

Predicting absenteeism f	factors	in the	work	place	through	data
	min	ing				

S.P.Nishantha

169323U

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of Degree of Master of Science in Information Technology

August 2022

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Name of Student	Signature of Student
S.P.Nishantha	
	Date:
Supervised by	
Name of Supervisor	Signature of Supervisor
Chaman Wijesiriwardana	
	Date:

Acknowledgement

I wish to express sincere appreciation to,

My research supervisor, Dr. Chaman Wijesiriwardana of the faculty of Information Technology of University of Moratuwa for dedicating his valuable time for guiding me throughout this.

My wife and parents for providing me with continuous encouragement throughout my years of study.

Finally, for my colleagues for their cooperation and support.

Thank you.

Abstract

Absenteeism is an employee's absence from work. Absences of employees can have a major effect on company strategies, finances, morale and other factors. Excessive absences may influence to decrease productivity of the company. Poorly performing employees cause significant losses to the organization, and absenteeism is considered one of the factors affecting performance. Therefore, understanding the causes of absenteeism can provide organizations with competitive advantage tools and open up research areas for computers and human resources fields. The purpose of this paper is to use computerized technology to discover the causes of employee absence. This study analyzes data from the absentee database and finds several factors that have a good correlation with absentees. In addition, two data mining techniques clustering and association rule mining are used to discover factors which cause in absenteeism with high accuracy. This research paper is to create association model to predict whether find the relationship of absenteeism of employee.

Table of Contents

Chapter 1	1
Introduction	
1.1Introduction	1
1.2Background and Motivation	2
1.3 Problem Statement	3
1.4Aim and Objectives	3
1.4.1Aim	3
1.4.2Objectives	3
1.5 Proposed Solution	4
1.6 Summary	5
Chapter2	6
Review of the work	6
2.1 Introduction	6
2.2 Absenteeism Prediction	6
2.3 Classification comparison	6
2.4 Using Association rule mining Algorithm	7
2.5 Using Clustering Algorithm	8
2.6 Summery	12
Chapter 3	13
Technologies used for this work	
3.1Introduction	13
3 2Ranid Miner	13

3.3 Microsoft SQL Server
3.4 Determining through Clustering14
3.5 Determining through Association rule
3.6 Microsoft visual studio
3.7 C Sharp programming language15
3.8Summary15
Chapter 416
A novel approach for profile detection of absenteeism
4.1Introduction
4.2Input
4.3Output
4.4Process
4.5 Data Collection
4.6 performing Clustering
4.7 Performing Association Rules Mining
4.8 Summery
Chapter 5
Absenteeism Profile detection-Analysis and Design
5.1. Introduction
5.2. Research Design
5.3 Clustering analysis
5.4 Association rule mining
5.4.1 Support and Confidence
5.5 Summery

Chapter 6	28
Implementation	
6.1 Introduction.	28
6.2 Decision Support System	28
6.3 Data Preprocessing	29
6.3.1 Data Preprocessing for Clustering.	30
6.3.2 Data Preprocessing for Association Rules Mining	30
6.4 Clustering Analysis	30
6.5 Associations Rules Mining	32
6.6 Summery	34
Chapter 7	35
Evaluation	
7.1 Introduction	35
7.2 clustering.	35
7.3 Association Rule Mining	36
7.3.1 Minimum support and Confidence	37
7.4 Summary	44
Chapter 8	44
Conclusion and Future Work	
8.1 Introduction	45
8.2 Conclusion	45
8.3 Future Work	45
8.4Summery	46
References	47

List of Tables

Table 5.1: Support Value Calculations
Table 5.2: Confidence Value Calculations
Table 7.1: Confidence Value Calculations
Table 7.2: Confidence Value Calculations
Table 7.3: Confidence Value Calculations
List of Figures
Figure 1.1: Steps in Data mining process
Figure 5.1: Activity Diagram
Figure 5.2: Research Design and Method
Figure 6.1: Chart for Absenteeism hours Month of Absence
Figure 6.2: Pie Chart for Absenteeism hours for season
Figure 6.3: Clusterig Summery
Figure 6.4: Clustering Diagram
Figure 6.5: ClusterModel
Figure 6.6: Sample Clustering Data
Figure 6.7: Genarating Association Rule
Figure 6.8: Sample data for Association
Figure 7.1: ClusterModel
Figure 7.2: Plot view of Cluster Analysis
Figure 7.3: Association Rule

List of Equations

Equation 5.1: Support	26
1	
Equation 5.2: Confidence	26