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Abstract 

 

Convolutional neural network based generative adversarial networks have become the 

dominant generative model in the field of generative deep learning. But limitations of 

convolutional neural networks affect generative adversarial networks also, since most of 

the current generative adversarial networks are based on convolutional neural networks. 

The main limitation of convolutional neural networks is that they are invariant. In other 

words, convolutional neural networks can’t preserve spatial information of features in an 

image. In contrast, capsule networks gained attention in recent years due to their 

equivariant architecture which preserves spatial information.  

 

Stacked capsule autoencoder is a type of capsule networks that is able to overcome the 

limitations that convolutional neural networks suffer from. Stacked capsule autoencoder 

is an equivariant model which preserves spatial, relational, geometrical information 

between parts and objects in an image. So in this research we implemented a generative 

adversarial network which uses stacked capsule autoencoder as the discriminator of it, 

by replacing the conventional convolutional neural network discriminator. 

 

Then we evaluated the implementation of stacked capsule autoencoder based generative 

adversarial network using MNIST images. As the qualitative evaluation we observed the 

visual quality of generated images. Quality and diversity of the generated images are 

acceptable. Then we evaluated our model quantitatively using inception score for 

MNIST. Findings of this research show that, the stacked capsule autoencoder can be 

used as the discriminator of a generative adversarial network instead a convolutional 

neural network and its performances are plausible.   
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Chapter 1 

 

Introduction 

 

1.1 Prolegomena 

 

In 2014 at NIPS conference, Generative Adversarial Networks (GANs) were introduced 

by Ian Goodfellow. Since then GANs play a significant role in generative deep learning. 

Initial version of GAN was based on the concept of game theory. Two artificial neural 

networks called Generator and Discriminator are competing with each other while 

improving themselves. This is similar to the fake currency printer and the police. Thief 

tries to fool the police and police try to discriminate fake currency. Due to the success of 

GANs, they have become the main approach for generative modeling. Even though in 

this paper we focus only on image generation, GANs are not limited to computer vision.  

 

During the training phase, GAN tries to learn the probabilistic distribution of its training 

images. Then the GAN can generate new data using that learnt probabilistic model 

which represents the provided images. Currently there are huge number of GAN models 

and most of them are based on Convolutional neural networks (CNNs). But CNN based 

GANs only learn the presence probability of the parts in provided images. CNN based 

GANs usually ignore spatial information, special features of the parts and geometrical 

relationships between them. 

 

In contrast, Capsule networks based GANs preserve spatial information such as 

orientation, rotation, scale etc. Capsule networks were introduced by Geoffrey Hinton in 

2011, as an alternative to CNN. Capsule networks mimic the function of brain neurons 

better than CNNs. There are few versions of capsule networks and they have been used 
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as discriminators in GANs instead CNN discriminators.  

 

The latest version of capsule networks is called Stacked Capsule Autoencoders (SCAE). 

SCAE model achieved state of the art performance in unsupervised classification on 

MNIST data in 2019. Even though capsule networks based GANs can’t solve inner 

GAN issues, those may solve the issues which occur due to the limitations of CNNs. 

That’s why more research on combination of GANs and Capsule networks, is important 

for the growth of the field of generative modeling.  

 

1.2 Aim and Objectives 

 

The aim of this project is to see whether the Stacked Capsule Auto-encoder (SCAE) can 

be used as the discriminator of a Generative adversarial network instead a CNN 

discriminator and evaluate its performances with respect to an existing CNN based 

GAN. 

 

Following are the objectives of this research 

1. Critically review the literature in current researches for Capsule network based 

Generative adversarial networks. 

2. Study in depth of Capsule networks, Generative adversarial networks and Capsule 

network based Generative Adversarial Networks. 

3. Design and develop SCAE capsule network based Generative adversarial network. 

4. Evaluate the developed SCAE capsule network based Generative adversarial 

network. 

 

1.3 Background and Motivation 

 

Success of the recent applications of Generative adversarial networks motivated us for 

this research. We also inspired by the theories behind Capsule networks which try to 
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overcome from the limitations of conventional Convolutional neural networks. Using 

these powerful technologies together may address the limitations of CNNs and finally 

leads to solving the limitations of CNN based GANs which dominate the field of 

generative models at present. Among the existing capsule architectures, Stacked capsule 

encoders have shown state of the art performance on unsupervised classification of 

MNIST data. Note that the process and structure of the stacked capsule encoders are 

very much similar to neurons in brain than CNNs.  

 

Solving the issues of CNN based GANs by addressing the issues of CNNs using capsule 

networks is important for GANs and its applications. More importantly the GAN 

applications in 3D domain and video generation will be heavily benefited by capsule 

network based GANs due to the main focus of those fields are on orientation changes of 

objects in an image which address effectively by capsule networks.    

 

1.4 Problem in Brief 

 

In short, the problem with CNNs is that they are able to detect and predict only the 

existence of features in an image. In other words, main problem with CNNs are that they 

are invariant. Invariance means relational information between features (orientation, 

pose, location etc.) of the image will be lost. This problem exists on every 

implementation which uses CNNs. As a result, CNN based GAN discriminators also 

have this problem.  

 

1.5 Stacked Capsule Autoencoder based Generative Adversarial Network 

 

Solution to the existing limitations of CNN based GANs, can be a capsule network 

based discriminator which preserves spatial information of the parts and objects in an 

image. SCAE is the newest type of capsule networks with many improvements than the 

previous capsule networks. So in this research we build a Generative adversarial 



4  

network which use Stacked capsule auto-encoder (SCAE) as the discriminator of it, by 

replacing the conventional CNN discriminator. 

 

1.6 Structure of the thesis 

 

Rest of the thesis is structure as follows. Next two chapters describe others work. 

Chapter 2 critically reviews the domain of Capsule network based Generative 

Adversarial Networks including introduction to generative models, generative 

adversarial networks, capsule networks. We will highlight limitations of CNN based 

GANs which leads to our problem definition. In chapter 3, we study in depth of adapted 

technologies including generative adversarial networks, deep convolutional GAN, 

capsule networks and stacked capsule autoencoder.  

 

From Chapter 4 we describe our work. Chapter 4 introduces our approach for design and 

implement the SCAE based GAN. Chapter 5 presents design of the SCAE based GAN in 

detail by explaining how the system works. Chapter 6 discusses about implementation of 

SCAE based GAN. Chapter 7 explains our evaluation strategy and displays the 

performances of the system. In chapter 8 we present our conclusions, limitations and 

future work. 

 

1.7 Summary 

 

This chapter described the big picture of the research project by introducing objectives, 

background, motivation, research problem in brief. In next chapter we critically review 

the domain of Capsule network based Generative Adversarial Networks including 

introduction to generative models, generative adversarial networks, capsule networks. 

We will highlight limitations of CNN based GANs which leads to our problem 

definition. 
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Chapter 2 

 

Literature Review 

 

2.1 Introduction 

 

In previous chapter we discussed about the introduction. This chapter we do the critical 

review of related research in detail. Here we give an introduction about the domain of 

Capsule network based Generative Adversarial Networks, its early developments, its 

recent developments and the achievements up to now including introduction to 

generative models, generative adversarial networks, capsule networks. We will highlight 

limitations of CNN based GANs which leads to our define our research problem.  

 

2.2 Deep Learning 

 

The early developments of deep leaning were mainly dominated by discriminative 

models in terms of research, interest and usage. Discriminative models try to predict, 

based on the features of a dataset while generative models try to learn the probabilistic 

distribution of a dataset and search how the data has been generated. Main reason for the 

lack of research in the field of Generative models might be the benefits of the generative 

models were not visible to the stakeholders at that time. So in contrast to discriminative 

models, generative models were developed slowly. However at present the generative 

models have become a field of heavily being researched due to its interesting usages and 

promising future. 
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2.3 Generative models 

 

Generative models are used to generate data with a probabilistic model which built by 

learning the structure of a dataset. Our research is mainly focused on Generative  

adversarial networks (GANs), which is a branch of generative models. Prior to GAN 

there have been various Generative models such as Autoencoders. Naive Bayes, 

Restricted Boltsman machines. These early generative models had drawbacks when the 

complexity of the data rises. It was hard for those early models to learn the features and 

structure of the data which they try to represent. Also those were not good at generating 

new samples which were not in the dataset.   

 

To address the challenges which were not be able to solve by early generative models; 

two different generative models had been introduced. Those were Variational 

Autoencoders [1] and Generative adversarial networks [2] which were better alternatives 

to low performing early generative models.  

 

Variational autoencoders solved the problems of vanilla autoencoder by adding 

randomness to the autoencoder and giving ability to manipulate the latent space. 

Variational autoencoders however based on the maximum likelihood technique which 

was similar to previous generative models. [3]. Maximum likelihood based generative 

models were not good at modeling high dimensional datasets and those models showed 

poor results when representing probabilistic distribution model of the training data. In 

contrast to the variational autoencoders; generative adversarial networks were more 

advanced generative models which were able to represent the probabilistic distribution 

model of the given dataset and generate better quality samples from it.  

 

 

 

 



7  

2.4 Generative  Adversarial Networks 

 

Introduction of generative adversarial networks by Ian Goodfellow has revolutionized 

the field of generative modeling and changed the motivation of deep learning research 

bit more towards the generative modeling. Even though generative adversarial network 

can be used with many data types such as audio, video, text, here we only discuss about 

images. 

 

Even though, GANs were better than previous generative models, the initial version of 

GAN (vanilla GAN) had several issues such as unstable training, non-convergence and 

mode collapsing. Vanilla GAN was not performing well with complex datasets such as 

CIFAR-10. To tackle these issues, lots of research has been done with related to 

generator, discriminator and loss functions. As a result various types of GANs have been 

invented later.  

 

As an example the Wasserstein-GAN introduced a new loss function by removing the 

cross entropy loss of vanilla GAN [4]. As a result, training of the GAN was more stable 

and the convergence of the generator was improved. Further versions such as Deep 

convolutional GAN (DCGAN) [5], Unrolled-GAN [6], Conditional-GAN [7] and 

improved techniques for training GANs [8] have been introduced.  

 

The paper called “improved techniques for training GANs” introduced new architectural 

suggestions and training methods while Unrolled-GAN introduced a new training 

method which solved mode collapsing problem. Conditional-GAN was able to generate 

images under conditions. Note that we will only be discussing the versions of GANs 

which are related to our research such as DCGAN. 

 

GANs are typically used for image generation. But those are also used in other 

applications such as image implanting, data augmentation, music and video generation, 
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image translation and neural style transfer.  

 

Even though current CNN based GANs are advance enough to generate quality images 

there are still challenges such as unstable training, mode collapsing, invariance and low 

performance on 3D domain. So Capsule networks based GANs might be better 

alternative to tackle these problems.    

 

2.5 Capsule Networks 

 

Capsule networks (CapsNets) were introduced as a transformation to the autoencoders 

by Geoffrey Hinton [9]. After the invention, it took some time to get the attention for 

capsule networks. In 2017 the paper called “Dynamic routing between capsule” 

achieved state of the art accuracy on MNIST dataset by outperforming Convolutional 

Neural Networks (CNNs) [10], [11]. Then in the next year, same research team 

introduced a new routing method called EM Routing [12]. They evaluated the new 

version and achieved state of the art results on smallNORB dataset [13].  

 

The newest version of capsule networks named as Stacked Capsule Autoencoders 

(SCAE). It came up with radical changes to the architecture [14]. The main reason, why 

this is different from previous capsule architectures is that; this is an unsupervised 

model. SCAE achieved state of the art accuracy of 98.7% for unsupervised classification 

on MNIST dataset.   

  

Even though capsule networks are still not performing well on complex image datasets 

compared to CNNs; capsule networks show a promising future due to the theory and 

architecture behind them. Capsule networks address many current drawbacks with 

CNNs such as invariance. Limitations of CNNs compared to capsule networks are 

described below.   
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2.6 Limitations of CNNs 

 

Currently, CNNs are the most dominant artificial neural network architecture in the field 

of deep learning. Even though CNNs have achieved many things, those still have several 

drawbacks and limitations. Major drawback of a CNN is that it is unable to identify the 

pose of an image [15]. Here pose means the orientation (translational, rotational) and 

relationships between the parts in an image. Also the texture and distortion of an image 

can’t be recognized by CNNs. 

 

Figure 2.1: CNN can’t differentiate these two images. But Capsule networks can. 

(Source:  Max Pechyonkin; understanding Hintons capsule networks) 

 

In other words, CNNs are invariant. If the input for a CNN changed little bit, then the 

output will be same as the previous image. This means, CNNs are not sensitive to the 

position or orientation changes of objects in an image. This limitation of CNNs is shown 

in figure 2.1.  

 

In contrast to CNNs; capsule networks are equivariant. This means, spatial position and 

orientation in an image are not ignored by capsule networks. Not only that but also they 

are sensitive to the spatial relationships between objects in an image. Capsule networks 

are able to preserve spatial information due to the architecture of those. 

 

Due to these kind of drawbacks of CNNs; researchers are trying to apply capsule 

https://medium.com/theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition
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networks to different deep learning areas and problems which are currently implemented 

with CNNs. As an example, capsule networks based 3D shape processing [16] has 

achieved state of the art results in that category. Likewise researchers are being 

researching on capsule networks based GANs with the expectation of achieving better 

results than existing CNN based GANs.  

 

2.7 Capsule Generative Adversarial Networks 

 

Still capsule networks are mainly being used as a discriminative model in the deep 

learning applications. So in the domain of GAN also, researchers have used capsule 

networks mainly as the discriminator of the GAN.  First implementations of capsule 

network based GANs were also like that. They named these models as CapsuleGAN 

[17] and CapsGAN [18]. 

 

CapsuleGAN was introduced as a GAN which use a capsule network for its 

discriminator by replacing the CNN. They came up with an updated optimization 

function for training of the CapsuleGAN. They showed that the convolutional-GANs are 

outperformed by CapsuleGANs at semi-supervised classification with a large percentage 

of unlabeled generated images and rest with real labeled MNIST images. They used 

generative adversarial metric for their evaluation. They concluded that, the capsule 

network can be a better alternative to CNN, to use as discriminators in GANs. 

 

CapsGAN also proposed a new method specially for 3D domain image generation which 

has geometrical transformations with high degree. They stated that capsule network 

based GAN show better results in 3D domain than CNN based GANs. For the evaluation 

they used rotated MNIST data to achieve geometric transformations first and then tested 

with SmallNORB dataset. Also they were able to balance stability and performance 

during the training of CapsGAN. For this they have used Wasserstein parameters such as 

penalty, clipping and spectral normalization. Finally they suggested that the capsule 
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network based GANs will be a game changer in the field of 3D image generation and 

video generation. 

 

Table 2.1 shows a comparison of capsule network based GANs which discussed above. 

As per the comparison we can observe that the both versions have used DCGAN 

generator as the generator of their capsule GAN. Both have used the same version of 

capsule networks called “Dynamic routing by agreement”. Novelties of the both papers 

are bit similar except the CapsGAN paper has extended the evaluation for 3D image 

generation.  

 

 

Table 2.1: Comparison of capsule network based GANs. 

 

However still there are no any capsule network based GAN implementation, which use 

new capsule versions such as EM Routing and Stacked Capsule Autoencoders (SCAE). 

From those two, the SCAE would be a better choice, since it is highly advanced when 

compared to the previous capsule architectures.  
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2.8 Problem Definition 

 

In summary, the problem with CNNs is that they are able to detect and predict only the 

existence of features in an image. In other words, the main problem with CNNs is that 

they are invariant. Invariance means relational information between features 

(orientation, pose, location etc.) of the image will be lost. This problem exists on every 

implementation which uses CNNs. As a result, CNN based GAN discriminators also 

have this problem.  

 

Solution to this can be a capsule network based discriminator which preserves spatial 

information. Already there are capsule networks based GANs, but all of them are based 

on the architecture called “Dynamic routing by agreement”. This version of capsule 

network uses iterative routing. But later it was found that iterative routing is inefficient 

[19], [20], [21]. Also in that version, only the parts predict the parent object but not vice 

versa. Also it was a form of supervised learning. 

  

SCAE is the newest type of capsule networks with many improvements than the 

previous capsule networks. In contrast to “Dynamic routing by agreement”; in Stacked 

Capsule Autoencoders; it uses objects in an image to predict parts which is more 

efficient and therefore it can get rid of iterative routing at inference time which is 

computationally intensive. Also since the SCAE is trained using unsupervised learning, 

it does not need labeled data. 

 

Many of the previous capsule networks have been tested with GANs but not with SCAE. 

If we can use SCAE as the discriminator of a GAN instead a CNN it would be come 

under different type of research such as, integrate some known solutions to see whether 

those work well than existing solutions. Or it could be a type of research which doing 

something differently.   
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So our main research question is that; “Can Stacked Capsule Auto-encoder (SCAE) be 

used as the discriminator of a Generative adversarial network instead a CNN 

discriminator and what will be the performance of it?” Our research is unique because 

particular technologies have not been use together before.  

 

2.9 Summary 

 

This chapter analyzed the past researches and current trends in the field of GANs, 

Capsule networks and capsule network based GANs. Also we discussed about the 

limitations of CNNs and problems of CNN based GANs which motivated us for capsule 

network based GANs. So we defined our research problem as Can we build a new 

capsule architecture based GAN. Also we discussed the approaches which are taken to 

build the similar capsule based GANs which gave an insight to build our version of 

GAN. In the next chapter, we will discuss about the adapted technologies that we are going 

to use for our new type of capsule architecture based GAN. 
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Chapter 3 

 

Technology Adapted 

 

3.1 Introduction 

 

In previous chapter we presented the major technologies associated with the research in 

detail. This chapter presents the major technologies associated with the research in detail 

such as Deep Convolutional GAN and Stacked Capsule Autoencoder capsule network. 

 

3.2 Architecture of Generative Adversarial Networks 

 

Architecture of the generative adversarial network is as follows. It has two artificial 

neural networks called Generator and Discriminator. Generator generates fake images 

staring from noise input by learning the probability distribution of the provided training 

data. Discriminator classifies fake images from generator and real images. So 

generator’s goal is to fool the discriminator by generating high quality fake images 

which look similar to real images. By penalizing the generator when the discriminator 

identifies a generated image as a fake image; it gradually learns the probability 

distribution of the given dataset and improves the quality of the generated images. In 

contrast the discriminator will be penalized if it classify generated images as real images 

or real images from the training data as fake images. So this is similar to a min-max 

game between generator and discriminator.   
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3.3 Deep Convolutional Generative Adversarial Network (DCGAN) 

 

DCGAN consists with convolution neural networks for both discriminator and 

generator. Architecture of DCGAN is shown in figure 3.1. It doesn’t have max pooling 

layers and those layers have been replaced by strides. Also upsampling is done with 

transpose convolution and it has no fully-connected layers. This architecture showed 

more stable training of GANs even for the complex datasets such as human faces.  

 

 

Figure 3.1: DCGAN architecture. This architecture has no max pooling layers and 

replaced by strides. Also upsampling is done with transpose convolution and it has no 

fully-connected layers. (Source: Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks – A. Radford et al, 2016) 

 

3.4 Architecture of Capsule Networks 

 

Architecture of Capsule Networks is as follows. A capsule contains several neurons. 

Some parameters of features in an image and likelihood of those features are captured by 

these capsules. These captured information are then encapsulated into a vector. But in 

CNNs features captured from an image  encapsulated into a scalar. Likelihood of an 

object existence is invariant while the instantiation parameters (spatial information) are 

equivariant. This means that the likelihood doesn’t change with view point, position, 

orientation or rotation, but instantiation parameters do. As a result the output feature 

vector is changed when the spatial information changes [15]. Architecture of capsule 

networks is shown in figure 3.2. 
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Figure 3.2: Architecture of capsule networks. (Source : Dynamic routing between 

capsules:  Sabour et al, 2017) 

 

As we stated before a capsule consist with probability of a feature as the length of the 

output feature vector and the spatial state of the feature as the direction of that vector. So 

if an object has changes its orientation, rotation or position on the image or its spatial 

state changes, the vector length which represents the probability of presence of the 

object does not change, but its direction which represents the spatial state, changes.  

 

Then these capsules pass their vectors to the next level capsules and relevant weight 

matrices are used to multiply with it. This way it can preserve spatial information and 

relationships between objects in the image. This operation is similar to forward pass of a 

multilayer perceptron. Even though in conventional artificial neural networks weights 

are learned using backpropagation, in capsule networks weights are learned using a 

routing algorithm such as dynamic routing.  

 

3.5 Stacked Capsule Autoencoders (SCAE) 

 

Stacked Capsule Autoencoder is the latest architecture of capsule networks. It is an 

unsupervised model which can be trained on unlabeled data. SCAE achieved state of the 

art accuracy for unsupervised classification on MNIST dataset. SCAE works well for 

https://medium.com/theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition
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viewpoint changing scenarios since it preserves geometric relationships among parts and 

spatial relationships among objects. Object capsule vectors which represent presence 

likelihood; build clusters (Figure 3.3) in an unsupervised way by constructing images 

again.  

 

 

Figure 3.3: SCAEs can learn object classes with their respective object capsules which 

represent their likelihood in an unsupervised manner. This is the TSNE plot of presence 

probabilities of object capsule for each digit of MNIST. (Source: Kosiorek et al 2019) 

 

Stacked Capsule Autoencoder has two parts which are Part Capsule Autoencoder 

(PCAE) and Object Capsule Autoencoder (OCAE). PCAE breakdowns an image into 

parts and learns their presence and poses. Then it construct the image again using part 

templates which undergoes through affine transformation. On the other hand, OCAE 

construct objects using the parts and poses from PCAE. After constructing objects, it 

tries to predict pose of parts in each object. OCAE has object capsules with parameters 

which are used to reconstruct the object. In short, at PCAE stage it learns parts and poses 

and at OCAE stage it uses same parts and poses to construct the object again. Summary 

of this process is shown in figure 3.4. 
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Figure 3.4: At PCAE stage it learns parts and poses and at OCAE stage it uses same 

parts and poses to construct the object again. (Source : http://akosiorek.github.io) 

 

PCAE basically do two things. First it identifies parts in the image and then find out 

spatial relationships among them. This can be referred as autoencoding. A part capsule 

store presence of the part, spatial information such as translations, scale, rotation, shear 

and a unique identity. Encoder which is a CNN with attention; learns above mentioned 

features while decoder learns the template which represents the identity of a part 

capsule. Then this template is gone through affine transformation with pose information, 

if the part is present. Finally, the image is reconstructed using those templates based on 

Gaussian mixing probabilities. Summary of the process of PCAE is given by following 

equations. 

 

 

 

Then to identify objects; OCAE use part capsules parameters such as pose, features and 

templates which output from PCAE. Encoder of the OCAE is a attention based Set 

Transformer [22] which get rid of absent points. For stability reasons, OCAE is trained 
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using only the features learnt at PCAE stage. During the training, predictions about part 

pose combinations are given by object capsules. So by maximizing the likelihood of part 

pose, the OCAE infers about parts again. Part pose likelihood function is given by 

following equation.  

 

 

3.6 Summary 

 

In this chapter we discussed about adapted technologies for our research. We are using 

Generative adversarial networks and Capsule networks. Specially we focused on Deep 

Convolutional GAN and Stacked Capsule Autoencoder. In the next chapter we discuss 

about approach for our research. 
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Chapter 4 

 

Approach 

 

4.1 Introduction 

 

In previous chapter we presented the major technologies associated with the research in 

detail. In this chapter we present approach for our research. We will discuss about our 

hypothesis, inputs, outputs, process, features and users. 

 

4.2 Hypothesis 

 

The hypothesis of our research is that the capsule network architecture called stacked 

capsule autoencoder can be used as the discriminator of a generative adversarial network 

instead a CNN to generate images.  

 

4.3 Inputs to the system 

 

There are two inputs to the system. Those are MNIST images and uniform noise. We use 

MNIST data since the original SCAE paper also used MNIST to benchmark it. Uniform 

noise input has a length of 100 and it is the input for the Generator. Outputs of generator 

is the input for the discriminator. In other words, fake images generated by generator are 

inputs to the discriminator. There is another input for the discriminator. That is MNIST 

images. 

 

MNIST data were taken from the database located at  http://yann.lecun.com/exdb/mnist/. 

Dataset has 60000 training images and 10000 testing images. These are 28x28 pixel 

http://yann.lecun.com/exdb/mnist/


21  

greyscale handwritten images. MNIST is the standard dataset for benchmarking a new 

computer vision model. This has 10 classes which are digits from 0 to 9. A sample of 

MNIST data is shown in figure 4.1. 

 

 

Figure 4.1: Sample of MNIST data 

 

4.4 Outputs from the system 

 

Output from the system is newly generated images. Quality of fake images generated by 

the generator will improve during the training and will look similar to the MNIST data.  

 

4.5 Process 

 

Image generation using the stacked capsule auto-encoder capsule architecture based 

generative adversarial network is the main process of the system.. Combined model will 

take MNIST images and random noise as inputs and outputs the generate images from 

the system.  

 

4.6 Features 

 

Following are the features of this system.  

 

 The discriminator preserves not only the presence but also the spatial information of 

the image during its classification.  
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 Discriminator also uses objects in an image to predict its parts which is more 

efficient. 

 

 Therefore SCAE discriminator can get rid of iterative routing at inference time 

which computationally intensive.  

 

 Since discriminator of this GAN is trained using Unsupervised learning, it doesn’t 

need labeled data. 

 

4.7 Users 

 

AI researchers, data scientists and AI students will be the uses of the system. They will 

use this system as a reference to study, use and improve capsule networks and generative 

adversarial networks in future. 

 

4.8 Summary 

 

In this chapter we discussed about our approach for our research. We also discussed 

about our hypothesis, inputs, outputs, process, features and users. In the next chapter we 

will discuss about Design. 

.  
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Chapter 5 

 

Design 

 

5.1 Introduction 

 

In previous chapter we discussed about our approach for our research. We also discussed 

about our hypothesis, inputs, outputs, process, features and users. In this chapter we 

present our design for the research in detail.  

 

5.2 Architecture of proposed GAN 

 

Most of the GANs invented up to now including previous capsule GANs, are based on a 

basic GAN architecture such as DCGAN but with some modifications. So our proposed 

GAN is also mainly based on the Deep Convolutional GAN. In our design we use 

Stacked Capsule Autoencoder network as the discriminator instead conventional CNN 

discriminator. We will use the same generator in DCGAN for our model which is a 

CNN. Also we use MNIST data since the original SCAE paper also used MNIST for 

evaluation. 

 

Uniform noise is the input for the Generator. Fake images generated by generator are 

inputs to the discriminator. MNIST images are also input for the discriminator. SCAE 

discriminator of the proposed GAN will classify incoming images as real or fake. This is 

the main task of the discriminator of a GAN. 
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Goal of the generator is to fool the discriminator or increase the likelihood of 

misclassifications done by the discriminator by making its output similar to real MNIST 

images. Goal of the discriminator is to reach its accuracy around 50%. This means that 

the discriminator classifies output from the generator as real images. High level design 

diagram of proposed GAN is shown in figure 5.1. 

 

 

Figure 5.1: High level design diagram of proposed GAN  

 

A comparison of the architectures of previous capsule based GANs and proposed GAN 

is shown in table 5.1. 
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Table 5.1: Comparison of the architectures of previous capsule based GANs and 

proposed GAN 

 

 

5.3 Architecture of Generator 

 

Here we use the same generator used in DCGAN. As mentioned earlier uniform noise Z 

which has length of 100 is the input for the Generator. Architecture of the generator is as 

follows. Generator has strided convolutional or deconvolutional layers. First layer is a fully 

connected layer which does matrix multiplication. This is the only fully connected layer 

which is used and no any fully connected layers in deeper levels. The output is reshaped 

and use as the input to the deconvolutional layers. So the second layer is a 

deconvolutional layer. Except the output RELU activation function is used for all layers.  
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Batch normalization has been used between layers except the output layer. Stable 

training of the generator can be achieved by applying batch normalization with mean 

equal to 0  and variance equal to 1 [23]. Batch normalization also a solution for mode 

collapsing which is a common problem with GANs during training. However batch 

normalization is not applied for output layer to avoid instability. 

  

2D Upsamplings have also been used in subsequent layers. These increase the size of the 

image by duplicating rows and columns. Also no any pooling layers in the generator. 

For the final output layer a Tanh activation function is used. Since discriminator takes 

28x28 pixel input, the generator outputs 28x28 tensor. In that way the uniform noise 

given to the generator with the length of 100, is transformed into a 28x28 tensor. 

Architecture of the generator is shown in figure 5.2. 

 

 

Figure 5.2: Architecture of the Generator 

 

5.4 Architecture of Discriminator 

 

For the discriminator we use the capsule network called Stacked Capsule Autoencoders, 

as stated in previous chapters. Greyscale 28x28 pixel images are the inputs for the 

discriminator. These inputs include both real MNIST images from the database and also 

generated fake images from generator. Architecture of the discriminator is as follows. 

As we mentioned in Technology Adapted chapter, SCAE has two stages called Part 
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Capsule Autoencoder (PCAE) and Object Capsule Autoencoder (OCAE). Both stages 

have encoder and decoder. 

 

5.5 Part Capsule Autoencoder (PCAE) 

 

At first stage, image is passed through the PCAEs encoder. PCAE encoder is basically 

an attention based CNN which we called as part (primary) capsules. This breakdowns an 

image into parts and learns their presence, poses and special features. As the first step, 

image is passed through a CNN encoder and it returns image embedding. Then attention 

base pooling applied to the image embedding. Attention base pooling is done by a 

convolution layer followed by reshaping, softmax activation and reshaping again. This 

returns pose, feature and presence logits. By passing through a softmax activation it 

gives presence of the part. After applying geometric transformation for pose which 

includes translations, scale, rotation, shear; PCAE encoder returns pose, feature and 

presence of parts. 

 

Then comes the template based primary capsule decoder for images. This reconstructs 

the image again using learned part templates. Decoder makes templates which represents 

the identity of part capsules based on pose and features returned by part capsule encoder. 

Then these templates are gone through affine transformation with pose information, if 

the part is present. Finally, the image is reconstructed using those templates based on 

computed Gaussian mixing probabilities.  

 

Summary of the process of PCAE is given by following steps. 

 Predict parameters of parts such as presence, pose and special features. 

 Make image templates. 

 Affine transformation of image templates. 

 Compute Gaussian mixing probabilities. 

 Calculate image likelihood. 
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5.6 Object Capsule Autoencoder (OCAE) 

 

pose, presence of the parts and image templates which made by part decoder are then 

passed to the OCAE encoder. OCAE encoder is an attention based permutation invariant 

Set Transformer which get rid of absent points. This is a neural network based encoder 

and decoder which reduce computations by model interactions between pose, presence 

and image templates.  

 

Output tensor of the Set Transformer is then passed to OCAE decoder. OCAE decoder 

has object capsules which use part capsule parameters (pose, features and templates) to 

reconstruct the object. During the training, predictions about part pose combinations are 

given by object capsules. So by maximizing the part pose likelihood, OCAE predicts 

pose of parts in each object and reconstruct the object again.  

 

Finally there is a two class classification task to determine whether the image is real or 

fake. It outputs the cross entropy loss and the loss will be added to SCAE loss function. 

SCAE loss adds up mixture probability, sparsity loss, cross entropy loss, dynamic 

weights and deducts the log probability of the model after multiplied by predetermined 

weights. Architecture of SCAE discriminator is shown in Figure 5.3. 

 

 

 

Figure 5.3: SCAE discriminator architecture. (Source: Kosiorek et al 2019) 
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As we mentioned it above, the discriminator is built using SCAE capsule network with 

some additional modifications such as changing the number of classes for classification 

and changing the optimization function. 

 

5.7 Summary 

 

In this chapter we discussed about our methodology and design. As mentioned above we 

use DCGAN’s Generator and SCAE as discriminator for our GAN. In the next chapter 

we discuss about Implementation. 
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Chapter 6 

 

Implementation 

 

6.1 Introduction 

 

In previous chapter we presented the design of our research. In this chapter we present 

how do we implement our design in detail. We will discuss about data preparation, 

generator and discriminator implementation and training of the model. 

 

6.2 Dataset preparation 

 

As the first implementation step what we do is load and prepare dataset. We load the 

28x28 MNIST dataset from tensorflow dataset repository and take only the training 

images. Then images converts to type float and then divided by 255.0 to normalize the 

MNIST images. Then using a iterator we provide batches with the size of 64 for the 

training of our GAN.  

 

dataset = tfds.load(name='mnist').repeat().batch(batch_size)  

… 
data['image'] = tf.to_float(data['image']) / 255.  

… 
  input_batch = dataset.make_one_shot_iterator().get_next() 

 

Then we generate the uniform noise (z) which is 100 in length (z_shape) using numpy 

library. Nose values are randomly vary between -1 to 1 and their type will be float32. 

Similar to MNIST using a iterator again we provide batches of noise with the size of 64. 

 

yield np.random.uniform(-1, 1, (batch_size, z_shape)) 

dataset = tf.data.Dataset.from_generator(noise_generator)  
… 
input_noise_batch = dataset.make_one_shot_iterator().get_next() 
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6.3 Generator implementation 

 

Generator is built using tensorflow framework. As mentioned in design chapter, the 

uniform noise Z which has a shape of 100 is the input for the Generator. First layer is a 

fully connected layer which does matrix multiplication. Then we use a RELU activation 

for the outputs of first layer Then the output is reshaped and gone through 2D 

Upsamplings. Then comes the first deconvolutional layer followed by batch 

normalization with momentum.  

 

These steps repeat once again by replacing RELU activation with Leaky RELU and 

without reshaping. After this Leaky RELU applies again and goes through the final 

deconvolutional layer followed by Tanh activation function. In that way the uniform 

noise input for the generator, is transformed into a 28x28 tensor. 

 

z = tf.matmul(X, self.W1) 

z = tf.nn.relu(z) 

z = tf.reshape(z, [-1, 7, 7, 128]) 

z = UpSampling2D()(z) 

z = tf.nn.conv2d(z, self.W2, [1, 1, 1, 1], padding="SAME") 

z = batch_normalization(z, momentum=momentum) 

… 
z = tf.nn.conv2d(z, self.W4, [1, 1, 1, 1], padding="SAME")  

z = tf.nn.tanh(z) 

     

Initialization of generator weights is done using random normal distribution, with 0.02 

standard deviation. Biases are initialized as zeros.  

 

W1=tf.Variable(tf.random_normal(shape=[100, 7*7*128], stddev=0.02)) 

… 
W4=tf.Variable(tf.random_normal(shape=[3, 3, 32, 1], stddev=0.02))  
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6.4 Discriminator implementation 

 

SCAE discriminator is built using tensorflow and library called Sonnet. SCAE 

discriminator takes greyscale 28x28 pixel images as the input. As we mentioned in 

Technology Adapted chapter, SCAE has two stages called PCAE and OCAE. 

 

6.5 Part Capsule Autoencoder (PCAE) implementation 

 

First, unlabeled images are passed through the PCAEs encoder which is an attention 

based CNN. Inside this there is a CNN encoder and it returns image embedding. Then 

attention base pooling applied to the image embedding. Attention base pooling is done 

by a convolution layer followed by reshaping, softmax activation and reshaping again. 

By passing through a softmax activation it gives presence of the part. After applying 

geometric transformation, it outputs primary capsules (ie - pose, feature, presence). 

 

cnn_encoder = snt.nets.ConvNet2D(output_channels=[128] * 4, 

kernel_shapes=[3], strides=[2, 2, 1, 1], paddings=[snt.VALID], 

activate_final=True)  

 … 
img_embedding = self.cnn_encoder (x)  

 … 
h = snt.AddBias(bias_dims=[1, 2, 3])(img_embedding)  

 … 
h = snt.Conv2D(n_dims * self._n_caps + self._n_caps, 1, 1)(h)  

 … 
pose, feature, pres_logit = tf.split(h, splits, -1)  

 …  
pres = tf.nn.sigmoid(pres_logit) 

pose = utils.geometric_transform(pose, transform_to_matrix=False) 

return pose, feature, pres 

 

Then comes the template based primary capsule decoder. Decoder makes templates 

which represents the identity of part capsules.  

 

template_shape=([1,n_templates]+list(self.template_size)+[n_dims])  

… 
template_logits = tf.get_variable('templates', initializer=q) 

self._template_logits = template_logits 
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… 
self._templates = template_nonlin(template_logits)  

    … 
if template_feature is not None: # primary_caps.feature 

  # Whether to infer template color from input.  

  … 
  template_color = mlp(template_feature)[:,:,tf.newaxis,tf.newaxis]  

… 
templates = tf.identity(templates) * template_color 

 

 

 

Then these templates a gone through affine transformation with pose information, if the 

part is present. Finally, the image is reconstructed using those templates based on 

computed Gaussian mixing probabilities. 

 

transformed_templates = resampler(templates, grid_coords)  

… 
transformed_templates = tf.concat([transformed_templates,bg_image],1)  

… 
mixing_logits = template_mixing_logits #Mixture Prob Distribution 

… 
mixing_log_prob = mixing_logits-tf.reduce_logsumexp(mixing_logits, 1)  

… 
log_prob = distributions.log_prob(target_x) 

  rec_ll_per_pixel = tf.reduce_logsumexp(log_prob + mixing_log_prob, 1) 

 

 

6.6 Object Capsule Autoencoder (OCAE) implementation 

 

Pose, presence, features and templates produced by PCAE are the inputs to the OCAE 

encoder which is Set Transformer. Set Transformer code is borrowed from the official 

repository [https://github.com/juho-lee/set_transformer]. 

 

class SetTransformer(snt.AbstractModule):#Permutation-invariant Trans 

 … 
class QKVAttention(snt.AbstractModule): #Trans-like self-attention 

     … 
class MultiHeadQKVAttention(snt.AbstractModule): #Multi-head version 

     … 
class SelfAttention(snt.AbstractModule):  

… 
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Output tensor of the Set Transformer is then passed to OCAE decoder. OCAE decoder 

has object capsules and by maximizing the part pose likelihood, OCAE predicts pose of 

parts in each object to reconstruct the object again.  

 

capsule = CapsuleLayer(n_caps, n_caps_dims, n_votes, n_caps_params, 

n_hiddens)# capsule layer 

res = capsule(h) #h=output_tensor of SetTransformer 

#res = AttrDict(votes, scale_per_vote, vote_presence)  

… 
likelihood = CapsuleLikelihood(votes, scale, vote_presence_prob)   

ll_res = likelihood(target_pose, target_presence) # ll_res = 

mixture_log_prob, vote_presenceposterior_mixing_probs 

         … 

 

Finally there is a two class classification task to determine whether the image is real or 

fake. It outputs the cross entropy loss and the loss will be added to SCAE loss function. 

SCAE loss adds up mixture probability, sparsity loss, cross entropy loss, dynamic 

weights and deducts the log probability of the model after multiplied by a predetermined 

weights.  

 

linear_model = snt.Linear(self._n_classes) 

logits = linear_model(tf.stop_gradient(features)) 

… 

cross_entropy_loss = tf.reduce_mean( 

tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=label)) 

return logits, cross_entropy_loss 

… 

loss = (- rec_ll - log_prob *1. +dynamic_weights_l2 *10 +  

   + prior_cross_entropy_loss + prior_within_sparsity_loss *2. 

   - prior_between_sparsity_loss*0.35  

   + posterior_cls_cross_entropy_loss) 

 

 

6.7 Training of GAN 

 

Some of the training and model parameters are as follows. 

batch_size = 64;  

canvas_size = 28  

lr_dcgan = 0.0001;  

beta1 = 0.5;  

lr = 3e-5;  

epsilon = 1e-2 / float(batch_size) ** 2 
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Discriminator loss calculated by adding scae loss for both real and fake images. We also 

used RMSPropOptimizer optimizing function with momentum of 0.8, as per the original 

SCAE paper. 

 

scae_loss = tf.add(res_fake.loss, res_real.loss) 

opt_scae = tf.train.RMSPropOptimizer(lr, momentum=.8, epsilon=epsilon)  

    … 
 

 

We used AdamOptimizer optimizing function for generator with momentum of 0.5. 

Generator loss is calculated as follows. 

 

gen_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( 

labels=labels, logits=logits)) 

    … 
opt_gen = tf.train.AdamOptimizer(lr_dcgan, momentum=.5, 

epsilon=epsilon)  

    … 
 

5.8 Summary 

 

In this chapter we discussed about our methodology and design. As mentioned above we 

use DCGAN’s Generator and SCAE discriminator. In the next chapter we discuss about 

results and evaluation. 
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Chapter 7 

 

Evaluation 

 

7.1 Introduction 

 

In previous chapter we presented about how to implement the proposed GAN. In this 

chapter we present about how to evaluate our research.  

 

7.2 Evaluation procedure 

 

Implemented GAN was trained on Google Colab GPUs such as Tesla K80, T4. Training 

time depends on the available GPU type. We evaluate the performance of SCAE based 

GAN by generating images. Then we compare its results with Deep Convolutional 

GAN.  

 

7.3 Visual quality evaluation of generated images 

 

Here we visually analyze the quality of generated images. SCAE based GAN generate 

images similar to real MNIST data. By looking at generated images, most of the times, 

we can clearly see the digit. Diversity of the generated digits is also acceptable which 

means the mode collapsing does not occur with the model. Generated MNIST images by 

SCAE based GAN are shown in figure 7.1. 
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Figure 7.1: Generated MNIST images. 

 

By observing the generated images qualitatively, we can say that the performance of the 

SCAE based GAN is qualitatively plausible.   

 

7.4 Losses of the GAN 

 

Since discriminator and generator are in a min-max game, when the generator is learning 

the discriminator’s loss is increasing. Usually it is hard to measure the performance of a 

GAN using its metrics such as accuracies and losses unlike a discriminative model. As 

we can see, losses of both discriminator and generator are varying, even though those 

are converging with the number of epochs.  

 

Generator loss is varying between around 0 to 10 if we ignore spikes. This kind of 

variation of loss can be observed in previous GAN models such as DCGAN. Usually it 

is hard to infer about the performance of the generator by observing its loss values. 

However since we can observe that the loss values are varying roughly between fixed 

values, we can infer that the GAN has achieved equilibrium between the min-max game 

of discriminator and generator. This means the generator can’t improve further or it has 
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learnt the probability distribution of the MNIST data. 

 

Figure 7.2: Generator loss 

 

Discriminator loss is also varying. Similar to generator it is hard to infer about the 

performance of the discriminator by observing its loss values. As we can see the 

discriminator loss is increasing and varying.    

 

Figure 7.3: Discriminator loss 

 



39  

Theoretically at the equilibrium, discriminator accuracy has to be around 50% but in 

practice that does not happen with GANs. As per the early research, accuracy of a GAN 

also doesn’t reflect the quality of the images in practice, similar to losses. 

 

7.5 Inception Score for MNIST 

 

Usually it is hard to measure the performance of a GAN qualitatively by human. To 

measure and compare the performances quantitatively we have to use a metric. There are 

several metrics such as Generative adversarial metric, Fréchet Inception Distance (FID), 

Inception score etc. Here, to compare the performances quantitatively we use Inception 

score. Inception score consider two things of the generated images to measure the 

performance of a GAN [24]. Those are;  

 Quality or clearness of generated images,  

 Diversity of generated images. 

 

Inception score is calculated using the Inception v3 Network [25] which pre-trained on 

ImageNet [26]. Usually inception score is used to measure the quality of color images 

such as CIFAR-10. But here we use the pre-trained Resnet18 [27] which pre-trained on 

MNIST dataset [28]. Table 7.1 shows the comparison of inception scores for SCAE 

based GAN and DCGAN. 

 

 

Table 7.1: Inception means and standard deviations for SCAE based GAN and DCGAN 
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According to the comparison above, we can see that the SCAE based GANs 

performances are much similar to the performances of DCGAN since both have similar 

inception means. 

 

7.6 Summary 

 

In this chapter we discussed about results and evaluation procedure of our model. We 

also compared our SCAE based GAN with DCGAN. In the next chapter we discuss 

about conclusions, limitations and future work. 
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Chapter 8 

Conclusion 

 
8.1 Introduction 

 

 

In the previous chapter we evaluated our research using suitable methods. In this chapter 

we present our conclusions based on the results of previous chapter. Also we state some 

limitations and future work of our research. 

 
 

8.2 Conclusions 

 

 
In this research we identified that, capsule networks could be better alternative for CNNs. 

This is because, capsule networks can preserve spatial information and special features of 

an image. Implementing and evaluating of existing deep learning architectures with 

capsule networks, which are previously based on CNNs, is a common research trend 

nowadays. Few researchers have attempted to build capsule based GANs recently, such 

as Capsule-GAN. 

 

During our literature review, we identified that, even though capsule based GANs do not 

address current limitations and issues of GANs, they address some limitations of CNNs. 

So we conclude that, this approach can be used to address the limitations of CNN based 

GANs too. 

 
With this idea in our mind, we implemented a SCAE capsule network based GAN model 

and evaluated its performances. For the implementation we used DCGANs generator and 

SCAE discriminator. During the final stages, training of the GAN was bit hard since 

capsule networks are powerful but not yet stable when they combined with CNNs. This 
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is due to the non-similarity between two networks. So optimizing both together at the 

same time was bit difficult. 

 

We used MNIST images for evaluation since the original SCAE version also evaluated 

using them. We evaluated our model qualitatively and quantitatively. As per the 

qualitative evaluation, we observed the visual quality of generated images. Quality of  the 

generated images was acceptable. Diversity of the generated digits is also acceptable. This 

means mode collapsing did not occur with our model and the training was successful. In 

appendix B, we have done a qualitative comparison between DC GAN and SCAE based 

GAN generated images. 

 

Despite the fact that, it is hard to measure the performance of a GAN using its metrics 

such as accuracies and losses unlike a discriminative model, we recorded those values. As 

we could see, losses of both discriminator and generator were varying, even though those 

are converging with the number of epochs. As per the results of our research, we could 

confirm that the accuracies and losses of a GAN don’t reflect the quality of the images in 

practice. 

 

To compare the performances quantitatively we used inception score metric for MNIST. 

According to the comparison of inception scores for SCAE based GAN and DCGAN, we 

could observe that, both have similar inception means. Based on this quantitative 

evaluation, we could see that the SCAE based GANs performances are similar to the 

performances of DCGAN. So according to both evaluation techniques, the results of the 

SCAE based GAN is plausible and it is somewhat similar to DCGAN. 

 
We also achieved all the four objectives mentioned in introduction chapter. Because we 

critically reviewed the literature in current researches for Capsule network based 

Generative adversarial networks. We studied in depth of Capsule networks, Generative 

adversarial networks and Capsule network based Generative Adversarial Networks. Also 
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we designed and developed SCAE capsule network based Generative adversarial network. 

Then we evaluated the developed SCAE based Generative adversarial network. 

 
Finally we can conclude that, Stacked Capsule Auto-encoder (SCAE) can be used as the 

discriminator of a Generative adversarial network; instead a CNN discriminator. Also we 

observed that the performance of SCAE capsule network based Generative adversarial 

network is plausible. So, SCAE capsule network based Generative adversarial networks 

are better alternative to CNN based GANs since they address the limitations of the latter. 

 
 

8.3 Limitations and Future Work 

 

Capsule networks based GANs have the same drawbacks which have with capsule 

networks. Usually capsule networks take more time for the training, in contrast  to CNNs. 

This is a considerable limitation in SCAE, than previous capsule architectures. The reason 

is that, SCAE does huge computations during its training. 

 
Capsule networks based GANs have potential to become a game changer in the field of 

generative models. Goal of the capsule based GANs, is that they could address limitations 

of CNNs which finally leads to address limitations of CNN based GANs. In this research, 

we built our model as a benchmarking model. So we tested our model only with MNIST 

data. 

 

Improving capsule based GANs to model complex datasets is an open area for future 

research. Especially our model could be extended for 3D image datasets such as rotated 

MNIST or smallNORB; since capsule networks are good with orientation changes. 

 

Even though, here we experimented using only the MNIST data as a benchmarking 

dataset, we can suggest that our model could also be generalized to use with more 

diversified datasets such as CIFAR and fashion MNIST. Furthermore, it is possible to 

extend our model to work with very complex and diversified datasets such as human faces, 

fashion images and medical images etc. 
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Also improving the techniques for stable training of capsule based GANs would be a 

future research area. Implementation of SCAE based generator is also another research 

opportunity. Different GAN applications such as image implanting, video generation, 

image translation and neural style transfer can also be implemented with capsule based 

GANs in future. 

 
8.4 Summary 

 
 

In this chapter we discussed about our conclusion, limitations and future work. We 

concluded that our hypothesis is correct and we achieved all of our objectives. Also we 

discussed about limitations of SCAE based GAN and possible further improvements for 

the research. From the next page onwards we have mentioned references and appendices. 
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Appendix A 

 

Codes 

 

Here we present only the Generator and Discriminator codes. Discriminator code 

mentioned here is just an abstract code. Sub components codes of the discriminator are 

not mentioned here.  

  
A.1      Generator code 
class Generator: 

    def __init__(self, img_shape, batch_size): 

        self.img_rows, self.img_cols, self.channels = img_shape 

        self.batch_size = batch_size 

        with tf.variable_scope('g'): 

            print("Initializing generator weights") 

            self.W1 = init_weights([100, 7*7*512]) 

            self.W2 = init_weights([3, 3, 512, 256]) 

            self.W3 = init_weights([3, 3, 256, 128]) 

            self.W4 = init_weights([3, 3, 128, 1]) 

             

 

    def forward(self, X, momentum=0.5): 

        z = tf.matmul(X, self.W1) 

        z = tf.nn.relu(z) 

        z = tf.reshape(z, [-1, 7, 7, 512]) 

 

        z = UpSampling2D()(z) 

        z = conv2d(z, self.W2, [1, 1, 1, 1], padding="SAME") 

        z = batch_normalization(z, momentum=momentum) 

        z = tf.nn.leaky_relu(z) 

 

        z = UpSampling2D()(z) 

        z = conv2d(z, self.W3, [1, 1, 1, 1], padding="SAME")  

        z = batch_normalization(z, momentum=momentum) 

        z = tf.nn.leaky_relu(z) 

 

        z = conv2d(z, self.W4, [1, 1, 1, 1], padding="SAME")  
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        return tf.nn.tanh(z) 

 

 

A.2      Discriminator code 
def make_scae(canvas_size):  

 

  template_size= 11;  

  n_part_caps= 40;  

  n_part_caps_dims= 6;  

  n_part_special_features= 16;  

  n_channels= 1;  

  n_obj_caps= 32;  

  n_obj_caps_params= 32;  

  img_size = [canvas_size] * 2;  

  template_size = [template_size] * 2;  

 

  cnn_encoder = snt.nets.ConvNet2D(output_channels=[128] * 4, 

   kernel_shapes=[3], strides=[2, 2, 1, 1], 

     paddings=[snt.VALID], activate_final=True) 

 

  part_encoder = primary.CapsuleImageEncoder(cnn_encoder,  

    n_part_caps, n_part_caps_dims,  

    n_features=n_part_special_features)  

 

  part_decoder = primary.TemplateBasedImageDecoder( 

 output_size=img_size, template_size=template_size, 

 n_channels=n_channels)  

 

  obj_encoder = SetTransformer(n_layers=3, n_dims=16, 

    n_output_dims=256, n_outputs=n_obj_caps)  

 

  obj_decoder = capsule.ImageCapsule(n_obj_caps, 2, n_part_caps, 

     n_obj_caps_params, 128)  

 

  model = ImageAutoencoder(n_obj_caps,  

  primary_encoder=part_encoder,  

  primary_decoder=part_decoder, encoder=obj_encoder, 

  decoder=obj_decoder, n_classes=1)  

 

  return model 

 

 

class ImageAutoencoder(snt.AbstractModule): 

 

  def __init__(self, n_caps, primary_encoder, primary_decoder, 

    encoder, decoder, n_classes=None): 

    super(ImageAutoencoder, self).__init__() 

    self._primary_encoder = primary_encoder;  

    self._primary_decoder = primary_decoder;  

    self._encoder = encoder;  



50  

    self._decoder = decoder;  

    self._n_classes = n_classes;  

    self._n_caps = n_caps  

     

  def _build(self, data, fake): 

 

    input_x = data 

    target_x = data 

    batch_size = int(input_x.shape[0]) 

    primary_caps = self._primary_encoder(input_x) 

    pres = primary_caps.presence 

    pose = primary_caps.pose 

    expanded_pres = tf.expand_dims(pres, -1) 

    input_pose = tf.stop_gradient(tf.concat([pose, 1. –  

      expanded_pres], -1)) 

    input_pres = tf.stop_gradient(pres) 

    target_pose = tf.stop_gradient(pose) 

    target_pres = tf.stop_gradient(pres) 

    if primary_caps.feature is not None:  

      input_pose = tf.concat([input_pose, primary_caps.feature],-1) 

 

    n_templates = int(primary_caps.pose.shape[1]) 

    templates = self._primary_decoder.make_templates(n_templates,  

      primary_caps.feature) 

    inpt_templates = tf.stop_gradient(templates)  

    if inpt_templates.shape[0] == 1: 

      inpt_templates = snt.TileByDim([0],[batch_size]) 

       (inpt_templates) 

    inpt_templates = snt.BatchFlatten(2)(inpt_templates) 

    pose_with_templates = tf.concat([input_pose,inpt_templates],-1) 

 

    h = self._encoder(pose_with_templates, input_pres) 

 

    res = self._decoder(h, target_pose, target_pres)  

 

    primary_dec_vote = primary_caps.pose  

    primary_dec_pres = pres  

    res.rec_ll_per_pixel = self._primary_decoder(target_x, 

    primary_dec_vote, primary_dec_pres,  

    template_feature=primary_caps.feature)  

    rec_ll_per_pixel = snt.BatchFlatten()(res.rec_ll_per_pixel)  

    res.rec_ll = tf.reduce_mean(tf.reduce_sum(rec_ll_per_pixel,-1))  

    mass_explained_by_capsule = tf.reduce_sum( 

     res.posterior_mixing_probs, 1) 

    batch_size, num_caps = res.caps_presence_prob.shape.as_list()  

    within_example_constant = float(num_caps) / self._n_classes 

    res.prior_within_sparsity_loss = tf.nn.l2_loss(tf.reduce_sum( 

   res.caps_presence_prob, 1) –  

   within_example_constant) / batch_size * 2. 

    between_example_constant = float(batch_size) / self._n_classes 

    res.prior_between_sparsity_loss = -tf.nn.l2_loss(tf.reduce_sum( 
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   res.caps_presence_prob, 0) –  

   between_example_constant) / num_caps * 2.  

     

    def _classification_probe(features): 

      linear_model = snt.Linear(self._n_classes) 

      logits = linear_model(tf.stop_gradient(features)) 

      if fake: 

        label = tf.zeros_like(logits) 

      else: 

        label = tf.ones_like(logits) 

      cross_entropy_loss = tf.reduce_mean( 

   tf.nn.sigmoid_cross_entropy_with_logits( 

   logits=logits, labels=label)) 

      return logits, cross_entropy_loss 

       

    model = snt.Module(_classification_probe) 

 

    res.logits, res.posterior_cls_cross_entropy_loss =  

    model(mass_explained_by_capsule)  

    _, res.prior_cls_cross_entropy_loss=  

    model(res.caps_presence_prob)  

 

    res.loss = (- res.rec_ll - res.log_prob * 1. +  

   res.dynamic_weights_l2 * 10 +  

   res.prior_cls_cross_entropy_loss +  

   res.prior_within_sparsity_loss * 2. – 

   res.prior_between_sparsity_loss * 0.35 + 

   res.posterior_cls_cross_entropy_loss) 

 

    return res 
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Appendix B 

 

Results 

 

B.1      Qualitative comparison between DC GAN and SCAE based GAN 

 

     

         Deep Convolutional GAN                         SCAE based GAN 

Figure B.1: Qualitative comparison of generated images 

 

Figure B.1 shows the comparison of the visual quality of generated images between 

DCGAN and SCAE based GAN. Quality and diversity of the generated images of our 

model are acceptable when compared to DCGAN. 


