
STACKED CAPSULE AUTOENCODER BASED

GENERATIVE ADVERSARIAL NETWORK

Galagama Arachchige Chatura. Madhusanka

(189386G)

Degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

October 2020

STACKED CAPSULE AUTOENCODER BASED

GENERATIVE ADVERSARIAL NETWORK

Galagama Arachchige Chatura. Madhusanka

(189386G)

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree of

Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

October 2020

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any

material previously submitted for a Degree or a Diploma in any University and to the

best of my knowledge and belief, it does not contain any material previously published

or written by another person or myself except where due reference is made in the text. I

also hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for interlibrary loans, and for the title and summary to be made

available to outside organization.

Name of Student Signature of Student

G.A.C. Madhusanka Date:

Supervised by Signature of Supervisor

Dr. K.S.D. Fernando Date:

Dedication

I dedicate this thesis to my parents and all my teachers.

Acknowledgement

I acknowledge my supervisor Dr. K.S.D. Fernando for her insight to make my research

successful. Without the support from supervisor it would be hard to complete this

project. I thank for her advices and techniques which helped me a lot in the process of

developing this research.

Also I should thank to all the staff members of Department of Computational

Mathematics including lecturers and non-academic staff.

Again I must thank to family members including my mother and farther for their huge

support.

Abstract

Convolutional neural network based generative adversarial networks have become the

dominant generative model in the field of generative deep learning. But limitations of

convolutional neural networks affect generative adversarial networks also, since most of

the current generative adversarial networks are based on convolutional neural networks.

The main limitation of convolutional neural networks is that they are invariant. In other

words, convolutional neural networks can’t preserve spatial information of features in an

image. In contrast, capsule networks gained attention in recent years due to their

equivariant architecture which preserves spatial information.

Stacked capsule autoencoder is a type of capsule networks that is able to overcome the

limitations that convolutional neural networks suffer from. Stacked capsule autoencoder

is an equivariant model which preserves spatial, relational, geometrical information

between parts and objects in an image. So in this research we implemented a generative

adversarial network which uses stacked capsule autoencoder as the discriminator of it,

by replacing the conventional convolutional neural network discriminator.

Then we evaluated the implementation of stacked capsule autoencoder based generative

adversarial network using MNIST images. As the qualitative evaluation we observed the

visual quality of generated images. Quality and diversity of the generated images are

acceptable. Then we evaluated our model quantitatively using inception score for

MNIST. Findings of this research show that, the stacked capsule autoencoder can be

used as the discriminator of a generative adversarial network instead a convolutional

neural network and its performances are plausible.

Table of Contents

 Page

Chapter 1 – Introduction 1

1.1 Prolegomena 1

1.2 Aim and Objectives 2

1.3 Background and Motivation 2

1.4 Problem in Brief 3

1.5 Stacked Capsule Autoencoder based GAN 3

1.6 Structure of the thesis 4

1.7 Summary 4

Chapter 2 – Literature Review 5

2.1 Introduction 5

2.2 Deep Learning 5

2.3 Generative models 6

2.4 Generative Adversarial Networks 7

2.5 Capsule Networks 8

2.6 Limitations of CNNs 9

2.7 Capsule Generative Adversarial Networks 10

2.8 Problem definition 12

2.9 Summary 13

Chapter 3 – Technology Adapted 14

3.1 Introduction 14

3.2 Architecture of Generative Adversarial Networks 14

3.3 Deep Convolutional GAN 15

3.4 Architecture of Capsule Networks 15

3.5 Stacked Capsule Autoencoders 16

3.6 Summary 19

Chapter 4 – Approach 20

4.1 Introduction 20

4.2 Hypothesis 20

4.3 Inputs to the system 20

4.4 Outputs from the system 21

4.5 Process 21

4.6 Features 21

4.7 Users 22

4.8 Summary 22

Chapter 5 – Design 23

5.1 Introduction 23

5.2 Architecture of proposed GAN 23

5.3 Architecture of generator 25

5.4 Architecture of discriminator 26

5.5 Part Capsule Autoencoder 27

5.6 Object Capsule Autoencoder 28

5.7 Summary 29

Chapter 6 – Implementation 30

6.1 Introduction 30

6.2 Dataset preparation 30

6.3 Generator implementation 31

6.4 Discriminator implementation 32

6.5 Part Capsule Autoencoder implementation 32

6.6 Object Capsule Autoencoder implementation 33

6.7 Training of GAN 34

6.8 Summary 35

Chapter 7 – Evaluation 36

7.1 Introduction 36

7.2 Evaluation procedure 36

7.3 Visual quality evaluation of generated images 36

7.4 Losses of the GAN 37

7.5 Inception Score for MNIST 39

7.6 Summary 40

Chapter 8 – Conclusion 41

8.1 Introduction 41

8.2 Conclusion 41

8.3 Limitations and Future Work 42

8.4 Summary 43

References 44

Appendix A Codes 47

Appendix B Results 51

List of Figures

 Page

Figure 2.1: CNN can’t differentiate these two images … 9

Figure 3.1: DCGAN architecture 15

Figure 3.2: Architecture of capsule networks. 16

Figure 3.3: SCAEs can learn object classes … 17

Figure 3.4: At PCAE stage it learns parts and poses … 18

Figure 4.1: Sample of MNIST data 21

Figure 5.1: High level design diagram of proposed GAN 24

Figure 5.2: Architecture of Generator 26

Figure 5.3: SCAE discriminator architecture 28

Figure 7.1: Generated MNIST images 37

Figure 7.2: Generator loss 38

Figure 7.3: Discriminator loss 38

Figure B.1: Qualitative comparison of generated images 51

List of Tables

 Page

Table 2.1: Comparison of capsule networks based GANs. 11

Table 5.1: Comparison of the architectures … 25

Table 7.1: Inception means and standard deviations .. 39

Abbreviation

Convolutional Neural Network CNN

Generative Adversarial Network GAN

Deep Convolutional Generative Adversarial Network DCGAN

Stacked Capsule Autoencoders SCAE

1

Chapter 1

Introduction

1.1 Prolegomena

In 2014 at NIPS conference, Generative Adversarial Networks (GANs) were introduced

by Ian Goodfellow. Since then GANs play a significant role in generative deep learning.

Initial version of GAN was based on the concept of game theory. Two artificial neural

networks called Generator and Discriminator are competing with each other while

improving themselves. This is similar to the fake currency printer and the police. Thief

tries to fool the police and police try to discriminate fake currency. Due to the success of

GANs, they have become the main approach for generative modeling. Even though in

this paper we focus only on image generation, GANs are not limited to computer vision.

During the training phase, GAN tries to learn the probabilistic distribution of its training

images. Then the GAN can generate new data using that learnt probabilistic model

which represents the provided images. Currently there are huge number of GAN models

and most of them are based on Convolutional neural networks (CNNs). But CNN based

GANs only learn the presence probability of the parts in provided images. CNN based

GANs usually ignore spatial information, special features of the parts and geometrical

relationships between them.

In contrast, Capsule networks based GANs preserve spatial information such as

orientation, rotation, scale etc. Capsule networks were introduced by Geoffrey Hinton in

2011, as an alternative to CNN. Capsule networks mimic the function of brain neurons

better than CNNs. There are few versions of capsule networks and they have been used

2

as discriminators in GANs instead CNN discriminators.

The latest version of capsule networks is called Stacked Capsule Autoencoders (SCAE).

SCAE model achieved state of the art performance in unsupervised classification on

MNIST data in 2019. Even though capsule networks based GANs can’t solve inner

GAN issues, those may solve the issues which occur due to the limitations of CNNs.

That’s why more research on combination of GANs and Capsule networks, is important

for the growth of the field of generative modeling.

1.2 Aim and Objectives

The aim of this project is to see whether the Stacked Capsule Auto-encoder (SCAE) can

be used as the discriminator of a Generative adversarial network instead a CNN

discriminator and evaluate its performances with respect to an existing CNN based

GAN.

Following are the objectives of this research

1. Critically review the literature in current researches for Capsule network based

Generative adversarial networks.

2. Study in depth of Capsule networks, Generative adversarial networks and Capsule

network based Generative Adversarial Networks.

3. Design and develop SCAE capsule network based Generative adversarial network.

4. Evaluate the developed SCAE capsule network based Generative adversarial

network.

1.3 Background and Motivation

Success of the recent applications of Generative adversarial networks motivated us for

this research. We also inspired by the theories behind Capsule networks which try to

3

overcome from the limitations of conventional Convolutional neural networks. Using

these powerful technologies together may address the limitations of CNNs and finally

leads to solving the limitations of CNN based GANs which dominate the field of

generative models at present. Among the existing capsule architectures, Stacked capsule

encoders have shown state of the art performance on unsupervised classification of

MNIST data. Note that the process and structure of the stacked capsule encoders are

very much similar to neurons in brain than CNNs.

Solving the issues of CNN based GANs by addressing the issues of CNNs using capsule

networks is important for GANs and its applications. More importantly the GAN

applications in 3D domain and video generation will be heavily benefited by capsule

network based GANs due to the main focus of those fields are on orientation changes of

objects in an image which address effectively by capsule networks.

1.4 Problem in Brief

In short, the problem with CNNs is that they are able to detect and predict only the

existence of features in an image. In other words, main problem with CNNs are that they

are invariant. Invariance means relational information between features (orientation,

pose, location etc.) of the image will be lost. This problem exists on every

implementation which uses CNNs. As a result, CNN based GAN discriminators also

have this problem.

1.5 Stacked Capsule Autoencoder based Generative Adversarial Network

Solution to the existing limitations of CNN based GANs, can be a capsule network

based discriminator which preserves spatial information of the parts and objects in an

image. SCAE is the newest type of capsule networks with many improvements than the

previous capsule networks. So in this research we build a Generative adversarial

4

network which use Stacked capsule auto-encoder (SCAE) as the discriminator of it, by

replacing the conventional CNN discriminator.

1.6 Structure of the thesis

Rest of the thesis is structure as follows. Next two chapters describe others work.

Chapter 2 critically reviews the domain of Capsule network based Generative

Adversarial Networks including introduction to generative models, generative

adversarial networks, capsule networks. We will highlight limitations of CNN based

GANs which leads to our problem definition. In chapter 3, we study in depth of adapted

technologies including generative adversarial networks, deep convolutional GAN,

capsule networks and stacked capsule autoencoder.

From Chapter 4 we describe our work. Chapter 4 introduces our approach for design and

implement the SCAE based GAN. Chapter 5 presents design of the SCAE based GAN in

detail by explaining how the system works. Chapter 6 discusses about implementation of

SCAE based GAN. Chapter 7 explains our evaluation strategy and displays the

performances of the system. In chapter 8 we present our conclusions, limitations and

future work.

1.7 Summary

This chapter described the big picture of the research project by introducing objectives,

background, motivation, research problem in brief. In next chapter we critically review

the domain of Capsule network based Generative Adversarial Networks including

introduction to generative models, generative adversarial networks, capsule networks.

We will highlight limitations of CNN based GANs which leads to our problem

definition.

5

Chapter 2

Literature Review

2.1 Introduction

In previous chapter we discussed about the introduction. This chapter we do the critical

review of related research in detail. Here we give an introduction about the domain of

Capsule network based Generative Adversarial Networks, its early developments, its

recent developments and the achievements up to now including introduction to

generative models, generative adversarial networks, capsule networks. We will highlight

limitations of CNN based GANs which leads to our define our research problem.

2.2 Deep Learning

The early developments of deep leaning were mainly dominated by discriminative

models in terms of research, interest and usage. Discriminative models try to predict,

based on the features of a dataset while generative models try to learn the probabilistic

distribution of a dataset and search how the data has been generated. Main reason for the

lack of research in the field of Generative models might be the benefits of the generative

models were not visible to the stakeholders at that time. So in contrast to discriminative

models, generative models were developed slowly. However at present the generative

models have become a field of heavily being researched due to its interesting usages and

promising future.

6

2.3 Generative models

Generative models are used to generate data with a probabilistic model which built by

learning the structure of a dataset. Our research is mainly focused on Generative

adversarial networks (GANs), which is a branch of generative models. Prior to GAN

there have been various Generative models such as Autoencoders. Naive Bayes,

Restricted Boltsman machines. These early generative models had drawbacks when the

complexity of the data rises. It was hard for those early models to learn the features and

structure of the data which they try to represent. Also those were not good at generating

new samples which were not in the dataset.

To address the challenges which were not be able to solve by early generative models;

two different generative models had been introduced. Those were Variational

Autoencoders [1] and Generative adversarial networks [2] which were better alternatives

to low performing early generative models.

Variational autoencoders solved the problems of vanilla autoencoder by adding

randomness to the autoencoder and giving ability to manipulate the latent space.

Variational autoencoders however based on the maximum likelihood technique which

was similar to previous generative models. [3]. Maximum likelihood based generative

models were not good at modeling high dimensional datasets and those models showed

poor results when representing probabilistic distribution model of the training data. In

contrast to the variational autoencoders; generative adversarial networks were more

advanced generative models which were able to represent the probabilistic distribution

model of the given dataset and generate better quality samples from it.

7

2.4 Generative Adversarial Networks

Introduction of generative adversarial networks by Ian Goodfellow has revolutionized

the field of generative modeling and changed the motivation of deep learning research

bit more towards the generative modeling. Even though generative adversarial network

can be used with many data types such as audio, video, text, here we only discuss about

images.

Even though, GANs were better than previous generative models, the initial version of

GAN (vanilla GAN) had several issues such as unstable training, non-convergence and

mode collapsing. Vanilla GAN was not performing well with complex datasets such as

CIFAR-10. To tackle these issues, lots of research has been done with related to

generator, discriminator and loss functions. As a result various types of GANs have been

invented later.

As an example the Wasserstein-GAN introduced a new loss function by removing the

cross entropy loss of vanilla GAN [4]. As a result, training of the GAN was more stable

and the convergence of the generator was improved. Further versions such as Deep

convolutional GAN (DCGAN) [5], Unrolled-GAN [6], Conditional-GAN [7] and

improved techniques for training GANs [8] have been introduced.

The paper called “improved techniques for training GANs” introduced new architectural

suggestions and training methods while Unrolled-GAN introduced a new training

method which solved mode collapsing problem. Conditional-GAN was able to generate

images under conditions. Note that we will only be discussing the versions of GANs

which are related to our research such as DCGAN.

GANs are typically used for image generation. But those are also used in other

applications such as image implanting, data augmentation, music and video generation,

8

image translation and neural style transfer.

Even though current CNN based GANs are advance enough to generate quality images

there are still challenges such as unstable training, mode collapsing, invariance and low

performance on 3D domain. So Capsule networks based GANs might be better

alternative to tackle these problems.

2.5 Capsule Networks

Capsule networks (CapsNets) were introduced as a transformation to the autoencoders

by Geoffrey Hinton [9]. After the invention, it took some time to get the attention for

capsule networks. In 2017 the paper called “Dynamic routing between capsule”

achieved state of the art accuracy on MNIST dataset by outperforming Convolutional

Neural Networks (CNNs) [10], [11]. Then in the next year, same research team

introduced a new routing method called EM Routing [12]. They evaluated the new

version and achieved state of the art results on smallNORB dataset [13].

The newest version of capsule networks named as Stacked Capsule Autoencoders

(SCAE). It came up with radical changes to the architecture [14]. The main reason, why

this is different from previous capsule architectures is that; this is an unsupervised

model. SCAE achieved state of the art accuracy of 98.7% for unsupervised classification

on MNIST dataset.

Even though capsule networks are still not performing well on complex image datasets

compared to CNNs; capsule networks show a promising future due to the theory and

architecture behind them. Capsule networks address many current drawbacks with

CNNs such as invariance. Limitations of CNNs compared to capsule networks are

described below.

9

2.6 Limitations of CNNs

Currently, CNNs are the most dominant artificial neural network architecture in the field

of deep learning. Even though CNNs have achieved many things, those still have several

drawbacks and limitations. Major drawback of a CNN is that it is unable to identify the

pose of an image [15]. Here pose means the orientation (translational, rotational) and

relationships between the parts in an image. Also the texture and distortion of an image

can’t be recognized by CNNs.

Figure 2.1: CNN can’t differentiate these two images. But Capsule networks can.

(Source: Max Pechyonkin; understanding Hintons capsule networks)

In other words, CNNs are invariant. If the input for a CNN changed little bit, then the

output will be same as the previous image. This means, CNNs are not sensitive to the

position or orientation changes of objects in an image. This limitation of CNNs is shown

in figure 2.1.

In contrast to CNNs; capsule networks are equivariant. This means, spatial position and

orientation in an image are not ignored by capsule networks. Not only that but also they

are sensitive to the spatial relationships between objects in an image. Capsule networks

are able to preserve spatial information due to the architecture of those.

Due to these kind of drawbacks of CNNs; researchers are trying to apply capsule

https://medium.com/theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition

10

networks to different deep learning areas and problems which are currently implemented

with CNNs. As an example, capsule networks based 3D shape processing [16] has

achieved state of the art results in that category. Likewise researchers are being

researching on capsule networks based GANs with the expectation of achieving better

results than existing CNN based GANs.

2.7 Capsule Generative Adversarial Networks

Still capsule networks are mainly being used as a discriminative model in the deep

learning applications. So in the domain of GAN also, researchers have used capsule

networks mainly as the discriminator of the GAN. First implementations of capsule

network based GANs were also like that. They named these models as CapsuleGAN

[17] and CapsGAN [18].

CapsuleGAN was introduced as a GAN which use a capsule network for its

discriminator by replacing the CNN. They came up with an updated optimization

function for training of the CapsuleGAN. They showed that the convolutional-GANs are

outperformed by CapsuleGANs at semi-supervised classification with a large percentage

of unlabeled generated images and rest with real labeled MNIST images. They used

generative adversarial metric for their evaluation. They concluded that, the capsule

network can be a better alternative to CNN, to use as discriminators in GANs.

CapsGAN also proposed a new method specially for 3D domain image generation which

has geometrical transformations with high degree. They stated that capsule network

based GAN show better results in 3D domain than CNN based GANs. For the evaluation

they used rotated MNIST data to achieve geometric transformations first and then tested

with SmallNORB dataset. Also they were able to balance stability and performance

during the training of CapsGAN. For this they have used Wasserstein parameters such as

penalty, clipping and spectral normalization. Finally they suggested that the capsule

11

network based GANs will be a game changer in the field of 3D image generation and

video generation.

Table 2.1 shows a comparison of capsule network based GANs which discussed above.

As per the comparison we can observe that the both versions have used DCGAN

generator as the generator of their capsule GAN. Both have used the same version of

capsule networks called “Dynamic routing by agreement”. Novelties of the both papers

are bit similar except the CapsGAN paper has extended the evaluation for 3D image

generation.

Table 2.1: Comparison of capsule network based GANs.

However still there are no any capsule network based GAN implementation, which use

new capsule versions such as EM Routing and Stacked Capsule Autoencoders (SCAE).

From those two, the SCAE would be a better choice, since it is highly advanced when

compared to the previous capsule architectures.

12

2.8 Problem Definition

In summary, the problem with CNNs is that they are able to detect and predict only the

existence of features in an image. In other words, the main problem with CNNs is that

they are invariant. Invariance means relational information between features

(orientation, pose, location etc.) of the image will be lost. This problem exists on every

implementation which uses CNNs. As a result, CNN based GAN discriminators also

have this problem.

Solution to this can be a capsule network based discriminator which preserves spatial

information. Already there are capsule networks based GANs, but all of them are based

on the architecture called “Dynamic routing by agreement”. This version of capsule

network uses iterative routing. But later it was found that iterative routing is inefficient

[19], [20], [21]. Also in that version, only the parts predict the parent object but not vice

versa. Also it was a form of supervised learning.

SCAE is the newest type of capsule networks with many improvements than the

previous capsule networks. In contrast to “Dynamic routing by agreement”; in Stacked

Capsule Autoencoders; it uses objects in an image to predict parts which is more

efficient and therefore it can get rid of iterative routing at inference time which is

computationally intensive. Also since the SCAE is trained using unsupervised learning,

it does not need labeled data.

Many of the previous capsule networks have been tested with GANs but not with SCAE.

If we can use SCAE as the discriminator of a GAN instead a CNN it would be come

under different type of research such as, integrate some known solutions to see whether

those work well than existing solutions. Or it could be a type of research which doing

something differently.

13

So our main research question is that; “Can Stacked Capsule Auto-encoder (SCAE) be

used as the discriminator of a Generative adversarial network instead a CNN

discriminator and what will be the performance of it?” Our research is unique because

particular technologies have not been use together before.

2.9 Summary

This chapter analyzed the past researches and current trends in the field of GANs,

Capsule networks and capsule network based GANs. Also we discussed about the

limitations of CNNs and problems of CNN based GANs which motivated us for capsule

network based GANs. So we defined our research problem as Can we build a new

capsule architecture based GAN. Also we discussed the approaches which are taken to

build the similar capsule based GANs which gave an insight to build our version of

GAN. In the next chapter, we will discuss about the adapted technologies that we are going

to use for our new type of capsule architecture based GAN.

14

Chapter 3

Technology Adapted

3.1 Introduction

In previous chapter we presented the major technologies associated with the research in

detail. This chapter presents the major technologies associated with the research in detail

such as Deep Convolutional GAN and Stacked Capsule Autoencoder capsule network.

3.2 Architecture of Generative Adversarial Networks

Architecture of the generative adversarial network is as follows. It has two artificial

neural networks called Generator and Discriminator. Generator generates fake images

staring from noise input by learning the probability distribution of the provided training

data. Discriminator classifies fake images from generator and real images. So

generator’s goal is to fool the discriminator by generating high quality fake images

which look similar to real images. By penalizing the generator when the discriminator

identifies a generated image as a fake image; it gradually learns the probability

distribution of the given dataset and improves the quality of the generated images. In

contrast the discriminator will be penalized if it classify generated images as real images

or real images from the training data as fake images. So this is similar to a min-max

game between generator and discriminator.

15

3.3 Deep Convolutional Generative Adversarial Network (DCGAN)

DCGAN consists with convolution neural networks for both discriminator and

generator. Architecture of DCGAN is shown in figure 3.1. It doesn’t have max pooling

layers and those layers have been replaced by strides. Also upsampling is done with

transpose convolution and it has no fully-connected layers. This architecture showed

more stable training of GANs even for the complex datasets such as human faces.

Figure 3.1: DCGAN architecture. This architecture has no max pooling layers and

replaced by strides. Also upsampling is done with transpose convolution and it has no

fully-connected layers. (Source: Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks – A. Radford et al, 2016)

3.4 Architecture of Capsule Networks

Architecture of Capsule Networks is as follows. A capsule contains several neurons.

Some parameters of features in an image and likelihood of those features are captured by

these capsules. These captured information are then encapsulated into a vector. But in

CNNs features captured from an image encapsulated into a scalar. Likelihood of an

object existence is invariant while the instantiation parameters (spatial information) are

equivariant. This means that the likelihood doesn’t change with view point, position,

orientation or rotation, but instantiation parameters do. As a result the output feature

vector is changed when the spatial information changes [15]. Architecture of capsule

networks is shown in figure 3.2.

16

Figure 3.2: Architecture of capsule networks. (Source : Dynamic routing between

capsules: Sabour et al, 2017)

As we stated before a capsule consist with probability of a feature as the length of the

output feature vector and the spatial state of the feature as the direction of that vector. So

if an object has changes its orientation, rotation or position on the image or its spatial

state changes, the vector length which represents the probability of presence of the

object does not change, but its direction which represents the spatial state, changes.

Then these capsules pass their vectors to the next level capsules and relevant weight

matrices are used to multiply with it. This way it can preserve spatial information and

relationships between objects in the image. This operation is similar to forward pass of a

multilayer perceptron. Even though in conventional artificial neural networks weights

are learned using backpropagation, in capsule networks weights are learned using a

routing algorithm such as dynamic routing.

3.5 Stacked Capsule Autoencoders (SCAE)

Stacked Capsule Autoencoder is the latest architecture of capsule networks. It is an

unsupervised model which can be trained on unlabeled data. SCAE achieved state of the

art accuracy for unsupervised classification on MNIST dataset. SCAE works well for

https://medium.com/theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition

17

viewpoint changing scenarios since it preserves geometric relationships among parts and

spatial relationships among objects. Object capsule vectors which represent presence

likelihood; build clusters (Figure 3.3) in an unsupervised way by constructing images

again.

Figure 3.3: SCAEs can learn object classes with their respective object capsules which

represent their likelihood in an unsupervised manner. This is the TSNE plot of presence

probabilities of object capsule for each digit of MNIST. (Source: Kosiorek et al 2019)

Stacked Capsule Autoencoder has two parts which are Part Capsule Autoencoder

(PCAE) and Object Capsule Autoencoder (OCAE). PCAE breakdowns an image into

parts and learns their presence and poses. Then it construct the image again using part

templates which undergoes through affine transformation. On the other hand, OCAE

construct objects using the parts and poses from PCAE. After constructing objects, it

tries to predict pose of parts in each object. OCAE has object capsules with parameters

which are used to reconstruct the object. In short, at PCAE stage it learns parts and poses

and at OCAE stage it uses same parts and poses to construct the object again. Summary

of this process is shown in figure 3.4.

18

Figure 3.4: At PCAE stage it learns parts and poses and at OCAE stage it uses same

parts and poses to construct the object again. (Source : http://akosiorek.github.io)

PCAE basically do two things. First it identifies parts in the image and then find out

spatial relationships among them. This can be referred as autoencoding. A part capsule

store presence of the part, spatial information such as translations, scale, rotation, shear

and a unique identity. Encoder which is a CNN with attention; learns above mentioned

features while decoder learns the template which represents the identity of a part

capsule. Then this template is gone through affine transformation with pose information,

if the part is present. Finally, the image is reconstructed using those templates based on

Gaussian mixing probabilities. Summary of the process of PCAE is given by following

equations.

Then to identify objects; OCAE use part capsules parameters such as pose, features and

templates which output from PCAE. Encoder of the OCAE is a attention based Set

Transformer [22] which get rid of absent points. For stability reasons, OCAE is trained

19

using only the features learnt at PCAE stage. During the training, predictions about part

pose combinations are given by object capsules. So by maximizing the likelihood of part

pose, the OCAE infers about parts again. Part pose likelihood function is given by

following equation.

3.6 Summary

In this chapter we discussed about adapted technologies for our research. We are using

Generative adversarial networks and Capsule networks. Specially we focused on Deep

Convolutional GAN and Stacked Capsule Autoencoder. In the next chapter we discuss

about approach for our research.

20

Chapter 4

Approach

4.1 Introduction

In previous chapter we presented the major technologies associated with the research in

detail. In this chapter we present approach for our research. We will discuss about our

hypothesis, inputs, outputs, process, features and users.

4.2 Hypothesis

The hypothesis of our research is that the capsule network architecture called stacked

capsule autoencoder can be used as the discriminator of a generative adversarial network

instead a CNN to generate images.

4.3 Inputs to the system

There are two inputs to the system. Those are MNIST images and uniform noise. We use

MNIST data since the original SCAE paper also used MNIST to benchmark it. Uniform

noise input has a length of 100 and it is the input for the Generator. Outputs of generator

is the input for the discriminator. In other words, fake images generated by generator are

inputs to the discriminator. There is another input for the discriminator. That is MNIST

images.

MNIST data were taken from the database located at http://yann.lecun.com/exdb/mnist/.

Dataset has 60000 training images and 10000 testing images. These are 28x28 pixel

http://yann.lecun.com/exdb/mnist/

21

greyscale handwritten images. MNIST is the standard dataset for benchmarking a new

computer vision model. This has 10 classes which are digits from 0 to 9. A sample of

MNIST data is shown in figure 4.1.

Figure 4.1: Sample of MNIST data

4.4 Outputs from the system

Output from the system is newly generated images. Quality of fake images generated by

the generator will improve during the training and will look similar to the MNIST data.

4.5 Process

Image generation using the stacked capsule auto-encoder capsule architecture based

generative adversarial network is the main process of the system.. Combined model will

take MNIST images and random noise as inputs and outputs the generate images from

the system.

4.6 Features

Following are the features of this system.

 The discriminator preserves not only the presence but also the spatial information of

the image during its classification.

22

 Discriminator also uses objects in an image to predict its parts which is more

efficient.

 Therefore SCAE discriminator can get rid of iterative routing at inference time

which computationally intensive.

 Since discriminator of this GAN is trained using Unsupervised learning, it doesn’t

need labeled data.

4.7 Users

AI researchers, data scientists and AI students will be the uses of the system. They will

use this system as a reference to study, use and improve capsule networks and generative

adversarial networks in future.

4.8 Summary

In this chapter we discussed about our approach for our research. We also discussed

about our hypothesis, inputs, outputs, process, features and users. In the next chapter we

will discuss about Design.

.

23

Chapter 5

Design

5.1 Introduction

In previous chapter we discussed about our approach for our research. We also discussed

about our hypothesis, inputs, outputs, process, features and users. In this chapter we

present our design for the research in detail.

5.2 Architecture of proposed GAN

Most of the GANs invented up to now including previous capsule GANs, are based on a

basic GAN architecture such as DCGAN but with some modifications. So our proposed

GAN is also mainly based on the Deep Convolutional GAN. In our design we use

Stacked Capsule Autoencoder network as the discriminator instead conventional CNN

discriminator. We will use the same generator in DCGAN for our model which is a

CNN. Also we use MNIST data since the original SCAE paper also used MNIST for

evaluation.

Uniform noise is the input for the Generator. Fake images generated by generator are

inputs to the discriminator. MNIST images are also input for the discriminator. SCAE

discriminator of the proposed GAN will classify incoming images as real or fake. This is

the main task of the discriminator of a GAN.

24

Goal of the generator is to fool the discriminator or increase the likelihood of

misclassifications done by the discriminator by making its output similar to real MNIST

images. Goal of the discriminator is to reach its accuracy around 50%. This means that

the discriminator classifies output from the generator as real images. High level design

diagram of proposed GAN is shown in figure 5.1.

Figure 5.1: High level design diagram of proposed GAN

A comparison of the architectures of previous capsule based GANs and proposed GAN

is shown in table 5.1.

25

Table 5.1: Comparison of the architectures of previous capsule based GANs and

proposed GAN

5.3 Architecture of Generator

Here we use the same generator used in DCGAN. As mentioned earlier uniform noise Z

which has length of 100 is the input for the Generator. Architecture of the generator is as

follows. Generator has strided convolutional or deconvolutional layers. First layer is a fully

connected layer which does matrix multiplication. This is the only fully connected layer

which is used and no any fully connected layers in deeper levels. The output is reshaped

and use as the input to the deconvolutional layers. So the second layer is a

deconvolutional layer. Except the output RELU activation function is used for all layers.

26

Batch normalization has been used between layers except the output layer. Stable

training of the generator can be achieved by applying batch normalization with mean

equal to 0 and variance equal to 1 [23]. Batch normalization also a solution for mode

collapsing which is a common problem with GANs during training. However batch

normalization is not applied for output layer to avoid instability.

2D Upsamplings have also been used in subsequent layers. These increase the size of the

image by duplicating rows and columns. Also no any pooling layers in the generator.

For the final output layer a Tanh activation function is used. Since discriminator takes

28x28 pixel input, the generator outputs 28x28 tensor. In that way the uniform noise

given to the generator with the length of 100, is transformed into a 28x28 tensor.

Architecture of the generator is shown in figure 5.2.

Figure 5.2: Architecture of the Generator

5.4 Architecture of Discriminator

For the discriminator we use the capsule network called Stacked Capsule Autoencoders,

as stated in previous chapters. Greyscale 28x28 pixel images are the inputs for the

discriminator. These inputs include both real MNIST images from the database and also

generated fake images from generator. Architecture of the discriminator is as follows.

As we mentioned in Technology Adapted chapter, SCAE has two stages called Part

27

Capsule Autoencoder (PCAE) and Object Capsule Autoencoder (OCAE). Both stages

have encoder and decoder.

5.5 Part Capsule Autoencoder (PCAE)

At first stage, image is passed through the PCAEs encoder. PCAE encoder is basically

an attention based CNN which we called as part (primary) capsules. This breakdowns an

image into parts and learns their presence, poses and special features. As the first step,

image is passed through a CNN encoder and it returns image embedding. Then attention

base pooling applied to the image embedding. Attention base pooling is done by a

convolution layer followed by reshaping, softmax activation and reshaping again. This

returns pose, feature and presence logits. By passing through a softmax activation it

gives presence of the part. After applying geometric transformation for pose which

includes translations, scale, rotation, shear; PCAE encoder returns pose, feature and

presence of parts.

Then comes the template based primary capsule decoder for images. This reconstructs

the image again using learned part templates. Decoder makes templates which represents

the identity of part capsules based on pose and features returned by part capsule encoder.

Then these templates are gone through affine transformation with pose information, if

the part is present. Finally, the image is reconstructed using those templates based on

computed Gaussian mixing probabilities.

Summary of the process of PCAE is given by following steps.

 Predict parameters of parts such as presence, pose and special features.

 Make image templates.

 Affine transformation of image templates.

 Compute Gaussian mixing probabilities.

 Calculate image likelihood.

28

5.6 Object Capsule Autoencoder (OCAE)

pose, presence of the parts and image templates which made by part decoder are then

passed to the OCAE encoder. OCAE encoder is an attention based permutation invariant

Set Transformer which get rid of absent points. This is a neural network based encoder

and decoder which reduce computations by model interactions between pose, presence

and image templates.

Output tensor of the Set Transformer is then passed to OCAE decoder. OCAE decoder

has object capsules which use part capsule parameters (pose, features and templates) to

reconstruct the object. During the training, predictions about part pose combinations are

given by object capsules. So by maximizing the part pose likelihood, OCAE predicts

pose of parts in each object and reconstruct the object again.

Finally there is a two class classification task to determine whether the image is real or

fake. It outputs the cross entropy loss and the loss will be added to SCAE loss function.

SCAE loss adds up mixture probability, sparsity loss, cross entropy loss, dynamic

weights and deducts the log probability of the model after multiplied by predetermined

weights. Architecture of SCAE discriminator is shown in Figure 5.3.

Figure 5.3: SCAE discriminator architecture. (Source: Kosiorek et al 2019)

29

As we mentioned it above, the discriminator is built using SCAE capsule network with

some additional modifications such as changing the number of classes for classification

and changing the optimization function.

5.7 Summary

In this chapter we discussed about our methodology and design. As mentioned above we

use DCGAN’s Generator and SCAE as discriminator for our GAN. In the next chapter

we discuss about Implementation.

30

Chapter 6

Implementation

6.1 Introduction

In previous chapter we presented the design of our research. In this chapter we present

how do we implement our design in detail. We will discuss about data preparation,

generator and discriminator implementation and training of the model.

6.2 Dataset preparation

As the first implementation step what we do is load and prepare dataset. We load the

28x28 MNIST dataset from tensorflow dataset repository and take only the training

images. Then images converts to type float and then divided by 255.0 to normalize the

MNIST images. Then using a iterator we provide batches with the size of 64 for the

training of our GAN.

dataset = tfds.load(name='mnist').repeat().batch(batch_size)

…
data['image'] = tf.to_float(data['image']) / 255.

…
 input_batch = dataset.make_one_shot_iterator().get_next()

Then we generate the uniform noise (z) which is 100 in length (z_shape) using numpy

library. Nose values are randomly vary between -1 to 1 and their type will be float32.

Similar to MNIST using a iterator again we provide batches of noise with the size of 64.

yield np.random.uniform(-1, 1, (batch_size, z_shape))

dataset = tf.data.Dataset.from_generator(noise_generator)
…
input_noise_batch = dataset.make_one_shot_iterator().get_next()

31

6.3 Generator implementation

Generator is built using tensorflow framework. As mentioned in design chapter, the

uniform noise Z which has a shape of 100 is the input for the Generator. First layer is a

fully connected layer which does matrix multiplication. Then we use a RELU activation

for the outputs of first layer Then the output is reshaped and gone through 2D

Upsamplings. Then comes the first deconvolutional layer followed by batch

normalization with momentum.

These steps repeat once again by replacing RELU activation with Leaky RELU and

without reshaping. After this Leaky RELU applies again and goes through the final

deconvolutional layer followed by Tanh activation function. In that way the uniform

noise input for the generator, is transformed into a 28x28 tensor.

z = tf.matmul(X, self.W1)

z = tf.nn.relu(z)

z = tf.reshape(z, [-1, 7, 7, 128])

z = UpSampling2D()(z)

z = tf.nn.conv2d(z, self.W2, [1, 1, 1, 1], padding="SAME")

z = batch_normalization(z, momentum=momentum)

…
z = tf.nn.conv2d(z, self.W4, [1, 1, 1, 1], padding="SAME")

z = tf.nn.tanh(z)

Initialization of generator weights is done using random normal distribution, with 0.02

standard deviation. Biases are initialized as zeros.

W1=tf.Variable(tf.random_normal(shape=[100, 7*7*128], stddev=0.02))

…
W4=tf.Variable(tf.random_normal(shape=[3, 3, 32, 1], stddev=0.02))

32

6.4 Discriminator implementation

SCAE discriminator is built using tensorflow and library called Sonnet. SCAE

discriminator takes greyscale 28x28 pixel images as the input. As we mentioned in

Technology Adapted chapter, SCAE has two stages called PCAE and OCAE.

6.5 Part Capsule Autoencoder (PCAE) implementation

First, unlabeled images are passed through the PCAEs encoder which is an attention

based CNN. Inside this there is a CNN encoder and it returns image embedding. Then

attention base pooling applied to the image embedding. Attention base pooling is done

by a convolution layer followed by reshaping, softmax activation and reshaping again.

By passing through a softmax activation it gives presence of the part. After applying

geometric transformation, it outputs primary capsules (ie - pose, feature, presence).

cnn_encoder = snt.nets.ConvNet2D(output_channels=[128] * 4,

kernel_shapes=[3], strides=[2, 2, 1, 1], paddings=[snt.VALID],

activate_final=True)

 …
img_embedding = self.cnn_encoder (x)

 …
h = snt.AddBias(bias_dims=[1, 2, 3])(img_embedding)

 …
h = snt.Conv2D(n_dims * self._n_caps + self._n_caps, 1, 1)(h)

 …
pose, feature, pres_logit = tf.split(h, splits, -1)

 …
pres = tf.nn.sigmoid(pres_logit)

pose = utils.geometric_transform(pose, transform_to_matrix=False)

return pose, feature, pres

Then comes the template based primary capsule decoder. Decoder makes templates

which represents the identity of part capsules.

template_shape=([1,n_templates]+list(self.template_size)+[n_dims])

…
template_logits = tf.get_variable('templates', initializer=q)

self._template_logits = template_logits

33

…
self._templates = template_nonlin(template_logits)

 …
if template_feature is not None: # primary_caps.feature

 # Whether to infer template color from input.

 …
 template_color = mlp(template_feature)[:,:,tf.newaxis,tf.newaxis]

…
templates = tf.identity(templates) * template_color

Then these templates a gone through affine transformation with pose information, if the

part is present. Finally, the image is reconstructed using those templates based on

computed Gaussian mixing probabilities.

transformed_templates = resampler(templates, grid_coords)

…
transformed_templates = tf.concat([transformed_templates,bg_image],1)

…
mixing_logits = template_mixing_logits #Mixture Prob Distribution

…
mixing_log_prob = mixing_logits-tf.reduce_logsumexp(mixing_logits, 1)

…
log_prob = distributions.log_prob(target_x)

 rec_ll_per_pixel = tf.reduce_logsumexp(log_prob + mixing_log_prob, 1)

6.6 Object Capsule Autoencoder (OCAE) implementation

Pose, presence, features and templates produced by PCAE are the inputs to the OCAE

encoder which is Set Transformer. Set Transformer code is borrowed from the official

repository [https://github.com/juho-lee/set_transformer].

class SetTransformer(snt.AbstractModule):#Permutation-invariant Trans

 …
class QKVAttention(snt.AbstractModule): #Trans-like self-attention

 …
class MultiHeadQKVAttention(snt.AbstractModule): #Multi-head version

 …
class SelfAttention(snt.AbstractModule):

…

34

Output tensor of the Set Transformer is then passed to OCAE decoder. OCAE decoder

has object capsules and by maximizing the part pose likelihood, OCAE predicts pose of

parts in each object to reconstruct the object again.

capsule = CapsuleLayer(n_caps, n_caps_dims, n_votes, n_caps_params,

n_hiddens)# capsule layer

res = capsule(h) #h=output_tensor of SetTransformer

#res = AttrDict(votes, scale_per_vote, vote_presence)

…
likelihood = CapsuleLikelihood(votes, scale, vote_presence_prob)

ll_res = likelihood(target_pose, target_presence) # ll_res =

mixture_log_prob, vote_presenceposterior_mixing_probs

 …

Finally there is a two class classification task to determine whether the image is real or

fake. It outputs the cross entropy loss and the loss will be added to SCAE loss function.

SCAE loss adds up mixture probability, sparsity loss, cross entropy loss, dynamic

weights and deducts the log probability of the model after multiplied by a predetermined

weights.

linear_model = snt.Linear(self._n_classes)

logits = linear_model(tf.stop_gradient(features))

…

cross_entropy_loss = tf.reduce_mean(

tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=label))

return logits, cross_entropy_loss

…

loss = (- rec_ll - log_prob *1. +dynamic_weights_l2 *10 +

 + prior_cross_entropy_loss + prior_within_sparsity_loss *2.

 - prior_between_sparsity_loss*0.35

 + posterior_cls_cross_entropy_loss)

6.7 Training of GAN

Some of the training and model parameters are as follows.

batch_size = 64;

canvas_size = 28

lr_dcgan = 0.0001;

beta1 = 0.5;

lr = 3e-5;

epsilon = 1e-2 / float(batch_size) ** 2

35

Discriminator loss calculated by adding scae loss for both real and fake images. We also

used RMSPropOptimizer optimizing function with momentum of 0.8, as per the original

SCAE paper.

scae_loss = tf.add(res_fake.loss, res_real.loss)

opt_scae = tf.train.RMSPropOptimizer(lr, momentum=.8, epsilon=epsilon)

 …

We used AdamOptimizer optimizing function for generator with momentum of 0.5.

Generator loss is calculated as follows.

gen_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(

labels=labels, logits=logits))

 …
opt_gen = tf.train.AdamOptimizer(lr_dcgan, momentum=.5,

epsilon=epsilon)

 …

5.8 Summary

In this chapter we discussed about our methodology and design. As mentioned above we

use DCGAN’s Generator and SCAE discriminator. In the next chapter we discuss about

results and evaluation.

36

Chapter 7

Evaluation

7.1 Introduction

In previous chapter we presented about how to implement the proposed GAN. In this

chapter we present about how to evaluate our research.

7.2 Evaluation procedure

Implemented GAN was trained on Google Colab GPUs such as Tesla K80, T4. Training

time depends on the available GPU type. We evaluate the performance of SCAE based

GAN by generating images. Then we compare its results with Deep Convolutional

GAN.

7.3 Visual quality evaluation of generated images

Here we visually analyze the quality of generated images. SCAE based GAN generate

images similar to real MNIST data. By looking at generated images, most of the times,

we can clearly see the digit. Diversity of the generated digits is also acceptable which

means the mode collapsing does not occur with the model. Generated MNIST images by

SCAE based GAN are shown in figure 7.1.

37

Figure 7.1: Generated MNIST images.

By observing the generated images qualitatively, we can say that the performance of the

SCAE based GAN is qualitatively plausible.

7.4 Losses of the GAN

Since discriminator and generator are in a min-max game, when the generator is learning

the discriminator’s loss is increasing. Usually it is hard to measure the performance of a

GAN using its metrics such as accuracies and losses unlike a discriminative model. As

we can see, losses of both discriminator and generator are varying, even though those

are converging with the number of epochs.

Generator loss is varying between around 0 to 10 if we ignore spikes. This kind of

variation of loss can be observed in previous GAN models such as DCGAN. Usually it

is hard to infer about the performance of the generator by observing its loss values.

However since we can observe that the loss values are varying roughly between fixed

values, we can infer that the GAN has achieved equilibrium between the min-max game

of discriminator and generator. This means the generator can’t improve further or it has

38

learnt the probability distribution of the MNIST data.

Figure 7.2: Generator loss

Discriminator loss is also varying. Similar to generator it is hard to infer about the

performance of the discriminator by observing its loss values. As we can see the

discriminator loss is increasing and varying.

Figure 7.3: Discriminator loss

39

Theoretically at the equilibrium, discriminator accuracy has to be around 50% but in

practice that does not happen with GANs. As per the early research, accuracy of a GAN

also doesn’t reflect the quality of the images in practice, similar to losses.

7.5 Inception Score for MNIST

Usually it is hard to measure the performance of a GAN qualitatively by human. To

measure and compare the performances quantitatively we have to use a metric. There are

several metrics such as Generative adversarial metric, Fréchet Inception Distance (FID),

Inception score etc. Here, to compare the performances quantitatively we use Inception

score. Inception score consider two things of the generated images to measure the

performance of a GAN [24]. Those are;

 Quality or clearness of generated images,

 Diversity of generated images.

Inception score is calculated using the Inception v3 Network [25] which pre-trained on

ImageNet [26]. Usually inception score is used to measure the quality of color images

such as CIFAR-10. But here we use the pre-trained Resnet18 [27] which pre-trained on

MNIST dataset [28]. Table 7.1 shows the comparison of inception scores for SCAE

based GAN and DCGAN.

Table 7.1: Inception means and standard deviations for SCAE based GAN and DCGAN

40

According to the comparison above, we can see that the SCAE based GANs

performances are much similar to the performances of DCGAN since both have similar

inception means.

7.6 Summary

In this chapter we discussed about results and evaluation procedure of our model. We

also compared our SCAE based GAN with DCGAN. In the next chapter we discuss

about conclusions, limitations and future work.

41

Chapter 8

Conclusion

8.1 Introduction

In the previous chapter we evaluated our research using suitable methods. In this chapter

we present our conclusions based on the results of previous chapter. Also we state some

limitations and future work of our research.

8.2 Conclusions

In this research we identified that, capsule networks could be better alternative for CNNs.

This is because, capsule networks can preserve spatial information and special features of

an image. Implementing and evaluating of existing deep learning architectures with

capsule networks, which are previously based on CNNs, is a common research trend

nowadays. Few researchers have attempted to build capsule based GANs recently, such

as Capsule-GAN.

During our literature review, we identified that, even though capsule based GANs do not

address current limitations and issues of GANs, they address some limitations of CNNs.

So we conclude that, this approach can be used to address the limitations of CNN based

GANs too.

With this idea in our mind, we implemented a SCAE capsule network based GAN model

and evaluated its performances. For the implementation we used DCGANs generator and

SCAE discriminator. During the final stages, training of the GAN was bit hard since

capsule networks are powerful but not yet stable when they combined with CNNs. This

42

is due to the non-similarity between two networks. So optimizing both together at the

same time was bit difficult.

We used MNIST images for evaluation since the original SCAE version also evaluated

using them. We evaluated our model qualitatively and quantitatively. As per the

qualitative evaluation, we observed the visual quality of generated images. Quality of the

generated images was acceptable. Diversity of the generated digits is also acceptable. This

means mode collapsing did not occur with our model and the training was successful. In

appendix B, we have done a qualitative comparison between DC GAN and SCAE based

GAN generated images.

Despite the fact that, it is hard to measure the performance of a GAN using its metrics

such as accuracies and losses unlike a discriminative model, we recorded those values. As

we could see, losses of both discriminator and generator were varying, even though those

are converging with the number of epochs. As per the results of our research, we could

confirm that the accuracies and losses of a GAN don’t reflect the quality of the images in

practice.

To compare the performances quantitatively we used inception score metric for MNIST.

According to the comparison of inception scores for SCAE based GAN and DCGAN, we

could observe that, both have similar inception means. Based on this quantitative

evaluation, we could see that the SCAE based GANs performances are similar to the

performances of DCGAN. So according to both evaluation techniques, the results of the

SCAE based GAN is plausible and it is somewhat similar to DCGAN.

We also achieved all the four objectives mentioned in introduction chapter. Because we

critically reviewed the literature in current researches for Capsule network based

Generative adversarial networks. We studied in depth of Capsule networks, Generative

adversarial networks and Capsule network based Generative Adversarial Networks. Also

43

we designed and developed SCAE capsule network based Generative adversarial network.

Then we evaluated the developed SCAE based Generative adversarial network.

Finally we can conclude that, Stacked Capsule Auto-encoder (SCAE) can be used as the

discriminator of a Generative adversarial network; instead a CNN discriminator. Also we

observed that the performance of SCAE capsule network based Generative adversarial

network is plausible. So, SCAE capsule network based Generative adversarial networks

are better alternative to CNN based GANs since they address the limitations of the latter.

8.3 Limitations and Future Work

Capsule networks based GANs have the same drawbacks which have with capsule

networks. Usually capsule networks take more time for the training, in contrast to CNNs.

This is a considerable limitation in SCAE, than previous capsule architectures. The reason

is that, SCAE does huge computations during its training.

Capsule networks based GANs have potential to become a game changer in the field of

generative models. Goal of the capsule based GANs, is that they could address limitations

of CNNs which finally leads to address limitations of CNN based GANs. In this research,

we built our model as a benchmarking model. So we tested our model only with MNIST

data.

Improving capsule based GANs to model complex datasets is an open area for future

research. Especially our model could be extended for 3D image datasets such as rotated

MNIST or smallNORB; since capsule networks are good with orientation changes.

Even though, here we experimented using only the MNIST data as a benchmarking

dataset, we can suggest that our model could also be generalized to use with more

diversified datasets such as CIFAR and fashion MNIST. Furthermore, it is possible to

extend our model to work with very complex and diversified datasets such as human faces,

fashion images and medical images etc.

44

Also improving the techniques for stable training of capsule based GANs would be a

future research area. Implementation of SCAE based generator is also another research

opportunity. Different GAN applications such as image implanting, video generation,

image translation and neural style transfer can also be implemented with capsule based

GANs in future.

8.4 Summary

In this chapter we discussed about our conclusion, limitations and future work. We

concluded that our hypothesis is correct and we achieved all of our objectives. Also we

discussed about limitations of SCAE based GAN and possible further improvements for

the research. From the next page onwards we have mentioned references and appendices.

45

References

[1] Diederik P. Kingma , Danilo J. Rezende , Shakir Mohamed , Semi-supervised

Learning with Deep Generative Models. Max Welling Machine Learning Group,

Univ. of Amsterdam, Google Deepmind. 2014.

[2] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial

Networks. Departement d’informatique et de recherche op´erationnelle. June

2014.

[3] Diederik P. Kingma and Max Welling, An Introduction to Variational

Autoencoders, Foundations and Trends R in Machine Learning: Vol. xx, No. xx,

pp 1–18. 2019.

[4] Martin Arjovsky, Soumith Chintala, Léon Bottou. Wasserstein GAN. Courant

Institute of Mathematical Sciences, Facebook AI Research. Dec. 2017.

[5] Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks. indico

Research, Facebook AI Research. Jan. 2016.

[6] Luke Metz el at, Unrolled Generative Adversarial Networks, Google Brain.

2017.

[7] Mehdi Mirza, Simon Osindero. Conditional Generative Adversarial Nets.

Departement d’informatique et de recherche op erationnelle Universite de

Montreal,, Flickr/Yahoo Inc. 2014.

[8] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec

Radford, Xi Chen. Improved Techniques for Training GANs. OpenAI. June

2016.

[9] G. E. Hinton, A. Krizhevsky, S. D. Wang. Transforming Auto-encoders.

Department of Computer Science, University of Toronto. 2011.

46

[10] Yann LeCun, L eon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

Based Learning Applied to Document. Recognition. IEEE. 1998.

[11] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification

with Deep Convolutional Neural Networks, University of Toronto. 2012

[12] GeoffreyHinton, SaraSabour, NicholasFrosst. Matrix capsules with EM, Google

Brain. 2018.

[13] Fu Jie Huang, Yann LeCun, The small NORB dataset, v1.0, Courant Institute,

New York University. October, 2005.

[14] Adam R. Kosiorek, Sara Sabour, Yee Whye Teh, Geoffrey E. Hinton. Stacked

Capsule Autoencoders. University of Oxford. 2019

[15] Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton. Dynamic Routing Between

Capsules. Google Brain. Nov. 2017.

[16] Yongheng Zhao, Tolga Birdal,Haowen Deng, Federico Tombari, 3D Point

Capsule Networks. Technische Universitat Munchen, University of Padova,

Siemens AG. 2019.

[17] Ayush Jaiswal, Wael AbdAlmageed, Yue Wu, Premkumar Natarajan.

CapsuleGAN: Generative Adversarial Capsule Network. USC Information

Sciences Institute. Mar. 2018.

[18] Raeid Saqur, Sal Vivona. CapsGAN: Using Dynamic Routing for Generative

Adversarial Networks. Department of Computer Science, University of Toronto

2018.

[19] D. Wang and Q. Liu . An Optimization View on Dynamic Routing Between

Capsules. International Conference on Learning Representations Workshop.

2018.

[20] S. Zhang, Q. Zhou, and X. Wu. Fast Dynamic Routing Based on Weighted

Kernel Density. 2018

[21] H. Li, X. Guo, B. Dai, W. Ouyang, and X. Wang. Neural Network

Encapsulation. In: CoRR. 2018.

47

[22] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. The. Set Transformer.

International Conference on Machine Learning. 2019.

[23] Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep

Network Training b y Reducing Internal Covariate Shift. Christian Szegedy

Google Inc. 2015.

[24] Zhiming Zhou, Weinan Zhang, Jun Wang. Inception Score, Label Smoothing,

Gradient Vanishing and -log(D(x)) Alternative. Shanghai Jiao Tong University.

2017.

[25] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew

Wojna.Rethinking. the Inception Architecture for Computer Vision. Google Inc.,

University College London. 2015.

[26] ImageNet. Visual database designed for use in visual object recognition software

research. Stanford Vision Lab, Stanford University, Princeton University. 2012.

[27] Kaiming, He Xiangyu, Zhang Shaoqing, Ren Jian Sun. Deep Residual Learning

for Image Recognition, Microsoft Research. 2015.

[28] Inception score for MNIST. https://github.com/sundyCoder/IS_MS_SS. 2019.

48

Appendix A

Codes

Here we present only the Generator and Discriminator codes. Discriminator code

mentioned here is just an abstract code. Sub components codes of the discriminator are

not mentioned here.

A.1 Generator code
class Generator:

 def __init__(self, img_shape, batch_size):

 self.img_rows, self.img_cols, self.channels = img_shape

 self.batch_size = batch_size

 with tf.variable_scope('g'):

 print("Initializing generator weights")

 self.W1 = init_weights([100, 7*7*512])

 self.W2 = init_weights([3, 3, 512, 256])

 self.W3 = init_weights([3, 3, 256, 128])

 self.W4 = init_weights([3, 3, 128, 1])

 def forward(self, X, momentum=0.5):

 z = tf.matmul(X, self.W1)

 z = tf.nn.relu(z)

 z = tf.reshape(z, [-1, 7, 7, 512])

 z = UpSampling2D()(z)

 z = conv2d(z, self.W2, [1, 1, 1, 1], padding="SAME")

 z = batch_normalization(z, momentum=momentum)

 z = tf.nn.leaky_relu(z)

 z = UpSampling2D()(z)

 z = conv2d(z, self.W3, [1, 1, 1, 1], padding="SAME")

 z = batch_normalization(z, momentum=momentum)

 z = tf.nn.leaky_relu(z)

 z = conv2d(z, self.W4, [1, 1, 1, 1], padding="SAME")

49

 return tf.nn.tanh(z)

A.2 Discriminator code
def make_scae(canvas_size):

 template_size= 11;

 n_part_caps= 40;

 n_part_caps_dims= 6;

 n_part_special_features= 16;

 n_channels= 1;

 n_obj_caps= 32;

 n_obj_caps_params= 32;

 img_size = [canvas_size] * 2;

 template_size = [template_size] * 2;

 cnn_encoder = snt.nets.ConvNet2D(output_channels=[128] * 4,

 kernel_shapes=[3], strides=[2, 2, 1, 1],

 paddings=[snt.VALID], activate_final=True)

 part_encoder = primary.CapsuleImageEncoder(cnn_encoder,

 n_part_caps, n_part_caps_dims,

 n_features=n_part_special_features)

 part_decoder = primary.TemplateBasedImageDecoder(

 output_size=img_size, template_size=template_size,

 n_channels=n_channels)

 obj_encoder = SetTransformer(n_layers=3, n_dims=16,

 n_output_dims=256, n_outputs=n_obj_caps)

 obj_decoder = capsule.ImageCapsule(n_obj_caps, 2, n_part_caps,

 n_obj_caps_params, 128)

 model = ImageAutoencoder(n_obj_caps,

 primary_encoder=part_encoder,

 primary_decoder=part_decoder, encoder=obj_encoder,

 decoder=obj_decoder, n_classes=1)

 return model

class ImageAutoencoder(snt.AbstractModule):

 def __init__(self, n_caps, primary_encoder, primary_decoder,

 encoder, decoder, n_classes=None):

 super(ImageAutoencoder, self).__init__()

 self._primary_encoder = primary_encoder;

 self._primary_decoder = primary_decoder;

 self._encoder = encoder;

50

 self._decoder = decoder;

 self._n_classes = n_classes;

 self._n_caps = n_caps

 def _build(self, data, fake):

 input_x = data

 target_x = data

 batch_size = int(input_x.shape[0])

 primary_caps = self._primary_encoder(input_x)

 pres = primary_caps.presence

 pose = primary_caps.pose

 expanded_pres = tf.expand_dims(pres, -1)

 input_pose = tf.stop_gradient(tf.concat([pose, 1. –

 expanded_pres], -1))

 input_pres = tf.stop_gradient(pres)

 target_pose = tf.stop_gradient(pose)

 target_pres = tf.stop_gradient(pres)

 if primary_caps.feature is not None:

 input_pose = tf.concat([input_pose, primary_caps.feature],-1)

 n_templates = int(primary_caps.pose.shape[1])

 templates = self._primary_decoder.make_templates(n_templates,

 primary_caps.feature)

 inpt_templates = tf.stop_gradient(templates)

 if inpt_templates.shape[0] == 1:

 inpt_templates = snt.TileByDim([0],[batch_size])

 (inpt_templates)

 inpt_templates = snt.BatchFlatten(2)(inpt_templates)

 pose_with_templates = tf.concat([input_pose,inpt_templates],-1)

 h = self._encoder(pose_with_templates, input_pres)

 res = self._decoder(h, target_pose, target_pres)

 primary_dec_vote = primary_caps.pose

 primary_dec_pres = pres

 res.rec_ll_per_pixel = self._primary_decoder(target_x,

 primary_dec_vote, primary_dec_pres,

 template_feature=primary_caps.feature)

 rec_ll_per_pixel = snt.BatchFlatten()(res.rec_ll_per_pixel)

 res.rec_ll = tf.reduce_mean(tf.reduce_sum(rec_ll_per_pixel,-1))

 mass_explained_by_capsule = tf.reduce_sum(

 res.posterior_mixing_probs, 1)

 batch_size, num_caps = res.caps_presence_prob.shape.as_list()

 within_example_constant = float(num_caps) / self._n_classes

 res.prior_within_sparsity_loss = tf.nn.l2_loss(tf.reduce_sum(

 res.caps_presence_prob, 1) –

 within_example_constant) / batch_size * 2.

 between_example_constant = float(batch_size) / self._n_classes

 res.prior_between_sparsity_loss = -tf.nn.l2_loss(tf.reduce_sum(

51

 res.caps_presence_prob, 0) –

 between_example_constant) / num_caps * 2.

 def _classification_probe(features):

 linear_model = snt.Linear(self._n_classes)

 logits = linear_model(tf.stop_gradient(features))

 if fake:

 label = tf.zeros_like(logits)

 else:

 label = tf.ones_like(logits)

 cross_entropy_loss = tf.reduce_mean(

 tf.nn.sigmoid_cross_entropy_with_logits(

 logits=logits, labels=label))

 return logits, cross_entropy_loss

 model = snt.Module(_classification_probe)

 res.logits, res.posterior_cls_cross_entropy_loss =

 model(mass_explained_by_capsule)

 _, res.prior_cls_cross_entropy_loss=

 model(res.caps_presence_prob)

 res.loss = (- res.rec_ll - res.log_prob * 1. +

 res.dynamic_weights_l2 * 10 +

 res.prior_cls_cross_entropy_loss +

 res.prior_within_sparsity_loss * 2. –

 res.prior_between_sparsity_loss * 0.35 +

 res.posterior_cls_cross_entropy_loss)

 return res

52

Appendix B

Results

B.1 Qualitative comparison between DC GAN and SCAE based GAN

 Deep Convolutional GAN SCAE based GAN

Figure B.1: Qualitative comparison of generated images

Figure B.1 shows the comparison of the visual quality of generated images between

DCGAN and SCAE based GAN. Quality and diversity of the generated images of our

model are acceptable when compared to DCGAN.

