSIS: THE GLOBAL CONTEXT	38
2.6 INDUSTRIAL WATER MANAGEMENT (IWM) IN SRI LANKA	41
2.7 Chapter Summary	
CHAPTER 3: RESEARCH METHODOLOGY	44
3.1 Introduction	44
3.2 RESEARCH DESIGN	44
3.2.1 Formulate the research problem, aim and objectives	47
3.2.2 Literature review	47
3.2.3 Philosophical worldview of the research: Pragmatism stance	47
3.2.4 Research approach: Abductive approach in theory redevelopment	52
3.2.5 Research strategy: Sequential exploratory mixed research strategy	55
3.2.6 Drawing conclusions and making recommendations	
3.3 VALIDITY OF THE RESEARCH.	66
3.4 Chapter Summary	67
CHAPTER 4: DEVELOPMENT OF CONCEPTUAL MODEL AND	
MATHEMATICAL FORMULAE (PHASE I)	68
4.1 Introduction	68
4.2 OPTIMISATION MODEL DEVELOPMENT PROCESS	
4.2.1 Input and output water flow	69
4.2.2 Step 1 - Data compilation and initial processing	80
4.2.3 Step 2 - Optimisation model design and development	87
4.2.4 Step 3 - Assessment of the optimal configuration	98
4.2.5 Step 4 - Evaluation of the economic, environmental and social feasil	•
4.3 Chapter Summary	
CHAPTER 5: DEVELOPMENT OF A CONTEXT-SPECIFIC MODEL	
(PHASE II)	100
5.1 Introduction	100
5.2 THE PROFILE OF INTERVIEWEES AND DEMOGRAPHIC INFORMATION	100
5.3 DATA COLLECTION AND ANALYSIS	103
5.4 RESEARCH FINDINGS - INDUSTRIAL WATER EXCHANGE IN SRI LANKA	103
5.4.1 Existing methods of industrial water management	103
5.4.2 Existing issues of industrial water management	107
5.4.3 Enablers and barriers to initiate water exchange networks in Sri La	
5.5 Research Findings - Development of a Context-Specific Robust M	
TO ASSESS THE OPTIMUM WATER FLOW OF IS IN SRI LANKA	
5.5.1 Context-specific model requirements and enhancements of the conce	
model	_
5.5.2 Key variables of the context-specific model	
5.5.3 Parameters of the context-specific model	

5.5.4 Context-specific model development and testing	. 125
5.6 Chapter Summary	. 127
CHAPTER 6: EVALUATION OF THE APPLICABILITY AND	
FEASIBILITY OF THE CONTEXT SPECIFIC MODEL (PHASE III)	. 128
6.1 Introduction	. 128
6.2 Procedure Adapted in Model Evaluation	. 128
6.3 INDUSTRIAL SYMBIOSIS NETWORK OF AN EXPORT PROCESSING ZONE IN SRI	
LANKA: THE CASE STUDY	. 128
6.4 Analysis of the Current Status of the Selected Case Study	. 132
6.4.1 Current status - Industrial Entity A	. 132
6.4.2 Current status - Industrial Entity B	. 134
6.4.3 Current status - Industrial Entity C	. 137
6.5 INITIATION OF OPTIMUM WATER EXCHANGE NETWORK BETWEEN SELECTED)
Industrial Entities	. 141
6.5.1 Planning of industrial symbiosis and identification of water synergies.	. 142
6.5.2 Application of the developed model for assessing the optimum water fl	ow
of the proposed industrial symbiosis network	. 146
6.6 Environmental, Economic and Social Feasibility of the Proposed	
Optimal Network	. 154
6.6.1 Environmental feasibility of the proposed optimal network	. 155
6.6.2 Economic feasibility of the proposed optimal network (life cycle cost	
analysis)	. 157
6.6.3 Social feasibility of the proposed optimal network	
6.7 A WAY FORWARD OF THE DEVELOPED MODEL	
6.8 Uniqueness of the Model and Generalisation	
6.9 Chapter Summary	. 168
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS	. 169
7.1 Introduction	. 169
7.2 OVERALL CONCLUSIONS OF THE RESEARCH	. 169
7.3 LIMITATIONS OF THE MODEL APPLICATION	
7.4 CONTRIBUTION TO KNOWLEDGE	. 175
7.5 RECOMMENDATIONS FOR INDUSTRY PRACTITIONERS	. 176
7.6 RECOMMENDATIONS FOR FURTHER RESEARCH	. 177
REFERENCES	. 178
APPENDICES	

LIST OF FIGURES

Figure	Description	Page
Figure 2.1	United Nation's 17 sustainable development goals	16
Figure 2.2	General principles for valuing water	18
Figure 2.3	Drivers and benefits of zero liquid discharge	19
Figure 2.4	Resource flow in linear and circular industrial systems	20
Figure 2.5	Conceptual framework of industrial ecology	23
Figure 2.6	The elements of IE seen as operating at different levels	24
Figure 2.7	Definitions of industrial symbiosis	26
Figure 2.8	Industrial symbiosis at Kalundborg, Denmark	30
Figure 2.9	Key characteristics of self-organising, planned and facilitated IS	31
Figure 2.10	"3-2 heuristic" criterion	36
Figure 2.11	The proposed re-development	40
Figure 3.1	A framework for research design	45
Figure 3.2	Research design framework	46
Figure 3.3	Sequential exploratory mixed design of this research	58
Figure 3.4	Case selection and unit of analysis	63
Figure 4.1	Optimisation model development process flow chart	69
Figure 4.2	Water flow network of Kalundborg IS Project, Denmark	72
Figure 4.3	Water flow network of Choctaw Eco-Industrial Park, USA	73
Figure 4.4	General water inputs and outputs	79
Figure 4.5	Water inputs and outputs of a typical industrial entity	80
Figure 4.6	Selection of industrial entities	82
Figure 4.7	A typical water input and output flows of an industrial entity	83
Figure 4.8	Water synergies between participating industrial entities	84
Figure 4.9	Source-sink relationships between the industrial entities A, B and C	85
Figure 4.10	Theoretical framework	86
Figure 4.11	The conceptual model for assessing the optimum water flow of IS	92
	(before mathematical formulae development)	
Figure 4.12	The conceptual model for assessing the optimum water flow of IS	97
	(after mathematical formulae development)	
Figure 5.1	Years of experience	101
Figure 5.2	Areas of expertise	102
Figure 5.3	Key categories of enablers and barriers (author defined)	113
Figure 5.4	Enablers for exchanging water among the industries in Sri Lanka	113
Figure 5.5	Barriers for exchanging water among the industries in Sri Lanka	115
Figure 5.6	Enablers and barriers for initiating water exchange networks	118
Figure 5.7	Context-specific model to assess the optimum water flow of	126
_	industrial symbiosis in Sri Lanka	
Figure 6.1	Geographical plan of the selected case study	131
Figure 6.2	Conventional water network of the selected case study	140
Figure 6.3	Possible water synergies between selected industries	144
Figure 6.4	Typical IS based water exchange network in the selected case study	146
-	(proposed)	
Figure 6.5	A screen shot of test results obtained from the SageMath software -	150
=	TWW flow between industries	
Figure 6.6	Optimal water flow network	151

Figure 6.7	A screen shot of test results obtained from the SageMath software -	152
	freshwater consumption	
Figure 6.8	A screen shot of test results obtained from the SageMath software -	153
	wastewater discharge	
Figure 6.9	Results of sensitivity analysis	165

LIST OF TABLES

Table	Description	Page
Table 2.1	Resources flow of IS projects	38
Table 3.1	Philosophical assumptions in research	48
Table 3.2	Characteristics of the research approach	53
Table 3.3	Rationale for single case study design selected in this research	61
Table 4.1	Selection of published IS projects for desk study	70
Table 4.2	Articles availability of the selected cases	71
Table 4.3	Water inputs and outputs of Kwinana Industrial Area, Australia	74
Table 4.4	Water inputs and outputs of Qijiang Industrial Park, China	75
Table 4.5	Water inputs and outputs of Songmudao Chemical Industrial Park, China	76
Table 4.6	Typical water inputs and outputs of IS networks	78
Table 4.7	Nomenclatures	94
Table 4.8	Input and output data extraction	94
Table 5.1	Profile of interviewees	100
Table 5.2	Summary of the methods of industrial water management in Sri Lanka	105
Table 5.3	Summary of the issues of industrial water management in Sri Lanka	108
Table 5.4	Comparison of the model requirements and enhancements:	121
	Conceptual vs context specific models	
Table 5.5	Selection of water sources and water sinks in Sri Lankan context	124
Table 6.1	Criteria adopted in selecting industrial entities in the selected case study	129
Table 6.2	Details of selected industrial entities	130
Table 6.3	Profile of interviewees	132
Table 6.4	Freshwater consumption – Industrial Entity A	133
Table 6.5	Wastewater generation – Industrial Entity A	134
Table 6.6	Freshwater consumption – Industrial Entity B	135
Table 6.7	Wastewater generation – Industrial Entity B	136
Table 6.8	Freshwater consumption – Industrial Entity C	138
Table 6.9	Wastewater generation – Industrial Entity C	139
Table 6.10	Water quality standards for drinking water and wastewater discharge	141
Table 6.11	Industrial and cooling water requirement of each industrial entity	142
Table 6.12	Availability of treated wastewater supply of each entity after preliminary and secondary treatment	143
Table 6.13	Source and sink relationships between entities A, B and C in the proposed IS network	147
Table 6.14	Limiting water data for water sources	148
Table 6.15	Limiting water data for water sinks	149
Table 6.16	Optimal water exchange network	150
Table 6.17	Reduction of freshwater consumption in the optimal water network	152
Table 6.18	Reduction of wastewater discharge in the optimal water network	153
Table 6.19	Reduction of the environmental impact through optimal water exchange network	156
Table 6.20	Cost details of the existing conventional water network	158

Table 6.21	LCCA summary for the existing conventional water network	159
Table 6.22	Cost details of the optimal water exchange network	160
Table 6.23	LCCA summary for the optimal water exchange network	162
Table 6.24	Comparison of cost savings of existing and proposed water	163
	networks	
Table 6.25	Calculation of real rates adopting ±7% of change in Production	164
	Price Index (PPI)	
Table 6.26	Results summary of sensitivity analysis	165

LIST OF EQUATIONS

Equation	Description	Page
Eq. 1	Freshwater utilised by water sink	90
Eq. 2	Wastewater generated by water source	90
Eq. 3	Treated wastewater from water source to water sink	91
Eq. 4	Objective function	94
Eq. 5	Water balance at sink	94
Eq. 6	Water balance at source	95
Eq. 7	Quality of treated wastewater	95
Eq. 8	Quality of freshwater	95
Eq. 9	Additional constraint ensuring single inlet and outlet streams of	96
	TWW from one entity to another	
Eq. 10	Freshwater utilised by water sink (modified)	122
Eq. 11	Wastewater generated by water source (modified)	122
Eq. 12	Treated wastewater from water source to water sink (modified)	123

LIST OF ABBREVIATIONS

Abbreviation	Description
ADB	Asian Development Bank
BOD	Biological Oxygen Demand
BOI	Board of Investment
CE	Circular Economy
CE-EIP	Circular Economy Eco-Industrial Park
CEA	Central Environmental Authority
CKD	Chronic Kidney Disease
CLD	Casual Loop Diagram
COD	Chemical Oxygen Demand
CPI	Consumer Price Index
CSR	Corporate Social Responsibility
CWWT	Common Wastewater Treatment
DGM	Deputy General Manager
EIP	Eco-Industrial Park
ENA	Ecological Network Analysis
EPZ	Export Processing Zone
FTZ	Free Trade Zone
FW	Freshwater
GPL	General Public License
GWP	Global Water Partnership
HR	Human Resource
IE	Industrial Ecology
IS	Industrial Symbiosis
IWM	Industrial Water Management
IWRM	Integrated Water Resource Management
LCA	Life Cycle Analysis
LCC	Life Cycle Costing
LCCA	Life Cycle Cost Analysis
LP	Linear Programming
MILP	Mixed Integer Linear Programming
MINLP	Mixed Integer Non-Linear Programming
MRQ	Main Research Question
NASL	National Audit Office Sri Lanka
NISP	National Industrial Symbiosis Programme
NWSDB	National Water Supply and Drainage Board
PEIP	Planned Eco-Industrial Park
PLS	Plain Language Statement
PPI	Producer Price Index
PV	Present Value
RIP	Retrofit Industrial Park
SDGs	Sustainable Development Goals
SLSI	Sri Lanka Standards Institute
SNA	Social Network Analysis

SOS Self-Organising Symbiosis
TAC Technical Advisory Committee

TDS Total Dissolved Solid
TOC Total Organic Carbon
TSS Total Suspended Solid
TWW Treated Wastewater
UN United Nations

USA United State of America
UWW Untreated Wastewater
WHO World Health Organisation

WW Wastewater

ZLP Zero Liquid Discharge

LIST OF APPENDICES

Appendix	Description	Page
Appendix 1	Semi-structured interview guideline used for Phase II: interviews	196
	with industry experts and a sample of transcribed copy	
Appendix 2	Semi-structured interview guideline used for Phase III: case study	212
	and a sample of transcribed copy	
Appendix 3	Test run results of the model obtained from SageMath software	224
Appendix 4	Coding developed to solve the optimisation problem and the	225
	experimental results obtained from SageMath software	
Appendix 5	Proposed design of CWWT alteration	228
Appendix 6	Life cycle cost analysis for existing conventional water network	231
Appendix 7	Life cycle cost analysis for proposed optimal water exchange	237
	network	
Appendix 8	Sensitivity analysis – calculations and results	242