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Abstract 

 

Medical imaging has been one of the most attentive research and development areas since the 

1950s, particularly due to the contribution to disease diagnosis. Despite the fact that imaging 

technologies have been advanced in multiple ways, yet resolution limitations can be observed. 

To overcome the resolution limitations, various image enhancement techniques have been 

used. Image Super-Resolution (SR) is the latest technique in the list to achieve higher 

resolution with much lower resolution images. Earlier, frequency based and interpolation 

based SR techniques were used for SR. The afterward achievements in SR techniques are 

obtained via Convolution Neural Network (SRCNN) based methods and have several flaws. 

Capsule net (Caps Net) is the state of the art alternative methodology for the problems which 

were previously solved by CNN. One recent attempt was made to assess the Caps Net for SR 

task. This new area has a lot to be explored. Especially the time inefficiencies of this approach 

should be addressed along with accuracy improvements.   

In this research several capsule network routing mechanisms have been investigated for Super 

Resolution pipeline with a medical image dataset.  Standard Dynamic Routing and Expectation 

Maximization Routing methods are re-configured to improve the accuracy. Above all, a novel 

integration of state of the art routing mechanism, Inverted Dot Product based Attention 

Routing mechanism is introduced for Super Resolution task. 

With 300,000 medical image training pairs and 2,500 evaluation pairs, every model was 

evaluated. Along with different image quality indexes, it was shown that the Dynamic Routing 

based method outperformed all methods and the newest Attention Routing based approach has 

shown similar image quality performance to that of the state of the art method FSRCNN and 

less time complexity to that of the existing Caps Net based approaches. This implies that 

clinicians can use this system effectively in a clinical setting. 
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Chapter 1        Introduction 

             

1.1  Prolegomena  

‘Digital imaging along with Deep Learning allow to create images limited by hardware 

but just in our imagination’. 

From the earliest stage of computers to the most recent technological advancements in 

the computing domain, digital images have been playing a significant role in every 

domain we can think of. Representing visual objects with a numerical matrix format 

made a new computing area, today identified as computer vision. The greatest of all, 

the evolutions in the digital imaging domain were found mainly in the medical image 

domain amongst other domains due to the vast number of applications in that field. 

With the expansion of ideas in the digital image domain, there are always 

advancements as well as room for improvements. 

The traditional algorithmic methods of digital image processing have been recently 

replaced and improved with artificial intelligence related technologies, particularly 

deep learning based methods. 

 

1.2  Background and Motivation 

The vitality of medical images in medical diagnostic, disease prevention, treatment 

and illness management [1] is a trivial fact. Superficial vessel obstructions to hidden 

early stage tumors can be identified with medical images. The medical images on 

screen or paper are non-other than a 2-D representation of 3-D internal structures in 

the human body. To achieve this task, different imaging modalities have been 

developed [2] starting from the earliest X-Ray to Functional MRI systems [3]. These 

modalities stand for different medical purposes varying from anatomical structure 

analysis to functional information analysis. For most of the years in the early 

development stages of imaging modalities, the researchers had paid particular attention 

to hardware optimization as the main method of image quality enhancement. With the 
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improvement of the software field, image quality improvement has become a software 

post-processing challenge [3]. 

Among the image quality parameters; the spatial resolution is a very important 

parameter. The contrast resolution, noise, temporal resolution and radiation luminance 

(where applicable) are the other quality causing factors. Spatial resolution is about the 

smallest distinguishable objects that can be seen in the image. According to research, 

around 40% of the medical malpractices that are reported at the law-suite are due to 

misdiagnosis [4] and they are mostly a result of insufficient image resolution. Hence, 

even a small resolution upgrade could drastically positively change the diagnostic 

results by early detection, low signal to noise ratio (SNR) and increasing accuracy of 

measurements. 

 

1.3 Aim and Objectives 

Aim - To develop a Super Resolution module for medical imaging system, in order 

to generate low noise and high resolution images from low resolution images. 

 

Objectives –  

• To critically review of the existing SR techniques and identification of areas to 

be improved and further researched 

• To select of different Caps-Net Routing techniques for implementing SR 

framework. 

• To implement and train different Capsule Network architectures (layers, 

routing mechanism) on the data set. 

• To evaluate those Capsule Network architectures against state of the art SR 

methods. 

• To perform clinical opinion seeking and publishing the results. 
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1.4  Problem in Brief 

The spatial resolution improvement too has been developed as a software related tasks 

[6] in the past few decades and achieved breakthrough results.  

The state of the art technique using CNN based SR (SRCNN & FSRCNN) has been 

named as the current winners of SR techniques. Even though there are some 

competitive methods introduced afterward, using GANs and one attempt using 

Capsule Network in 2020, still SRCNN and FSRCNN is considered to be the leading 

methods in terms of training efficiency and output accuracy. Yet, there are some 

drawbacks in these methods like; requirement of a very large dataset for training, the 

chessboard effect and the noise induced due to the pre-up sampling process. The 

lattermost development of Capsule Network [38] based method can be recommended 

as a solution to overcome those problems, but yet improvable in architectural (layers, 

routing and reconstruction) design. 

 

1.5  Proposed Solution 

Capsule network architecture by Geoffrey Hinton and his team [1] has been proposed 

as a solution to the inherited drawbacks in CNN. 

In this research, a Capsule Network based SR Technique is proposed. It uses different 

routing mechanisms (Dynamic Routing, EM Routing and Attention based Routing) 

and layer architectures than the recent research [38] and particularly trained on medical 

image dataset to embed the domain specific knowledge to the Caps Net. 

 

1.6  Resource Requirements 

For the successful completion of the project, as this is a Deep Learning based method, 

it was required a virtual environment with GPU capabilities. To make a more general 

model for most of the imaging modalities it was also required several databases of 

different medical images. 
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1.7  Outline  

The rest of the thesis is outlined as follows. Chapter 2 is dedicated to reviewing the 

other research work in the domain of Super Resolution highlighting the pros and cons 

of each method with some introduction to the problem that is being addressed in this 

research. The next section is describing the core technique that is used in the project. 

Following that, in the Approach chapter, you can see the overview of the solution that 

I propose here. In the Design chapter, you could see the high-level workflow of the 

method proposed. The Implementation chapter describes the end-to-end details of the 

design showing how it is realized. The results are layout in the Evaluation chapter 

giving the opening to the final chapter, Conclusion where the discussion of our work 

and the further development is emphasized. 

 

1.8  Summary 

This chapter opens up the research by introducing the area of the research and the 

motivation for selecting this particular area for the research. It also highlights the 

project objectives and some introductory details related to the problem to be addressed 

in this research. The proposed solution and the resources to conduct the research are 

also mentioned above. The chapter finally explains the outline of the upcoming 

chapters.  
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Chapter 2   Super Resolution – Past, Present & Future           

 

2.1 Introduction 

In the previous chapter, an introduction to the overall project was given emphasizing 

the importance of SR in medical imaging. This chapter presents our critical review of 

research on developments in SR techniques. This chapter is structured under several 

headings, namely, early development in SR techniques, breakthrough in SR 

techniques, modern development in SR techniques, challenges in SR techniques and 

problem definition. 

 

 

2.2 Early Approaches to Super Resolution 

Super Resolution is defined as the process of generating high resolution (HR) images 

from one or more low resolution images. Not only limiting to medical imaging [7] [3] 

[6], SR has been widely used in several other applications such as Satellite and Aerial 

imaging [8], Face recognition [9], Text Image Improvement [10] and Fingerprint 

Figure 2.1: Overview of the SR techniques 
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enhancement [11]. These related fields, themselves nourished the SR techniques and 

motivated them to experiment on different SR approaches. 

In this section, the early approaches of SR are emphasized. Even though they have 

been addressed as early approaches, to date these methods have been used in 

applications to large and small extent accordingly. Before explaining the early 

developments, the terms interpolation and restoration must be distinguished from the 

term SR. In interpolation, only the size of the image is increased. During image 

restoration, the image is treated for noise removal and contrast adjustment, etc., but 

the image size is unchanged. SR does both; size increments and image quality 

improvement. 

2.2.1 Frequency Domain Approaches  

The earliest SR methods are based on the frequency domain [12] [13] [14] [15] 

algorithms. The theory behind frequency domain approaches is trivial. The LR images 

are first converted to the frequency domain by Fourier transform and estimation of HR 

image frequency spectrum is obtained with mathematical models. Then, the HR image 

is reconstructed in the spatial domain by inverse Fourier transformation. The very first 

SR algorithms [12] [16] by Gercberg and Santis respectively, have used iterative 

truncation on the frequency domain for SR. This early approach was unpopular until 

the work of Tsai and Huang’s [17] system of satellite image SR. This was one of the 

first multiple image SR algorithms, where multiple LR images were used to 

reconstruct the HR images. 

The wavelet transform is another frequency domain approach where the LR image is 

decomposed into sub-images. Nguyen [18] has first proposed interpolation and 

restoration based wavelet decomposition for SR. With the decomposition in the 

wavelet domain, it is convenient to explore the similarities in the neighboring pixels 

and obtain the HR image decomposition. Then, the images are generated via inverse 

wavelet transform [19]. The wavelet based methods are not computationally efficient 

as Fourier transform based methods, but give appealing results. 

In summary, frequency domain methods are relatively efficient in computation, but 

they are prone to model based errors and unable to handle complicated motion models.  
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2.2.2 Spatial Domain Approaches 

To overcome the drawbacks in frequency domain methods, spatial domain methods 

have become the trend. Early spatial domain based approaches used several 

techniques; non-uniform interpolation [20], iterative back-projection (IPB) [21], 

projection onto convex sets (POCS) [22], Direct methods [23] and Regularization 

methods [20]. One similarity to all these methods that they use multiple LR images to 

reconstruct the higher resolution images.  

Iterative Back Projection is one of the earliest spatial methods in SR. Here, an HR 

image is first guessed by averaging multiple LR images. Then, this initial guess is fine-

tuned iteratively. Next, the LR images are simulated with the guessed HR image. 

Afterward, the observed LR and simulated LR images are subtracted to obtain the error 

term. This error is back projected to HR coordinate for tuning. This process is repeated 

over iterations until no change is observed.. The main problem in IBP method is the 

convergence to a better solution is not guaranteed as and could oscillate between weak 

solutions [24]. 

Direct methods using Optical Flow [23], Adaboost [25] and many more techniques 

have also gained popularization as SR techniques. The following steps are followed in 

Direct methods in common; an LR image is selected as the reference and the rest of 

the LR images are registered against the reference image. The reference image is 

scaled up to the expected scale and the other registered images are injected into the 

HR grid using registration information. The fusion of all these images happens next 

and finally, denoising kernels will be applied. These methods outperform the IBP 

computational wise. 

Projection onto Convex Sets (POCS) is another iterative approach [22] [26]. They are 

using a non-direct cost function for obtaining SR image. In POCS, it is assumed that 

the LR images could generate knowledge on HR images. The generated knowledge is 

assumed to be a convex set. To reduce the erroneous results, prior knowledge related 

to images; luminance variations, boundedness parameters have been used accordingly 

[22]. 
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The regularized methods [21] [27] are the most popular due to the effectiveness and 

flexibility. The regularization methods work on a framework where an imaging model 

is assumed with parameters related to blurring, down-sampling and noise terms. The 

imaging model to solve SR is an ill-posed problem; where no limited number of 

solutions available but infinitely many solutions [28].  This is where the regularization 

term comes to play. It can stabilize the inversion process as well as reconstruction 

artifacts. Maximum A-Posteriori (MAP) algorithm based method [27] by Irani found 

an estimate of the HR image with Baye’s rule. 

During most of the practical scenarios, it is impossible to acquire sufficient LR images 

of different viewpoints, different camera sensors [28] etc. Hence, Single Frame SR 

(SFSR) methods have been more applicable over more specific tasks. This is because 

the images of the same class have close statistics. These algorithms have two basics; 

reconstruction or learning. During most of the practical scenarios, it is impossible to 

acquire sufficient LR images of different viewpoints, different camera sensors [28] 

etc. Hence, Single Frame SR (SFSR) methods have been more applicable over more 

specific tasks. This is because the images of same class has close statistics. These 

algorithms have two basics; reconstruction or learning. 

The very first learning algorithm called Hallucination algorithm [29] was a neural 

network based algorithm. The network learns LR to HR relationship of images. The 

learned knowledge is represented as vectors and embodied in the reconstruction. From 

there onward, many other improvements have been done with learning algorithms like 

Feature Pyramids [30] & Belief Networks [31]. The main limitation of these 

algorithms is that they could mainly improve primitive image features like; edges, 

ridges, corners, junctions, etc. 

The internal similarity comparison & correspondence between LR and HR mapped 

from external LR-HR dictionaries are the two main pathways of SFSR [28]. Neighbor 

embedding [32] & Sparse Coding [33] are such improved methodologies of SFSR 

respectively. 
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2.3 State of the art Techniques for SR 

Deep learning is used as the technique in a state of the art SFSR. Generative 

Adversarial Networks (GANs) [34] and Convolution Neural Networks (CNNs) [35] 

[36] [37] are the two network configurations used for SFSR. Both methods have shown 

promising results, but researches in CNN based SR are moving forward faster due to 

the optimized HW and maturity of CNN architectures.  

With more focus on the recovery of textural details in HR images, a new approach 

with GAN was introduced as SRGAN [34]. The capability of GANs to generate new 

images laid the foundation for this approach. This method was capable of generating 

x4 upscaled images for the first time. Apart from the GAN, special loss functions were 

used to achieve the SR images. The popular ResNet architecture was used as the 

backbone of the NN design. With the very deep network architecture, it showed weak 

time performance in practical cases. 

The SRCNN [36] is one of the seminal research in SR with Deep Learning techniques. 

It was because this method outperforms the popular Sparse Coding [33] method and 

implements a similar SR pipeline, which is in Sparse Coding. The major drawback of 

this method is the increment of the computational complexity with the size of the 

image.  

To overcome the problem with SRCNN, another approach was introduced as FSRCNN 

[37]. This is a very shallow network compared to SRCNN and implemented a novel 

SR pipeline in the following order; feature extraction, shrinking, non-linear mapping, 

expanding and deconvolution. To date, this was identified as the most widely used SR 

method due to its powerful time and accuracy performance. 

 

2.4 Challenges in CNN based SR Techniques 

Even though CNN based SR techniques like SRCNN [36] and FSRCNN [37] are the 

most discussed literature in SR techniques, they have the inherited drawbacks of CNN. 
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With an example, it would be easier to understand the drawbacks of CNN. Imagine a 

face. What are the components? We have an oval face, two eyes, a nose and a mouth. 

For a CNN, the presence of these objects can be a very solid indicator to consider that 

there is a face in the image. The orientation and relative spatial relationships between 

these components are not very significant factor to CNN. The CNN approach to 

solving this issue is to use max pooling or successive convolutional layers that reduce 

the spatial size of the data flowing through the network and therefore increase the 

“field of view” of higher layer’s neurons, thus allowing them to detect higher order 

features in a larger region of the input image. These operations lose valuable image 

information that is useful for more precise outputs. Due to the same reason, a large 

amount of data is needed to train a CNN to a satisfactory level. 

Especially, losing valuable information is a negative impact on image construction 

tasks like SR, where it is a must to keep all the image information at the input to 

generate additional information or in other words to generate HR images. 

 

2.5 Literature in Brief  

In the literature review, major achievements and issues have been identified by 

considering most cited researches. These are summarized in Table 2.1 

Table 2.1: Summary of literature review 

Method Basis Pros Cons 

Frequency 

Domain 

Approaches 

Fourier/wavelet based 

transform of LR images are 

mapped to HR images in 

frequency domain. 

Mathematical models are 

built in frq domain. 

Inverese transform to build 

HR images. 

High computational 

efficiency 

Sensitivity to model 

errors 

Difficult to handle 

more complicated 

motion models 

Spatial 

Domain 

Approaches 

Interpolation, 

Regularization 

Interpolation – most 

intuitive and simplest 

approach 

Poor performance 

when magnification 

factor increases. 
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Regularization - 

Sparse 

Encoding 

Dictionary based method. 

Extracted LR patches are 

encoded into LR dictionary 

value and corresponding 

HR encoding is obtained 

from HR dictionary. Then 

reconstruction of patches. 

Accuracy wise 

effective than 

regularization 

techniques. 

Better performance 

for single image SR 

technique. 

SR pipeline is only 

optimized for 

dictionary building 

and mapping 

functions, not on 

reconstruction. 

Building up 

dictionaries is time 

consuming. 

Considerable 

pre/post processing 

CNN Pipeline of Sparse 

Encoding can be fully 

represented as convolution 

operations. 

Little pre/post 

processing 

No explicit learning 

of dictionaries 

Pre-upsampling 

process induce 

noise. 

Chessboard effect 

when no 

upsampling 

Caps Net -Similar to CNN- No upsampling is 

required at the 

beginning 

Learns with less 

number of samples 

than CNN 

Better accuracy 

Computationally 

slow than SRCNN 

GAN Model learns the mapping 

guided by the GAN loss 

(High Res and Super Res) 

More appealing to 

human eye 

Low accuracy wise 

performance than 

CNN 

 

2.6 Problem Definition 

Medical images are a major part of medical diagnosis. Images with higher resolution 

provide diagnostically better judgments for clinicians. Hardware limited low 

resolution images can be converted to higher resolution images with Super Resolution 
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(SR) techniques. State of the art SR techniques use CNN as the core. CNN has its 

inherited faults; additional noise due to up-sampling & chessboard effect while 

reconstructing. Anew approach, Capsule Net has overcome these issues and accuracy 

wise performed better than CNN. This approach claimed to have time inefficiencies 

due to the complexity of the network mechanism. Because of this, the practical 

implementation of this technique is also a concern. This novel approach gives a lot of 

room to explore the accuracy improvements as well. Moreover, previous attempts were 

tested on a common small dataset and specific application in the medical image 

domain was not tested. 

 

2.7 Summary 

In this chapter, a critical review of SR techniques has been given highlighting the 

application of SR techniques, evolution and limitations in SR techniques. In the next 

chapter, a highlight on the technology used; Capsule-Net will be described. 
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Chapter 3     Capsule Nets – Next Giant  

    

3.1 Introduction 

In the previous chapter, it was presented how the state of the art SR techniques were 

evolved around the Deep Learning techniques. Amongst them, CNN based methods 

SRCNN [36] and FSRCNN[37]  are widely discussed. In this research, the same SR 

pipeline that has been used for CNN methods is adopted as the center to the 

implementation. This pipeline can be described in three major steps namely; basic 

feature extraction, non- linear mapping and reconstruction in a sequence. In one of the 

very recent researches, the researchers has attempted to use Capsule Networks [38] in 

the same pipeline and shown accuracy wise impressive results.  A distinguishable 

change to this pipeline was made by introducing some of the newest Capsule network 

architectures at the non-linear mapping stage.  

The technological content in this chapter can also be described under three SR pipeline 

components described above. The feature extraction part of the pipeline is supported 

by 2D convolution operation. The non-linear mapping between low-resolution to high 

resolution features is done with Caps-Net and finally image reconstruction with feature 

maps is carried out with De-convolution technique. 

 

3.2 Convolution Neural Networks 

A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take 

in an input image, assign importance (learnable weights and biases) to various 

aspects/objects in the image and be able to differentiate one from the other [39]. The 

pre-processing required in a CNN is much lower as compared to other classification 

algorithms. While in primitive methods filters are hand-engineered, with enough 

training, CNNs have the ability to learn these filters/characteristics. 

Figure 3.1: Super Resolution Pipeline 
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Figure 3.2: CNN Architecture for Image Classification 

 

The simplified architecture of CNN for classification task consists of several 

‘Convolution layers’ followed by sampling layers (pooling) and stacking of few such 

layers. Lastly, there are several ‘Fully connected’ layers assembling the final 

classification output. The objective of the Convolution Operation is to extract the high-

level features such as edges, corners and basic shapes from the input image. When 

getting into deeper layers they capture more and more high-level features of the image 

giving simple feeds to the fully connected layers. The pooling operations are making 

the features more robust and invariant to image orientation and scale changes. The 

head layers of the network take the input features and adjust the flow to do the 

classification then after. 

This smart architecture has driven the Machine Vision tasks to rapid development and 

most of the improvements that are being experienced today as AI has some links to 

CNN. Due to this advance layout behind the CNN, it has been used for SR tasks by 

highlighting the analogous features to Sparse Encoding technique used for SR as 

mentioned in Chapter 2.  

Within the research, the Convolution layers have been used as the early stage feature 

extraction technology without doing an architectural change due to its strengths in 

extracting primary features such as edges, corners, lines contrasting regions etc. In 

order to keep all the information, the previously mentioned pooling operation have 
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been skipped. Along the SR pipeline, these features set out the  basement for extracting 

high level features in the later part of the NN layer implementation with Capsule layers. 

 

3.3 Capsule Network 

The core technology behind this research; Capsule Networks is being described in this 

sub  section emphasizing on three routing mechanisms that have been used for this 

research namely; Dynamic Routing, EM Routing and Inverted Dot Product Attention 

Routing. 

3.3.1 Inverse Graphics – Backstage of Caps-Net 

Computer graphics deals with constructing a visual image from some internal 

hierarchical representation of geometric data. That internal representation is stored in 

computer’s memory as arrays of geometrical objects and matrices that represent 

relative positions and orientation of these objects. 

Inspired by this idea, Hinton argues that brains, in fact, do the opposite of rendering. 

He calls it inverse graphics: from visual information received by eyes, they deconstruct 

a hierarchical representation of the world around us and try to match it with already 

learned patterns and relationships stored in the brain. And the key idea is that 

representation of objects in the brain does not depend on view angle. 

In 3D graphics, relationships between 3D objects can be represented by a so-called 

pose, which is in essence translation plus rotation. In order to correctly do 

classification and object recognition, it is important to preserve hierarchical pose 

relationships between object parts. 

When these relationships are built into internal representation of data, it becomes very 

easy for a model to understand that the thing that it sees is just another view of 

something that it has seen before. Capsule network embed these pose relationships 

explicitly hence be trained with few number of samples. 

3.3.2 Capsules 

Capsule is a set of neurons which are activated for different image features like, 

position, size and hue. They encode probability of detection of a feature as the length 
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of the output vector. If the same feature appears in two different orientations the length 

will remain the same while changing the vector orientation. Similar to the neurons 

receive inputs from other neurons and multiply them by weights  and summing them 

and input to nonlinear activation function, capsules also perform analogous operations 

to output a vector instead of scalar in ANN. 

3.3.3 Training in Caps-Net 

With all the understanding about capsule process, next thing to be explored is how the 

training is happened in capsule network. This will adjust the weight matrix values (wij) 

and scalars (cj). This particular mechanism is called routing and in the recent years 

many researchers have introduced different routing mechanisms. The three routing 

mechanisms; Dynamic Routing (DR), Expectation Maximisation Routing (EMR) and 

Attention based Routing are described next.  

3.3.3.1. Dynamic Routing 

As mentioned, capsule is a group of neurons whose activity vector represents object’s 

visual parameters and the length of the vector represents the probability of presence of 

that particular object. The capsule operation is analogous to that of traditional NNs 

where a set of activations from lower level capsule agrees upon higher level feature 

and activates its neuron. 

Dynamic routing[40] is the earliest approach for routing between capsules and 

introduced in 2017. It is a ‘routing by agreement’ method where the lower level 

capsules’ output to higher level capsules are determined by the magnitude of the scalar 

multiplication between lower and higher level capsule vectors. 

The main supportive factor that capsule-layers are capable of dynamic routing is that 

the output of neuron is of vector form. At the first iteration, all the lower level capsules 

are routed to all the parent capsules. The strength between lower – higher level 

capsules are determined by a factor called coupling coefficient. The sum of all 

coupling coefficients from one lower level capsule to all higher level capsules is scaled 

down to one. 

Similar to CNNs the higher layers of capsules cover large regions of the image. In the 

introductory paper[40] they mention that lower level capsules are ‘place-coded’. This 
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indicates that the object’s location information is determined by which capsule is 

activated. At higher level capsules, the positional information are ‘rate-coded’. This 

implies that the existence of objects are scrutinized at higher level capsules. 

Dynamic Routing – Theory 

The ui are the output vectors of previous capsule layer, wij encodes the relationship 

between jth capsule and ith feature. For an example, if jth capsule represents a human 

face inside a picture, and ith capsule represents lower level feature like ‘nose’ wij 

represents the nose-face relationship. After multiplication with wijs output is the 

predicted position of the higher level feature w.r.t. lower level feature. If all 

multiplications give similar output it can be concluded that there is a face in the image. 

The scalar c depends upon to which higher level capsule the lower level capsule should 

send the input, it can be understood as this; nose should have a higher c value for face 

than that of the finger which is not a part of the face. The squash operation in the 

diagram scale the output to 0-1 range in the same time imposing non-linearity. 

The squash function is defined as follows.  

𝑢𝑗 =
||𝑠𝑗||

2

1 + ||𝑠𝑗||
2

𝑠𝑗

||𝑠𝑗||
(1) 

Here, uj is the output vector of the capsule and sj is the summed input to the capsule. 

𝑠𝑗 = ∑ 𝑐𝑖𝑗𝑢̂𝑗|𝑖

𝑖

 (2) 

 𝑢̂𝑗|𝑖 = 𝑤𝑖𝑗𝑢𝑖  (3)  

Figure 3.3:  Capsule Input-Output 
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The previously mentioned coupling coefficients are indicated as cij in the above 

equation. These coupling coefficients are derived in following manner initially. The 

bij are the log probabilities that capsule i should be coupled to capsule j. 

𝑐𝑖𝑗 =  
exp(𝑏𝑖𝑗)

∑ exp(𝑏𝑖𝑘)𝑘
(4) 

The agreement between one lower level capsule and one higher level capsule is 

determined by the following product. 

𝑎𝑖𝑗 = 𝑣𝑗 . 𝑢̂𝑗|𝑖 (5) 

The overall routing algorithm pseudo code can be displayed as follows. 

procedure ROUTING(u ˆj|i, r, l) 

  for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0. 

  for r iterations do 

   for all capsule i in layer l: ci ← softmax(bi) (softmax computes Eq. 4) 

   for all capsule j in layer (l + 1): sj ← ∑ 𝑐𝑖𝑗ˆ𝐮𝑗|𝑖𝑖   

   for all capsule j in layer (l + 1): vj ← squash(sj) (squash computes Eq. 

1) 

   for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + 

ˆuj|i.vj 

            return vj 

 

3.3.3.2 EM Routing 

The EM Routing [41] was also introduced by Geoffry Hinton and his team in 2017 

after few days of introduction of DR algorithm. This routing mechanism seeks more 

on different set of routing properties than that of DR algorithm. 

In EM routing the capsules are grouped to build part-whole relationship using the 

clustering technique; EM. The basis of the EM routing is to cluster the data points into 

Gaussian distributions. The lower level capsules which represent basic features of 

image vote for higher level capsules with transformation matrix multiplication similar 
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to the Dynamic routing mechanism. This transformation matrix learns over the training 

iterations with the help of EM algorithm. 

The basis of the EM routing is as follows. Assume, there is a need to cluster data points 

into two clusters; G1 and G2. These clusters are Gaussian distributions defined by 

mean 𝜇 and standard deviation 𝜎. The EM algorithm converge until all the data points 

in the dataset belongs to two clusters maximizing the probabilities.  

𝑀𝑎𝑥 (∑ ∑ 𝑃(𝑥𝑖|𝐺𝑗)𝑛
𝑖=1

𝑚
𝑗=1 ) (6) 

Here, 𝑃(𝑥𝑖|𝐺𝑗) =  
1

𝜎𝑗√2𝜋
𝑒−(𝑥𝑖−𝜇𝑗)

2
/2𝜎𝑗

2
 (7) 

The capsule o/p computation is different in EM routing. Here, the pose matrix of the 

capsule is also presented as Gaussian distribution. In EM routing, the pose matrix of 

parent capsule is presented as a Gaussian distribution. One such pose matrix is 

represented as 16 Gaussians having 16𝜇s and 16𝜎s where 𝜇 s are extracted from pose 

matrix components. 

Let 𝑣𝑖𝑗
ℎ  be the h-th component of vote from child capsule i to parent capsule j. The 

probability of vij belongs to capsule j is calculated with following Gaussian 

distribution. 

𝑝𝑖|𝑗
ℎ =

1

√2𝜋(𝜎𝑗
ℎ)2

𝑒𝑥𝑝
(−

(𝑣𝑖𝑗
ℎ −𝜇𝑗

ℎ)2

2(𝜎𝑗
ℎ)

2 )

(8) 

Let’s take the log of 𝑝𝑖|𝑗
ℎ . 

ln (𝑝𝑖|𝑗
ℎ ) = ln(

1

√2𝜋(𝜎𝑗
ℎ)2

𝑒𝑥𝑝
(−

(𝑣𝑖𝑗
ℎ −𝜇𝑗

ℎ)2

2(𝜎𝑗
ℎ)

2 )

) 

                                =  − ln(𝜎𝑗
ℎ) −

ln(2𝜋)

2
−

(𝑣𝑖𝑗
ℎ −𝜇𝑗

ℎ)2

2𝜋(𝜎𝑗
ℎ)2

 (9) 
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The minus of ln(𝑝𝑖|𝑗
ℎ ), or in other words negative of the log likelihood is considered 

as the cost. 

𝑐𝑜𝑠𝑡𝑖𝑗
ℎ = −ln (𝑃𝑖|𝑗

ℎ ) (10) 

The lower level capsules are not equally linked with the higher level capsules, hence 

the cost for one capsule from all lower level capsules is calculated as, 

𝑐𝑜𝑠𝑡𝑗
ℎ = ∑  𝑟𝑖𝑗𝑐𝑜𝑠𝑡𝑖𝑗

ℎ
𝑖  (11) 

With substitution from Eq.(9) cost is derived as,   

𝑐𝑜𝑠𝑡𝑗
ℎ = (ln(𝜎𝑗

ℎ) + 𝑘) ∑ 𝑟𝑖𝑗𝑖  (12), here k is a constant. 

Following equation determine whether the capsule j will be activated. 

𝑎𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜆(𝑏𝑗 − ∑ 𝑐𝑜𝑠𝑡𝑗
ℎ))ℎ , here 𝑏𝑗is referred as the cost of describing the 

mean and variance of capsule j, and 𝜆 as the inverse temperature parameter. As 𝑟𝑖𝑗s 

are trained, 𝜆  is increased to steepen the sigmoid curve. 

The EM routing is used for two operations inside the capsule network; pose matrix 

calculation and the capsule output calculation. The overall EM routing algorithm 

consists of two steps called, E-step and M-step. In E-step, rij s are calculated, whereas 

in M-step  Gaussian model parameters 𝜇s and 𝜎s are re-calculated. 

 

3.3.3.3 Inverted Dot Product Attention Routing 

In previous section, two most widely used routing mechanisms for Capsule networks; 

Dynamic routing and EM routing were described. Next, in this section one of the most 

recent approaches of routing; Inverted Dot Product Attention Routing [42] is 

presented. This method was introduced to achieve the same classification accuracy 

with fewer number of training parameters than that of the Dynamic Routing and EM 

routing with the ultimate goal of getting Capsule Networks into real-world tasks. 

In this project, this can be identified as the newest technology integration and holds 

majority of the novelty which is introduced in this project. 
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The overall architecture of the Capsule Net is different from the previous methods, 

obviously in routing mechanisms and also with newly introduced layer normalization. 

Here, inverted attention mechanism is used to measure agreement between capsules. 

In normal attention routing [43] the child capsule units compete to get the attention of 

parent capsule units, whereas in this method parent capsules compete to get the 

attention of child capsule units. The routing probability of child capsule units to parent 

capsule units depends upon two factors; parent’s pose (from previous iteration) and 

the child’s vote for parent’s pose (current iteration). Not limiting to the above 

differences, clear differences from Dynamic routing and EM routing are identified as 

follows. In Dynamic routing[40] the pose is expressed as a vector and the activation 

as it’s norm. With EM routing, the pose has expressed as a matrix and the activation 

is achieved with EM algorithm.  With inverted dot product approach, the pose is 

expressed in a similar matrix form as EM but the activation is not directly obtained. 

The Inverted Dot Product Attention Routing mechanism has two steps; the first one is 

to compute the agreement between child and parent capsules and the next is to update 

the pose matrix of parent capsule. These two steps are pretty easy to understand when 

compared to EM routing algorithm. 

Computing Agreement:  

procedure INVERTED DOT-PRODUCT ATTENTION ROUTING(PL, PL+1, WL) 

for all capsule i in layer L and capsule j in layer (L + 1):𝑣𝑖𝑗
𝐿  ←  𝑊𝑖𝑗

𝐿 . 𝑝𝑖
𝐿 vote 

for all capsule i in layer L and capsule j in layer (L + 1): 𝑎𝑖𝑗
𝐿 ← 𝑝𝑗

𝐿+1. 𝑣𝑖𝑗
𝐿  agreement 

Vote 𝑣𝑖𝑗
𝐿  is calculated as the product between transformation matrix 𝑊𝑖𝑗

𝐿 and pose 

matrix 𝑝𝑖
𝐿. Next, the agreement is calculated as the product between vote 𝑣𝑖𝑗

𝐿  and the 

parent capsule pose 𝑝𝑗
𝐿+1. 

Pose Update: 

Extending the same routing function, three more steps were added to update the pose 

and for layer normalization. 
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for all capsule i in layer L: 𝑟𝑖𝑗
𝐿 ← exp(𝑎𝑖𝑗

𝐿 ) / ∑ exp (𝑎𝑖𝑗′
𝐿 )𝑗′ . routing coefficient 

for all capsule j in layer (L + 1): 𝑝𝑗
𝐿+1 ←  ∑ 𝑟𝑖𝑗

𝐿𝑣𝑖𝑗
𝐿

𝑖  pose update 

for all capsule j in layer (L + 1): 𝑝𝑗
𝐿+1 ←   𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑝𝑗

𝐿+1). Normalization 

The routing probabilities  𝑟𝑖𝑗
𝐿  is calculated by applying softmax function over 𝑎𝑖𝑗

𝐿  s 

which are calculated in the previous step. Then, the parent capsule layer pose is 

updated with summing all the product between routing probability and votes. Finally, 

a layer normalization is done for this new pose matrix. 

One of the other distinguishable characteristics introduce in this method is the 

concurrent routing. After the first iteration of forward pass, the rest of the iterations 

are happened concurrently here. All the capsules get input from previous iteration 

preceding capsules and do one iteration simultaneously. This is indicated in Fig 3.4.  

However with these modifications in the forward pass, the backward pass or the 

learning is still based on the Stochastic Gradient Descent algorithm. 

In the SR implementation, the capsule layers from Conv-Capsule layer to Fully-

connected Capsule (Appendix I) layer have been used. We also implement the 

concurrent routing mechanism that is introduced above expecting better time 

performance at training phase. 

Figure 3.4: Concurrent Routing (Source [42]) 
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3.4 Deconvolution (2D) 

The deconvolution is a mathematical process to restore the original signal which has 

undergone the process convolution [44]. In mathematical formula it can be described 

as follows. 

𝑓 ∗ 𝑔 = ℎ (13) 

Here f, is the signal to be recovered and * denotes the convolution operation. The 

convolution filter or the transfer matrix g should be known to recover the original 

signal f from the convolved output h. When g is unknown, but the form of g is known 

there are statistical methods to approximate g. 

Once g is approximated or known, f can be recovered by the following equation.  

𝐹 = H/G (14) 

𝑓 = 𝐼𝐹𝑇(𝐹) (15) 

Here F, G and H are the Fourier transforms of the functions f,g and h respectively. IFT 

is the Inverse Fourier Transform operation. 

 In this application, deconvolution operation is carried out in 2D domain after the 

feature mapping layers to generate the image. With the back propagation, the 

parameters analogous to G are learnt and F (final image) could be recovered. 

 

3.5 Summary 

In this chapter, an insight into CNN, the previous generation giant and why anew 

approach Caps-Net is used as a better alternation, describing its strengths and 

limitations are presented. The overall theory behind Caps-Net is also be described in 

detail. Furthermore, three of the Caps-Net architectures different from the routing 

mechanism which are used in this research are intensely explained.  

Eventually, the reconstruction technique; 2D De-convolution is described. In the next 

chapter, the overall research approach will be put forward. 
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Chapter 4    Caps-Net based Approach for SR  

 

4.1 Introduction 

Using the technology described in the Chapter 3; Capsule Networks an approach for 

Super Resolution is proposed as follows. 

The rest of the chapter will describe the IPO (Input, Output & Process) along with 

system users and finally the system features. 

With this approach, following hypothesis is set for the project. 

Hypothesis – The image quality performance of Capsule Net based Super-Resolution 

model for medical image resolution enhancement is further improved by changing the 

routing mechanism and the layered architecture. 

 

4.2 Input 

The inputs to the system are low resolution medical images of grey scale (single 

channel) digital images. These inputs are generated from different imaging modalities 

like; MRI Scanners, PET Scanners or CT Scanners, etc. These images are non-other 

than cross slices of the human body. 

 

4.3 Output 

The output of the system will be a high resolution version of the input image. The 

output will also be a grey scale image and the scaling factor will be an integer. The 

new image will include the information interpolated by the Caps-Net model. 

 

Figure 4.1: Approach  
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4.4 Process 

The Caps-Net Module will get the input as low resolution image and after several 

Capsule conversions and internal reconstruction, it will generate the higher resolution 

images. In the training phase the difference between the expected high resolution 

image and the conversion module based output is compared and fed back to the model 

for learning. After the training, the trained model is used as the process core. With the 

saved model, the high resolution images can be produced in seconds. 

 

4.5 Users 

The proposed solution is particularly focused on a specific type of images; medical 

images. Hence the system users will be Radiologist, Other medical consultants and 

Imaging Technicians. The Radiologists and Imaging Technicians will be using the 

system at the image lab whereas the other consultants will be using the system on PCs 

at clinics. 

 

4.6 Features 

With the proposed approach following features can be given out by the system. 

1. Scale up grey scale  images to 2x or 4x  

2. Used with all imaging modalities 

In this chapter, an overview of the Approach using the system Inputs, Outputs, Process, 

Users and Features has been given. The process which has been described in this 

chapter will be expanded as the design in the next chapter. 

 

4.7 Summary 

The current chapter can be considered as the essence of the overall project as it briefs 

about the components in the project. Here, the input, the process, and the output 

generated by the process are described along with the other relevancies of the project; 

users of the project and special feature stretched out in the implementation. In the next 

chapter, the overall design of the process described in this chapter is expanded. 
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Chapter 5      Design of Caps-Net SR 

 

5.1 Introduction 

This chapter expands the system process explained in the previous chapter as the 

system design by dividing the system into sub-modules. The design diagrams will be 

used for the core Caps-Net module explanation and minor Data Generator module 

explanation. Even though the Data Generator module provides the input for the Caps-

Net module, the latter will be first explained for the reader’s clarity. 

 

5.2 Data Generator Module 

This module acts as the data supplier for the capsule network. With this module, the 

dataset used for training and validation van be expanded quickly. Even when there is 

no standard dataset, data can be generated with the help of this model. 

 

5.2.1 Image Preprocessing Module 

This is the first component of the Data Generator pipeline. Here, the input images, 

which are in RGB format first converted to greyscale images. Then, to obtain a larger 

amount of training and testing samples, the images were augmented by rotating the 

images into several different angles. This will increase the number of image samples. 

 

5.2.2 Image cropper 

The augmented images are then passed through the image cropper module to obtain 

the final outputs. It first crops the HR image from the original image that is of the size 

Figure 5.1: Data Generator Module Components 
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of the desired HR image. Then, it scales down the cropped image to generate its LR 

image. These two LR-HR pair is saved for training and validation. 

 

5.3 Caps-Net SR Module 

 

5.3.1 Input Image 

This is the input to the Capsule Network. It is a low resolution image patch. During 

the training phase of the network, these images are the lower resolution part of the 

generated low-high resolution image pairs. Afterward, they act as the input to the 

system in the validation and in practical. These low resolution input images are of grey 

scale. 

5.3.2 Convolution Module 

These are identical to the convolution layers in CNN. The primary feature extraction 

is achieved in these layers before converting them as capsules. They play a vital role 

by filtering the most important features of any input image given as input (See 5.2.1). 

5.3.3 Capsule Module 

The capsule module acts as the core to the new approach. Its function is to embed the 

richer and more sophisticated features that could interpolate the higher resolution 

structures. They store pose and probability information about the features input via 

Figure 5.2: Capsule Net Components 
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Convolution module. These internal representations of the features inside the capsule 

module will be input to the Reconstruction Module. 

5.3.4 Reconstruction Module 

The reconstruction module does the final rendering of the higher resolution output. As 

mentioned in 5.2.3 the feature information generated by the Capsule Module will be 

input and arranged in such a way that the higher resolution image is output. As an 

overview of this module, one can imagine this as feature to image mapper.  

5.3.5. Output Image 

This is the output of the reconstruction module. It is a grey scale image of high 

resolution. During the training session, this is fed into the Evaluation module, 

eventually, this will act as the overall system output. As the output of the system, it 

acts as the reflection module of the system performance. 

5.3.6 Evaluation Module 

This module will only be used in the training process to evaluate the Caps-Net 

performance and giving the feedback to the Caps-Net to adjust the weights 

accordingly. In the case of Caps-Net it compares the two high resolution pairs; 

reference output and Caps-Net output by generating a Signal to Noise Ratio (PSNR) 

value. When this value is high, the system performs better.  

5.3.7. High Resolution Image 

This is the reference/original high resolution image solely used in the training process 

of the Caps-Net. It acts as an input the Evaluation module and used to calculate the 

PSNR. 

 

5.4 Evaluation Module 

Two evaluation instances have been conducted in this project. One evaluation happens 

at the time of training itself (See 5.3.6).  

For a more comprehensive evaluation, after the training, a new medical image dataset 

has been used. With his dataset, HR images from different trained Capsule Net models 

were generated. Next, overall evaluation is performed for different image quality 
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matrices namely Peak Signal to Noise Ratio (PSNR),Structure Similarity Index 

(SSIM)[45], Multi Scale SSIM (MSSSIM)[46] and Universal Image Quality Index 

(UQI)[47]. 

This part is implemented as two separate sub-modules. The first module is to generate 

new evaluation data set. It first runs over a medical image dataset and generates up-

scaled images for each of the Caps Net module and save them in folders. 

  

Secondly, the evaluation model gets two inputs, an up-scaled image from the SR 

technique and the original image to generate the image quality matrix. Inside the image 

quality comparison module, above mentioned different quality measures have been 

implemented. The output of the module will be the image quality index by each 

strategy. 

 

5.5 Summary 

This chapter gives an insight into the overall design components of the project. It is 

prolonged under several major components of the system, namely, Data Generator 

Module, Caps Net based SR Module, and the Evaluation Module. What tasks are 

completed by each module and sub-modules are described in detail. In the upcoming 

chapter, it will be spread out how each of these design components is implemented 

and realized.   

Figure 5.3: Image Quality Evaluation Model  
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Chapter 6       Implementation 

 

6.1 Introduction 

In this chapter, the designs described in the previous chapter are realized. Each module 

described in the Design chapter is expanded in the following aspects not only limiting 

to Software, Hardware, Algorithms, Flow Charts and Code segments. 

Any special hardware component for this project except the GPU in the PC and cloud 

environment was not used. 

 

6.2 Data Generator Implementation 

6.2.1 Dataset 

Similar to any other Deep Learning based project data is a deciding factor for the 

success of the project. The focus of this project is to implement SR module for 

particularly in the medical image domain. Hence, it was required a large dataset for 

the training purpose. The freely available online datasets of medical images were 

downloaded for the purposes. 

Following datasets are used in this project. 

 Kaggle Brain MRI dataset for Tumor Detection - 

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-

detection - 98 Images 

 SIIM dataset (CT) - https://www.kaggle.com/kmader/siim-medical-images - 

100 Images 

These two datasets are used to generate the low-high resolution pairs with our Data 

Generator Module. 

6.2.2 Data Generator 

The complete implementation of this project was done with Python programming 

language, so was the image generator. For this, two separate image sets were used for 

testing and evaluation purposes, respectively.  

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/kmader/siim-medical-images
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The following flowchart describes the overall implementation of the data generator 

module. 

 

The original input datasets mentioned in 6.1 were sent through the data generator 

process as above. For this implementation Python packages; PIL, 

NumPy and h5py were used. PIL and NumPy were used for pixel operations and h5py 

was used for training and evaluation data file generation. 

The module checks whether the input images have several layers or one if it is an RGB 

image, then it will do the grey scale conversion with pil_image conversion module.  

Figure 6.1: Data Generator – Flow Chart 
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After that, if the image was represented as an integer (0,255) it was converted to 0-1 

range by dividing it by 255. After the conversion, images were cropped either to 20x20 

sub images. These were considered the high resolution reference images. When 

cropping the images, a stride of 10 pixels was considered.  

The reference images were then scaled down using the popular Bicubic interpolation 

technique. Here a separate function was used for down-sampling of the images. A 

downsampling factor of 2 was used to obtain 10 x 10 images. 

Then, they both reference and down-sampled patches were converted to NumPy array. 

After iterating through the images in either training or evaluation test, the NumPy array 

was written to the h5 file.  

By running on two image datasets of training and evaluation, training.h5 and eval.h5 

files were obtained. (Appendix II) 

 

6.3 Overall implementation 

The core of the system is the Caps-Net module. For the new implementation, the 

official implementation of the FSRCNN [37] with Pytorch [48] was used as the base 

architecture. 

 

Figure 6.2: FSRCNN Architecture 
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It consists of two components re-used directly with the new implementation; 

Convolution Layers and Reconstruction (De-convolution) Layers. The core Capsule 

model was introduced between these two components bringing the novelty in this 

research. 

 

6.4 Re-usable Layers  

6.4.1 Initial Convolution Layers 

The convolution layers were implemented using the standard Pytorch Conv2D 

function. The number of filters, kernel size, stride and padding parameters were 

changed to extract different features at different scales. Several parameter settings 

were used and the highest accuracy figure was given by the following configuration.  

Number of filters – 56 

Kernel size – 3x3 

Stride – 1 

With padding – 1 each side 
 

6.4.2 Reconstruction Layers 

The Reconstruction Module in FSRCNN is also a reusable component in the new 

implementation. It is using Deconvolution (ConvTranspose2d) algorithm 

implemented by Pytorch. The deconvolution layer consists of several configurable 

parameters; kernel size, output stride and padding.  

The DeConv configuration that gives the highest accuracy is as follows. 

Kernel Size = 9x9 

Output Stride = Scale factor -1 

Padding 4 

 

The core of the implementation, Caps Net was implemented along with three routing 

mechanisms, namely, Dynamic routing, EM routing and Inverted Dot Product based 

Attention routing. The next section is dedicated to the description of the 

implementation of these Caps Net models. 
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6.5 Dynamic Routing 

As described in section 3.4.3.1 Dynamic Routing was the first implementation of 

Caps-Net inside the system. The architecture of the DR layers can be identified by Fig. 

6.3. The implementation of the layers was inspired by the official DR implementation 

(MNIST classification) for PyTorch [49].  

 

 

The following modifications were imposed on the existing DR implementation. 

1. Modification of Primary Capsule layer such that kernel size, striding and 

padding can be configured dynamically. 

2. Modification of Routing Capsule layer model such that different input sizes are 

accepted for the first layer. 

After the changes, the highest performance architecture was given as follows. 

(Appendix I – DR Training) 

For the Primary Capsule Layer 

Output channels - 12 

Capsule dimensionality - 4 

Total number of capsules – 12 (12/4 = 3 Capsules blocks) 

Kernel size -1  

Figure 6.3: DR based Caps-Net Architecture 
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Stride -1  

No Padding 
 

Routing Capsules (3 layers). For each layer following same configuration was used. 

Total number of capsules - 12   

Dimensionality of the output capsule layer – Original image size   

(Appendix III) 

This capsule implementation was placed in the FSRCNN architecture replacing the 

middle part of the CNN architecture.  

 

6.6 Expectation Maximization 

The EM routing mechanism was implemented as the second method. The architecture 

of the Caps Conv layers in the EM routing mechanism can be identified by Fig. 6.4. 

The implementation of the layers was inspired by the official Matrix-Capsule-with EM 

routing implementation (MNIST classification) for PyTorch [50]. 

 

In contrast to Dynamic routing architecture, the Primary capsule layer consists of 3 

capsule layers each consisting of a 4x4 pose matrix and an activation. Hence, the 

capsule dimensionality is 51(= (4 x 4+1) x3).  

For the Primary Capsule Layer 

Output channels - 3 

Pose matrix – 4 x 4 

Figure 6.4: EM Routing based Caps Net Architecture 
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Kernel size -1  

Stride -1  

No Padding 

 

With comparable to DR Routing technique, 3 Convolution Capsule layers were 

implemented and routed with EM routing mechanism. 

For the Conv-Capsule layers following parameters were used. The number of channels 

of 56 was obtained with several configuration changes and evaluating their accuracies. 

Output channels – 56 (This is set for all 3 Capsule layers) 

Pose matrix – 4 x 4 

Kernel size -1  

Stride -1  

No Padding 

 

With this setting, the density of the output channel becomes 952 (= (4x4+1)*56). 

 

After the iterations, the output was reshaped such that it was compatible with the 

deconvolution layer. Here, the density (952 in this case) was switched as the first 

dimension of the output. This output was set as the input to the deconvolution layer. 

(Appendix IV) 

 

6.7. Attention based Routing 

The latest implementation of ‘Inverted Dot Product based Attention Routing’ is 

introduced in this section. Similar to the previously mentioned mechanisms, the same 

SR pipeline was used. Only the core of the pipeline was replaced with the Attention 

Routing Capsules.  
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For this, the code was modified with the help of the official implementation of Inverted 

Dot-Product Attention Routing [51].  

Up to the Primary Capsule layer, the structure was the same as that of the DR 

architecture. After that, Attention Routing was adopted as follows.  

Output channels - 4 

Pose matrix – 4 x 4 

Kernel size -1  

Stride -1  

No Padding 

(Appendix V) 

 

This same structure was repeated for 3 layers. During the training process, the 

concurrent routing mechanism was endorsed to reduce the overall training time. 

Finally, the Conv-Caps output is routed through the De-Convolution layer to generate 

a higher resolution image. 

 

6.8 Training 

The training was performed on a PC with the following specifications. 

RAM -16 GB 

GPU - 4GB, NVidia (1650Q) 

CPU – Intel Core i7 – 9750H CPU of 2.6GHz 

 

Figure 6.5: Inverted Dot Product based Routing Caps Net Architecture 
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All the training was done under the utilization of GPU by compelling models and 

dataset into GPU arrays with the PyTorch framework based Cuda – GPU commands. 

 

The dataset and training iterations for the training purpose were configured as follows. 

 

Batch size – 16 

Epochs – 20 

Dataset – 307,520 image pairs (10x10 LR and 20x20HR) 

Learning rate - 0.001 

 

After 20 epochs, the model with the best PSNR ratio was saved as the trained model 

in ‘.pth’ format.  

 

 

6.9 Summary 

The practical realization of the Capsule Network based SR system is explicated here. 

With the detailed diagrams, the implementation of each design component explained 

in the previous chapter is described in detail with code segments, network 

configurations and training configurations, etc. The upcoming chapter describes how 

the implemented system was evaluated against the desired expectations. 
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Chapter 7        Evaluation  

       

7.1 Introduction 

The main goal in this section is to compare the CapsNet based SR techniques which 

are introduced in this project against state of the art CNN based methods as well as the 

traditional highly used SR technique. For the comparison, not only limiting to PSNR, 

several other image quality assessment indexes have been used. A brief overview of 

these indices is described in the following section. 

In addition to the method comparison over image accuracies, time to train, training 

accuracy improvement rate parameters are also evaluated for further information. 

This chapter describes the evaluation strategies, experimental design and evaluation 

results in an orderly manner. 

 

7.2 Evaluation Strategy 

7.2.1 Evaluation at Training 

For this, the evaluation dataset obtained at the data generation phase was used. There, 

50,000 LR and HR image pairs have been used for evaluation with a batch of 16. Peak 

Signal to Noise Ratio (PSNR) has been used for this evaluation and acted as an 

indicator of the performance of the training phase.   

The PSNR calculation function is simply implemented by considering the PSNR 

formula and called at the evaluation instance. (Appendix VI) 

7.2.2 Overall Evaluation 

7.2.2.1 Evaluation Data Generator 

The evaluation data generator sub-module was implemented as follows. First, a new 

data set of medical images was selected (https://www.kaggle.com/navoneel/brain-mri-

images-for-brain-tumor-detection). An image cropper program was built for this 

purpose. It was given the HR image window size and the scaling factor as inputs for 

this program. This program reads all the image files in a given directory and crops the 

sub images from each image. Then, those sub images are saved in a folder in .png 
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format. Simultaneously, a downscaled version of those images too is saved in another 

folder. Image size of 100x100 and scaling factor of 2 were used for this purpose. It 

indicates that two folders are containing 100x100 and 50x50 image samples in gray 

scale. (Appendix VII). 

Then, with a ‘Zooming’ application the downscaled images were converted to up-

scaled image samples. This ‘Zooming’ application accepts the trained model file and 

the LR image as input. As the current set of models were trained for zooming 10 x10 

patches into 20 x 20 patches, 10x10 patches were extracted from the LR images. For 

50 x 50 images, there are 25(= 5 x 5) such patches. Each patch is up-scaled using 

different SR models; Bicubic, FSRCNN, DR, EM and Attention routing. Finally, they 

were merged to generate one 100x100 up-scaled image. These images were saved in 

different folders corresponding to the SR technique. (Appendix VIII) 

7.2.2.2 Data Evaluator 

This was developed as a separate Python module. It reads the images from the above 

mentioned folders, and the original folder to calculate the image comparison matrix. 

For this, several image quality assessment methods have been used. The 

implementation was not done from the ground level instead of the python package 

‘sewar’ [52]. The inbuilt modules; ‘psnr’, ‘ssim’, ‘msssim’ and ‘uqi’ have been used 

directly inside the evaluator module. (Appendix IX) 

After running through all the images, it calculates the average values for all the quality 

indexes by dividing by the image count. In the next sub section, an overview of image 

quality indexes is given. 

 

7.2.3 PSNR 

The main evaluation method used in the project is the standard image quality 

comparison method that is used in the industry, called Peak Signal-to-Noise Ratio 

(PSNR). It measures the maximum possible power of a signal and the power of 

corrupting noise that affects the fidelity of its representation. 
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For a gray scale image, Mean Squared Error (MSE) is defined as follows. 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]𝑛−1

𝑗=0
2𝑚−1

𝑖=0 (Eq.1) 

Here m & n are the width and the height of the image. In our case image is the high 

resolution SR output image. ‘I’ represents the reference image whereas ‘K’ represents 

the image output from our Caps-Net. As indicated by the equation, it is noticeable 

when the SR technique generated image is closer to the reference image MSE value 

will be smaller. 

𝑃𝑆𝑁𝑅 = 20. log10 𝑀𝐴𝑋𝑖 − 10. log10 𝑀𝑆𝐸 (Eq.2) 

Here, MAXi is the maximum possible pixel value of the image. It is evident that, for 

the lower MSE images the PSNR value will be higher. 

 

7.2.4 SSIM 

The second evaluation index that is considered for evaluation is the Structural 

Similarity Index (SSIM) [45]. This index quantifies the image quality degradation 

from the original image. It’s more associated with the human perception of differences 

between two images, such as luminance, contrast and structure. In contrast to PSNR, 

SSIM lays its foundation on the visible structures inside the image. This is because it 

has taken into consideration that the pixels have interdependencies in a small sub area. 

In some cases, SSIM is recognized to be a more convenient method than PSNR as it 

reflects human perception. 

The formula for SSIM is given as follows. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

Here, x,y represents the original image and the derived image respectively. The µ and   

𝜎 have their usual meanings of mean and standard deviation of pixels inside a 

considered window. 
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SSIM is dependent upon the distribution of the pixel values. The range of possible 

values of SSIM is between (-1, 1) whereas 1 indicates perfect structural mapping. 

 

7.2.5 MSSSIM  

The Multi Scale SSIM [46] is one of the extensions to the SSIM. The SSIM is derived 

by combining 3 formulas indicating 3 elements; contrast, structure and luminance. 

These are highly dependent upon the sub window size of the view scale SSIM 

(Typically set at 8pixel, 10 pixel windows).  This method tries to generalize SSIM by 

evaluating SSIM at different scales and deriving an index. 

7.2.6 UIQ 

The Universal Image Quality Index (UIQ) [47] was introduced before SSIM and laid 

the foundation for SSIM as well. The UIQ is defined as follows. 

𝑄(𝑥, 𝑦) =
4𝜎𝑥𝑦𝜇𝑥𝜇𝑦

(𝜇𝑥
2 + 𝜇𝑦

2)(𝜎𝑥
2 + 𝜎𝑦

2)
 

As indicated by the equation, its resemblance with SSIM is clearly evident. It helps to 

evaluate two images without considering the luminance conversion of image into HSV 

plane. This is because, the luminance distortion, contract distortion and loss of 

correlation is implicitly embedded into the equation. 

The upcoming section describes how experimental setup was done to evaluate SR 

techniques over the above indices. 

 

7.3 Experimental Setup 

The core experimental setup can be described with the following steps. 

1. Obtain randomly generated 2500 image pairs of low-high resolution of 

different medical imaging modalities 

2. Input low resolution images into particular SR algorithm 

3. Image quality index calculation via Evaluation module 

4. Comparison among different SR algorithms 
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In extension to the, core evaluation training process and model parameter evaluation 

was also done with the data obtained at the training time. 

 

7.4 SR Techniques Comparison  

Table 7.1 provides a quantitative comparison of the generated dataset explained in 

Section 6.2. A comparison has been done for the proposed techniques against the state-

of-the-art technique FSRCNN and the widely used the old method Bicubic 

interpolation method. The models were trained for scaling images up to 2x factor only. 

Table 7.1: Quantitative Comparison of Results 

SR technique PSNR SSIM UQI MSSSIM 

Dynamic Routing 42.10754659 0.974436038 0.985257827 0.995784307 

EM Routing 36.27424783 0.916861082 0.850859974 0.98513547 

Attention Routing 40.32626865 0.950900289 0.89400693 0.994521225 

FSRCNN 40.73684391 0.953492091 0.900293958 0.995011494 

Bicubic 38.09835088 0.920734985 0.862577213 0.989270289 

 

As indicated by the results, the Dynamic Routing mechanism shows the most 

outstanding results amongst all. By all indexes, it is reflected that the DR method leads 

not only in one index but in all of the indexes that have been used for evaluation. There 

is a significant difference between PSNR and UQI indices in the DR method. The latest 

method introduced in this research, the Attention Routing SR technique was performed 

Figure 7.1: Experimental Setup for Evaluation 
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slightly below the current state of the art method FSRCNN. The FSRCNN method has 

the second best performance for the given dataset. However, this slight quality 

difference between FSRCNN and Attention Routing based method is not qualitatively 

different as indicated in the following section by the image results. Unexpectedly, the 

EM routing performance was even lower than the traditional bicubic method. This 

could be because the increased number of Caps-Conv layers may have resulted in over-

fitting the training round evaluation dataset as well. For the versatile new evaluation 

dataset, it is unable to generate target capsule candidates to input for the reconstruction 

module. 

 

 

In addition to the quantitative analysis, a qualitative results (Appendix-X) is also 

presented for further clarification of the system. There, a set of medical sub-images 

(10 images) were given for a medical doctor for evaluation. The medical doctor has 

given scores starting from 5 to 1 for each SR method. The highest score is assigned to 

the highest quality image and vice versa. The cumulative results show the similar 

implication as the above mentioned quantitative analysis. The DR method scores the 

Figure 7.2: Original Image (Top-Left), Caps-Net Attention (Top-

Middle), Bicubic (Top-Right), FSRCNN (Bottom-Left), DR 

(Bottom-Middle), EM (Bottom-Right) 
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highest among all. The Attention method scores at the second place and in conflicting 

FSRCNN scores the third while dragging Bicubic and EM Routing methods fourth and 

fifth places respectively. 

Further to the image quality assessment, the training performance and model size 

analysis was also carried out. This is particularly important as the computing 

performance is also an impactful factor in medical imaging applications. 

This comparison was done with fully dedicated PC for SR training process (No other 

program was run during the training process.) 

Table 7.2: Training Performance of SR Techniques 

Model Number of Trainable Parameters Time per Epoch 

FSRCNN 12,809 7-11 minutes 

Dynamic Routing 1,442,273 20-25 minutes 

EM Routing 10,128 30-35 minutes 

Attention Routing 2,274 12-15 minutes 

Figure 7.3: Original Image (Top-Left), Caps-Net Attention (Top-Middle), 

Bicubic (Top-Right), FSRCNN (Bottom-Left), DR (Bottom-Middle), EM 

(Bottom-Right) 
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With the analysis, it exhibits that FSRCNN has the best performance during the 

training and EM routing based SR technique takes the longest time for training 

amongst the tested methods.  

Another important fact to be noticed is that, the number of trainable parameters show 

no correlation with the training time.  

The powerful learning capability of Attention Routing in SR task is emphasized 

through this simple analysis as well. With 1/6 th of learnable parameters, Attention 

Routing based SR technique achieves the same level of accuracy of FSRCNN.  

In addition to the time performance analysis, for the selected architectures from each 

of the techniques a training evaluation was also done. The average PSNR was 

considered to be the evaluation parameter for this. 

 

Figure 7.4: PSNR Variation over Epochs 
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It is worth pointing out that, Dynamic Routing surpasses the other techniques from the 

very beginning as well. The Attention Routing mechanism started with low PSNR at 

the beginning and the end of 20 epochs, it has reached the same PSNR ratio obtained 

by the FSRCNN. Probably, with more iterations, the Attention routing method could 

transcend the performance of FSRCNN as well. 

 

7.5 Summary 

The current method in generating HR images is evaluated against the state of the art 

method and one of the traditional methods in the domain. This detailed evaluation is 

explained starting from the strategy to the results through the experimental design. The 

evaluated results will back-up the overall conclusion that is pointed out in the next 

chapter.  
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Chapter 8     Conclusion & Further Work  

    

8.1 Introduction 

In this research, a novel integration of state of the art Capsule Net routing mechanism; 

(Inverted Dot Product based) Attention Routing to one of the existing single image SR 

pipeline was introduced. Moreover, several architectural modifications to previously 

introduced Caps Net based approaches were also brought up. Unlike the previous 

literature where an existing dataset was used, a custom medical image dataset was 

generated and used for modeling and evaluation. This was done to highlight the 

relevance of the SR techniques in medical image analysis. The previous chapter, a 

thorough evaluation was presented on the new SR approach and it was positioned 

among state-of-the-art techniques. This chapter will conclude the dissertation by 

emphasizing the achievement of the objectives, drawn conclusions and further work 

to be conducted in this area of research with the support of the information provided 

in the evaluation chapter. 

 

8.2 Conclusion 

8.2.1 Achievement of Project Objectives 

The overall project process was relied on achieving the objectives mentioned in the 

introduction chapter. By following the proper project process, all of the objectives 

were achieved as expected.   

With a thorough and substantial literature review, several drawbacks in the current SR 

techniques and attempts to address these issues were identified. By spotting the current 

research trend in SR methods, one of the recently developed and one time-attempted 

method was considered to lay down a new solution in the SR domain. The Capsule 

Network was identified as the learning core of the new solution.  

The existing SR pipeline established in FSRCNN was altered by introducing the 

newest Caps Net routing algorithm, namely Inverted Dot Product based Attention 

Routing. For the completion of the solution, two of the previously used routing 



49 

 

techniques; Dynamic Routing and EM Routing were also used with different 

configurations. 

All of the Caps Net techniques were implemented and integrated into the SR pipeline 

enabling richer information flow inside the SR pipeline. As indicated in Chapter 7 – 

Implementation, several configurations were tried for each of the Caps Net methods 

and the best-trained models were saved for further use. Another important point to be 

noticed is that a new dataset was generated for the training purpose with one of the 

freely available medical image datasets.  

After the implementation of these methods, each of them was evaluated using a new 

dataset, which was also generated with another open-source medical database. Several 

standard image quality indexes were used for the evaluation. Moreover, training time 

and parameter analysis of each model was also carried out explaining more about this 

novel approach. 

According to the last objective, with the image results, clinician opinion was attained 

and the responses were positive and pleasing. Finally, at the time of the dissertation 

submission, one conference paper was drafted fully as ‘Super-Resolution Techniques’ 

paper with the study expecting to submit to an upcoming conference. 

 

8.2.2 Overall Conclusion 

To overcome the drawbacks like chessboard effect, initial resizing of the image and 

also to exploit the ability of different Caps Net based SR techniques in the field of 

medical image domain, several Capsule Network based SR pipelines were introduced. 

Amongst the 3 Caps-Net architectures namely; Dynamic Routing, EM Routing, and 

Inverted Dot Product based Attention Routing, the last mentioned technique was 

introduced. The modified DR based Caps Net outperforms all of the SR techniques 

that were evaluated in this research. The newly proposed Attention Routing based 

Caps Net has shown significant results comparable with FSRCNN method as indicated 

in the Evaluation chapter. This provides evidence that the richness of Caps Net inner 

structure to map between low resolutions features to high-resolution features. 

Particularly, achieving the same level of image quality with a much less number of 
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NN parameters in Attention Routing mechanism indicates the profound information 

compression and embedding in this SR method. 

Showing no significant correlation between the training time and the number of 

training parameters of the tested models manifests the impact of routing or the 

complexity of forward passing in a model.  

By using a specific medical image dataset for training and evaluation, the networks 

were specially trained for capturing features related to medical images. According to 

the feedbacks from the clinicians about the system, the system is capable to deploy in 

a medical imaging system setting. 

With the evaluation results and the step by step concluded outcomes, the project 

hypothesis that image quality performance of Capsule Net based Super Resolution 

model for medical image resolution enhancement is further improved by changing the 

routing mechanism and the layered architecture is proved. 

 

8.3 Limitations and Further Works 

Even though the Attention-Routing mechanism inside the SR pipeline significantly 

reduces the training time compared to DR and EM routing mechanisms, FSRCNN 

training time is still comparably low even with a higher number of parameters. Further 

research should be carried out for time optimization of Caps Net based architectures.  

The tested models could also be further evaluated not only by changing the core feature 

learning part, but also the reconstruction methodology of the algorithm.  

Lastly, to practical deployment of the system in a clinical setting, the models should 

be integrated with a GUI based application. 

 

8.4 Summary 

By bringing the end to the thesis, this chapter describes, to which extent the objectives 

were achieved, the overall conclusion and the limitations and the further works to be 

done. Few sideline tasks were identified further to explore the SR field more and to 

bring the current method into practical ground.  
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Appendix 

Appendix I: Inverted Dot Product Based Attention Routing  

 Concurrent Routing Pseudo Code 

 

 

Appendix II: Data Generator 

import argparse 
import glob 
import h5py 
import numpy as np 
import PIL.Image as pil_image 
from utils import calc_patch_size, convert_rgb_to_y 
 
 
def train(args): 
    h5_file = h5py.File(args.output_path, 'w') 
 
    lr_patches = [] 
    hr_patches = [] 
 
    for image_path in sorted(glob.glob('{}/*'.format(args.images_dir))): 
        hr = pil_image.open(image_path).convert('RGB') 
        hr_images = [] 
 
        if args.with_aug: 
            for s in [1.0, 0.9, 0.8, 0.7, 0.6]: 
                for r in [0, 90, 180, 270]: 
                    tmp = hr.resize((int(hr.width * s), int(hr.height * s)), resample=pil_image.BICUBIC) 
                    tmp = tmp.rotate(r, expand=True) 
                    hr_images.append(tmp) 
        else: 
            hr_images.append(hr) 
 
        for hr in hr_images: 
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            hr_width = (hr.width // args.scale) * args.scale 
            hr_height = (hr.height // args.scale) * args.scale 
            hr = hr.resize((hr_width, hr_height), resample=pil_image.BICUBIC) 
            lr = hr.resize((hr.width // args.scale, hr_height // args.scale), resample=pil_image.BICUBIC) 
            hr = np.array(hr).astype(np.float32) 
            lr = np.array(lr).astype(np.float32) 
            hr = convert_rgb_to_y(hr) 
            lr = convert_rgb_to_y(lr) 
 
            for i in range(0, lr.shape[0] - args.patch_size + 1, args.scale): 
                for j in range(0, lr.shape[1] - args.patch_size + 1, args.scale): 
                    lr_patches.append(lr[i:i + args.patch_size, j:j + args.patch_size]) 
                    hr_patches.append(hr[i * args.scale:i * args.scale + args.patch_size * args.scale, 
                                      j * args.scale:j * args.scale + args.patch_size * args.scale]) 
 
    lr_patches = np.array(lr_patches) 
    hr_patches = np.array(hr_patches) 
 
    h5_file.create_dataset('lr', data=lr_patches) 
    h5_file.create_dataset('hr', data=hr_patches) 
 
    h5_file.close() 
 
 
def eval(args): 
    h5_file = h5py.File(args.output_path, 'w') 
 
    lr_group = h5_file.create_group('lr') 
    hr_group = h5_file.create_group('hr') 
 
    for i, image_path in enumerate(sorted(glob.glob('{}/*'.format(args.images_dir)))): 
        hr = pil_image.open(image_path).convert('RGB') 
        hr_width = (hr.width // args.scale) * args.scale 
        hr_height = (hr.height // args.scale) * args.scale 
        hr = hr.resize((hr_width, hr_height), resample=pil_image.BICUBIC) 
        lr = hr.resize((hr.width // args.scale, hr_height // args.scale), resample=pil_image.BICUBIC) 
        hr = np.array(hr).astype(np.float32) 
        lr = np.array(lr).astype(np.float32) 
        hr = convert_rgb_to_y(hr) 
        lr = convert_rgb_to_y(lr) 
 
        lr_group.create_dataset(str(i), data=lr) 
        hr_group.create_dataset(str(i), data=hr) 
 
    h5_file.close() 
 
 
if __name__ == '__main__': 
    parser = argparse.ArgumentParser() 
    parser.add_argument('--images-dir', type=str, required=True) 
    parser.add_argument('--output-path', type=str, required=True) 
    parser.add_argument('--scale', type=int, default=2) 
    parser.add_argument('--patch-size', type=int, default=20) 
    parser.add_argument('--with-aug', action='store_true') 
    parser.add_argument('--eval', action='store_true') 
    args = parser.parse_args() 
 
    if not args.eval: 
        train(args) 
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    else: 
        eval(args) 

 

    print(out.size()) 
 
 
if __name__ == "__main__": 
    main() 

  

Appendix III – Dynamic Routing 

DR Implementation 

class RoutingCapsules(nn.Module): 
    def __init__(self, in_dim, in_caps, num_caps, dim_caps, num_routing, device: torch.device): 
        """ 
        Initialize the layer. 
        Args: 
            in_dim:       Dimensionality (i.e. length) of each capsule vector. 
            in_caps:      Number of input capsules if digits layer. 
            num_caps:     Number of capsules in the capsule layer 
            dim_caps:     Dimensionality, i.e. length, of the output capsule vector. 
            num_routing:   Number of iterations during routing algorithm 
        """ 
        super(RoutingCapsules, self).__init__() 
        self.in_dim = in_dim 
        self.in_caps = in_caps 
        self.num_caps = num_caps 
        self.dim_caps = dim_caps 
        self.num_routing = num_routing 
        self.device = device 
 
        self.W = nn.Parameter(0.01 * torch.randn(1, num_caps, in_caps, dim_caps, in_dim)) 
 
    def __repr__(self): 
        tab = '  ' 
        line = '\n' 
        next = ' -> ' 
        res = self.__class__.__name__ + '(' 
        res = res + line + tab + '(' + str(0) + '): ' + 'CapsuleLinear(' 
        res = res + str(self.in_dim) + ', ' + str(self.dim_caps) + ')' 
        res = res + line + tab + '(' + str(1) + '): ' + 'Routing(' 
        res = res + 'num_routing=' + str(self.num_routing) + ')' 
        res = res + line + ')' 
        return res 
 
    def forward(self, x): 
        batch_size = x.size(0) 
        # (batch_size, in_caps, in_dim) -> (batch_size, 1, in_caps, in_dim, 1) 
        x = x.unsqueeze(1).unsqueeze(4) 
        # 
        # W @ x = 
        # (1, num_caps, in_caps, dim_caps, in_dim) @ (batch_size, 1, in_caps, in_dim, 1) = 
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        # (batch_size, num_caps, in_caps, dim_caps, 1) 
        u_hat = torch.matmul(self.W, x) 
        # (batch_size, num_caps, in_caps, dim_caps) 
        u_hat = u_hat.squeeze(-1) 
        # detach u_hat during routing iterations to prevent gradients from flowing 
        temp_u_hat = u_hat.detach() 
 
        ''' 
        Procedure 1: Routing algorithm 
        ''' 
        b = torch.zeros(batch_size, self.num_caps, self.in_caps, 1).to(self.device) 
 
        for route_iter in range(self.num_routing - 1): 
            # (batch_size, num_caps, in_caps, 1) -> Softmax along num_caps 
            c = F.softmax(b, dim=1) 
 
            # element-wise multiplication 
            # (batch_size, num_caps, in_caps, 1) * (batch_size, in_caps, num_caps, dim_caps) -> 
            # (batch_size, num_caps, in_caps, dim_caps) sum across in_caps -> 
            # (batch_size, num_caps, dim_caps) 
            s = (c * temp_u_hat).sum(dim=2) 
            # apply "squashing" non-linearity along dim_caps 
            v = squash(s) 
            # dot product agreement between the current output vj and the prediction uj|i 
            # (batch_size, num_caps, in_caps, dim_caps) @ (batch_size, num_caps, dim_caps, 1) 
            # -> (batch_size, num_caps, in_caps, 1) 
            uv = torch.matmul(temp_u_hat, v.unsqueeze(-1)) 
            b += uv 
 
        # last iteration is done on the original u_hat, without the routing weights update 
        c = F.softmax(b, dim=1) 
        s = (c * u_hat).sum(dim=2) 
        # apply "squashing" non-linearity along dim_caps 
        v = squash(s) 
 
        return v 

 

DR - SR Model 

class DynamicRoutingModel(nn.Module): 
    def __init__(self, scale_factor=4, num_channels=1, out_channels=56, s=12, m=4, batch_size=16, 
image_size=10): 
        super(DynamicRoutingModel, self).__init__() 
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
 
        self.batch_size = batch_size 
 
        primary_caps_total_out_channel = 12 
        per_channel_capsules = 4 
        capsule_channels = primary_caps_total_out_channel // per_channel_capsules 
        routing_caps_in_caps = capsule_channels * image_size * image_size 
        routing_capsule_channel_dimensionality = image_size * image_size 
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        self.first_part = nn.Sequential( 
            nn.Conv2d(num_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=3 // 
2), 
            nn.PReLU(out_channels) 
        ) 
        self.primary_caps = PrimaryCapsules(in_channels=56, out_channels=12, dim_caps=4, 
                                            kernel_size=1, stride=1, padding=0) 
 
        self.routing_capsule = RoutingCapsules(in_dim=4, in_caps=routing_caps_in_caps, 
                                               num_caps=12, num_routing=3, 
                                               dim_caps=routing_capsule_channel_dimensionality, 
                                               device=device) 
 
        self.last_part = nn.ConvTranspose2d(in_channels=12, out_channels=1, kernel_size=9, 
stride=scale_factor, 
                                            padding=9 // 2, 
                                            output_padding=scale_factor - 1) 

 

Appendix IV – EM Routing 

EM Routing Implementation 

class ConvCaps(nn.Module): 
    r"""Create a convolutional capsule layer 
    that transfer capsule layer L to capsule layer L+1 
    by EM routing. 
    Args: 
        input_channels: input number of types of capsules 
        output_channels: output number on types of capsules 
        kernel_size: kernel size of convolution 
        pose_matrix_size: size of pose matrix is pose_matrix_shape*pose_matrix_shape 
        stride: stride of convolution 
        iters: number of EM iterations 
        coor_add: use scaled coordinate addition or not 
        w_shared: share transformation matrix across w*h. 
    Shape: 
        input:  (*, h,  w, out_channels*(pose_matrix_shape*pose_matrix_shape+1)) 
        output: (*, h', w', C*(pose_matrix_shape*pose_matrix_shape+1)) 
        h', w' is computed the same way as convolution layer 
        parameter size is: 
kernel_size*kernel_size*out_channels*C*pose_matrix_shape*pose_matrix_shape + 
out_channels*pose_matrix_shape*pose_matrix_shape 
    """ 
 
    def __init__(self, input_channels=32, output_channels=32, kernel_size=3, pose_matrix_size=4, 
stride=2, iters=3, 
                 coor_add=False, w_shared=False): 
        super(ConvCaps, self).__init__() 
        # TODO: lambda scheduler 
        # Note that .contiguous() for 3+ dimensional tensors is very slow 
        self.B = input_channels 
        self.C = output_channels 
        self.K = kernel_size 
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        self.P = pose_matrix_size 
        self.psize = pose_matrix_size * pose_matrix_size 
        self.stride = stride 
        self.iters = iters 
        self.coor_add = coor_add 
        self.w_shared = w_shared 
        # constant 
        self.eps = 1e-8 
        self._lambda = 1e-03 
        self.ln_2pi = torch.cuda.FloatTensor(1).fill_(math.log(2 * math.pi)) 
        # params 
        # Note that \beta_u and \beta_a are per capsule type, 
        # which are stated at https://openreview.net/forum?id=HJWLfGWRb&noteId=rJUY2VdbM 
        self.beta_u = nn.Parameter(torch.zeros(output_channels)) 
        self.beta_a = nn.Parameter(torch.zeros(output_channels)) 
        # Note that the total number of trainable parameters between 
        # two convolutional capsule layer types is 4*4*k*k 
        # and for the whole layer is 4*4*k*k*out_channels*output_channels, 
        # which are stated at https://openreview.net/forum?id=HJWLfGWRb&noteId=r17t2UIgf 
        self.weights = nn.Parameter( 
            torch.randn(1, kernel_size * kernel_size * input_channels, output_channels, pose_matrix_size, 
                        pose_matrix_size)) 
        # op 
        self.sigmoid = nn.Sigmoid() 
        self.softmax = nn.Softmax(dim=2) 
 
    def m_step(self, a_in, r, v, eps, b, B, C, psize): 
        """ 
            \mu^h_j = \dfrac{\sum_i r_{ij} V^h_{ij}}{\sum_i r_{ij}} 
            (\sigma^h_j)^2 = \dfrac{\sum_i r_{ij} (V^h_{ij} - mu^h_j)^2}{\sum_i r_{ij}} 
            cost_h = (\beta_u + log \sigma^h_j) * \sum_i r_{ij} 
            a_j = logistic(\lambda * (\beta_a - \sum_h cost_h)) 
            Input: 
                a_in:      (b, output_channels, 1) 
                r:         (b, out_channels, output_channels, 1) 
                v:         (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape) 
            Local: 
                cost_h:    (b, output_channels, pose_matrix_shape*pose_matrix_shape) 
                r_sum:     (b, output_channels, 1) 
            Output: 
                a_out:     (b, output_channels, 1) 
                mu:        (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape) 
                sigma_sq:  (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape) 
        """ 
        r = r * a_in 
        r = r / (r.sum(dim=2, keepdim=True) + eps) 
        r_sum = r.sum(dim=1, keepdim=True) 
        coeff = r / (r_sum + eps) 
        coeff = coeff.view(b, B, C, 1) 
 
        mu = torch.sum(coeff * v, dim=1, keepdim=True) 
        sigma_sq = torch.sum(coeff * (v - mu) ** 2, dim=1, keepdim=True) + eps 
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        r_sum = r_sum.view(b, C, 1) 
        sigma_sq = sigma_sq.view(b, C, psize) 
        cost_h = (self.beta_u.view(C, 1) + torch.log(sigma_sq.sqrt())) * r_sum 
 
        a_out = self.sigmoid(self._lambda * (self.beta_a - cost_h.sum(dim=2))) 
        sigma_sq = sigma_sq.view(b, 1, C, psize) 
 
        return a_out, mu, sigma_sq 
 
    def e_step(self, mu, sigma_sq, a_out, v, eps, b, C): 
        """ 
            ln_p_j = sum_h \dfrac{(\V^h_{ij} - \mu^h_j)^2}{2 \sigma^h_j} 
                    - sum_h ln(\sigma^h_j) - 0.5*\sum_h ln(2*\pi) 
            r = softmax(ln(a_j*p_j)) 
              = softmax(ln(a_j) + ln(p_j)) 
            Input: 
                mu:        (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape) 
                sigma:     (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape) 
                a_out:     (b, output_channels, 1) 
                v:         (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape) 
            Local: 
                ln_p_j_h:  (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape) 
                ln_ap:     (b, out_channels, output_channels, 1) 
            Output: 
                r:         (b, out_channels, output_channels, 1) 
        """ 
        ln_p_j_h = -1. * (v - mu) ** 2 / (2 * sigma_sq) \ 
                   - torch.log(sigma_sq.sqrt()) \ 
                   - 0.5 * self.ln_2pi 
 
        ln_ap = ln_p_j_h.sum(dim=3) + torch.log(a_out.view(b, 1, C)) 
        r = self.softmax(ln_ap) 
        return r 
 
    def caps_em_routing(self, v, a_in, C, eps): 
        """ 
            Input: 
                v:         (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape) 
                a_in:      (b, output_channels, 1) 
            Output: 
                mu:        (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape) 
                a_out:     (b, output_channels, 1) 
            Note that some dimensions are merged 
            for computation convenient, that is 
            `b == batch_size*oh*ow`, 
            `out_channels == self.kernel_size*self.kernel_size*self.out_channels`, 
            `psize == self.pose_matrix_shape*self.pose_matrix_shape` 
        """ 
        b, B, c, psize = v.shape 
        assert c == C 
        assert (b, B, 1) == a_in.shape 
 
        r = torch.cuda.FloatTensor(b, B, C).fill_(1. / C) 
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        for iter_ in range(self.iters): 
            a_out, mu, sigma_sq = self.m_step(a_in, r, v, eps, b, B, C, psize) 
            if iter_ < self.iters - 1: 
                r = self.e_step(mu, sigma_sq, a_out, v, eps, b, C) 
 
        return mu, a_out 

 

SR – EM Routing Model 

class EMRouting(nn.Module): 
    def __init__(self, scale_factor=2, num_channels=1, out_channels=56, s=12, m=4, batch_size=16, 
image_size=10): 
 
        super(EMRouting, self).__init__() 
        device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 
        self.batch_size = batch_size 
 
        self.first_part = nn.Sequential( 
            nn.Conv2d(num_channels, out_channels=out_channels, kernel_size=5, stride=1, padding=5 // 
2), 
            nn.PReLU(out_channels) 
        ) 
        self.primary_caps = PrimaryCaps(in_channels=56, out_channels=3, kernel_size=1, 
pose_matrix_shape=4, stride=1) 
        # self.conv_caps1 = ConvCaps(input_channels=3, output_channels=56, kernel_size=1, 
pose_matrix_size=4, stride=1, 
        #                            iters=5) 
        self.conv_caps1 = ConvCaps(input_channels=3, output_channels=4, kernel_size=1, 
pose_matrix_size=4, stride=1, 
                                   iters=3) 
        # self.last_part = nn.ConvTranspose2d(in_channels=952, out_channels=1, kernel_size=9, 
stride=(2, 2), 
        #                                     padding=9 // 2, 
        #                                     output_padding=2 - 1) 
        self.last_part = nn.ConvTranspose2d(in_channels=68, out_channels=1, kernel_size=9, stride=(2, 
2), 
                                            padding=9 // 2, 
                                            output_padding=2 - 1) 

 

Appendix V - Attention Routing 

Implementation – Network Parameters 

{ 
    "backbone": { 
        "kernel_size": 3, 
        "output_dim": 56, 
        "input_dim": 1, 
        "stride": 1, 
        "padding": 1, 
        "out_img_size": 16 
        }, 
    "primary_capsules": { 
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        "kernel_size": 1, 
        "stride": 1, 
        "input_dim": 56, 
        "caps_dim": 4, 
        "num_caps": 3, 
        "padding": 0, 
        "out_img_size": 10 
        }, 
    "capsules": [ 
        { 
            "type" : "CONV", 
            "num_caps": 4, 
            "caps_dim": 4, 
            "kernel_size": 1, 
            "stride": 1, 
            "matrix_pose": true, 
            "out_img_size": 10 
        } 
    ] 
} 

 

Attention Routing – Model  

Note: Here, the variable ‘params’ is correspond to the above parameter file 

## Primary Capsule Layer 
self.pc_num_caps = params['primary_capsules']['num_caps'] 
self.pc_caps_dim = params['primary_capsules']['caps_dim'] 
self.pc_output_dim = params['primary_capsules']['out_img_size'] 
## General 
self.num_routing = num_routing  # >3 may cause slow converging 
 
#### Building Networks 
## Backbone (before capsule) 
if backbone == 'simple': 
    self.pre_caps = layers.simple_backbone(params['backbone']['input_dim'], 
                                           params['backbone']['output_dim'], 
                                           params['backbone']['kernel_size'], 
                                           params['backbone']['stride'], 
                                           params['backbone']['padding']) 
elif backbone == 'resnet': 
    self.pre_caps = layers.resnet_backbone(params['backbone']['input_dim'], 
                                           params['backbone']['output_dim'], 
                                           params['backbone']['stride']) 
 
## Primary Capsule Layer (a single CNN) 
self.pc_layer = nn.Conv2d(in_channels=params['primary_capsules']['input_dim'], 
                          out_channels=params['primary_capsules']['num_caps'] * \ 
                                       params['primary_capsules']['caps_dim'], 
                          kernel_size=params['primary_capsules']['kernel_size'], 
                          stride=params['primary_capsules']['stride'], 
                          padding=params['primary_capsules']['padding'], 
                          bias=False) 
 
# self.pc_layer = nn.Sequential() 
 
self.nonlinear_act = nn.LayerNorm(params['primary_capsules']['caps_dim']) 
 
## Main Capsule Layers         
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self.capsule_layers = nn.ModuleList([]) 
for i in range(len(params['capsules'])): 
    if params['capsules'][i]['type'] == 'CONV': 
        in_n_caps = params['primary_capsules']['num_caps'] if i == 0 else \ 
            params['capsules'][i - 1]['num_caps'] 
        in_d_caps = params['primary_capsules']['caps_dim'] if i == 0 else \ 
            params['capsules'][i - 1]['caps_dim'] 
        self.capsule_layers.append( 
            layers.CapsuleCONV(in_n_capsules=in_n_caps, 
                               in_d_capsules=in_d_caps, 
                               out_n_capsules=params['capsules'][i]['num_caps'], 
                               out_d_capsules=params['capsules'][i]['caps_dim'], 
                               kernel_size=params['capsules'][i]['kernel_size'], 
                               stride=params['capsules'][i]['stride'], 
                               matrix_pose=params['capsules'][i]['matrix_pose'], 
                               dp=dp, 
                               coordinate_add=False 
                               ) 
        ) 
    elif params['capsules'][i]['type'] == 'FC': 
        if i == 0: 
            in_n_caps = params['primary_capsules']['num_caps'] * params['primary_capsules']['out_img_size'] * \ 
                        params['primary_capsules']['out_img_size'] 
            in_d_caps = params['primary_capsules']['caps_dim'] 
        elif params['capsules'][i - 1]['type'] == 'FC': 
            in_n_caps = params['capsules'][i - 1]['num_caps'] 
            in_d_caps = params['capsules'][i - 1]['caps_dim'] 
        elif params['capsules'][i - 1]['type'] == 'CONV': 
            in_n_caps = params['capsules'][i - 1]['num_caps'] * params['capsules'][i - 1]['out_img_size'] * \ 
                        params['capsules'][i - 1]['out_img_size'] 
            in_d_caps = params['capsules'][i - 1]['caps_dim'] 
        self.capsule_layers.append( 
            layers.CapsuleFC(in_n_capsules=in_n_caps, 
                             in_d_capsules=in_d_caps, 
                             out_n_capsules=params['capsules'][i]['num_caps'], 
                             out_d_capsules=params['capsules'][i]['caps_dim'], 
                             matrix_pose=params['capsules'][i]['matrix_pose'], 
                             dp=dp 
                             ) 
        ) 

 

Attention Routing Implementation – Forward Pass 

def forward(self, x, lbl_1=None, lbl_2=None): 
    #### Forward Pass 
    ## Backbone (before capsule) 
    c = self.pre_caps(x) 
    # print(c.size()) 
 
    ## Primary Capsule Layer (a single CNN) 
    u = self.pc_layer(c)   
    u = u.permute(0, 2, 3, 1)   
    u = u.view(u.shape[0], self.pc_output_dim, self.pc_output_dim, self.pc_num_caps, 
               self.pc_caps_dim)   
    u = u.permute(0, 3, 1, 2, 4) 
    init_capsule_value = self.nonlinear_act(u)  # capsule_utils.squash(u) 
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    ## Main Capsule Layers  
    # concurrent routing 
    if not self.sequential_routing: 
        # first iteration 
        # perform initilialization for the capsule values as single forward passing 
        capsule_values, _val = [init_capsule_value], init_capsule_value 
        for i in range(len(self.capsule_layers)): 
            _val = self.capsule_layers[i].forward(_val, 0) 
            capsule_values.append(_val)  # get the capsule value for next layer 
 
        # second to t iterations 
        # perform the routing between capsule layers 
        for n in range(self.num_routing - 1): 
            _capsule_values = [init_capsule_value] 
            for i in range(len(self.capsule_layers)): 
                _val = self.capsule_layers[i].forward(capsule_values[i], n, 
                                                      capsule_values[i + 1]) 
                _capsule_values.append(_val) 
            capsule_values = _capsule_values 
    # sequential routing 
    else: 
        capsule_values, _val = [init_capsule_value], init_capsule_value 
        for i in range(len(self.capsule_layers)): 
            # first iteration 
            __val = self.capsule_layers[i].forward(_val, 0) 
            # second to t iterations 
            # perform the routing between capsule layers 
            for n in range(self.num_routing - 1): 
                __val = self.capsule_layers[i].forward(_val, n, __val) 
            _val = __val 
            capsule_values.append(_val) 
 
out = capsule_values[-1] 
out = out.reshape(out.shape[0], out.shape[1] * out.shape[4], out.shape[2], out.shape[3]) 
 
out = self.last_part(out) 
 

 

 

Appendix VI: PSNR Implementation 

def calc_psnr(img1, img2): 

    return 10. * torch.log10(1. / torch.mean((img1 - img2) ** 2)) 

 

Evaluation at training phase 

for data in eval_dataloader: 
    inputs, labels = data 
    # print(labels) 
 
    inputs = inputs.to(device) 
    labels = labels.to(device) 
 
    model.set_batch_size(batch_size=16) 
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    with torch.no_grad(): 
        preds = model(inputs).clamp(0.0, 1.0) 
 
    epoch_psnr.update(calc_psnr(preds, labels), len(inputs)) 

 

Appendix VII – Sample 100x100 (HR) and 50x50 (LR) Image Pairs For 

Evaluation 

  

 

Appendix VIII - Image Zooming 

class ImageZoomerApplication: 
 
    def __init__(self): 
        print('Initializing') 
 
    def image_zoomer(self, input_image, scaling_factor, sub_image_size, model, weights_file, 
save_path): 
        # calculating o/p size 
        w, h = input_image.shape 
        w_new, h_new = w * scaling_factor, h * scaling_factor 
        new_image_array = np.empty([w_new, h_new, 3]) 
 
        # splitting image, scaling and merging 
        for i in range(0, w, sub_image_size): 
            for j in range(0, h, sub_image_size): 
                sub_image = input_image[i:i + sub_image_size, j: j + sub_image_size] 
 
                state_dict = model.state_dict() 
                for n, p in torch.load(weights_file, map_location=lambda storage, loc: storage).items(): 
                    if n in state_dict.keys(): 
                        state_dict[n].copy_(p) 
                    else: 
                        raise KeyError(n) 
 
                model.eval() 
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                sub_image = pil_image.fromarray(sub_image).convert('RGB') 
 
                bicubic = sub_image.resize((sub_image.width * scaling_factor, sub_image.height * 
scaling_factor), 
                                           resample=pil_image.BICUBIC) 
                _, ycbcr = preprocess(bicubic, device) 
 
                lr, _ = preprocess(sub_image, device) 
 
                with torch.no_grad(): 
                    preds = model(lr).clamp(0.0, 1.0) 
 
                # print(preds.shape) 
                preds = preds.mul(255.0).cpu().numpy().squeeze(0).squeeze(0) 
                output = np.array([preds, ycbcr[..., 1], ycbcr[..., 2]]).transpose([1, 2, 0]) 
                output = np.clip(convert_ycbcr_to_rgb(output), 0.0, 255.0).astype(np.uint8) 
 
                new_image_array[i * scaling_factor: (i + sub_image_size) * scaling_factor, 
                j * scaling_factor: (j + sub_image_size) * scaling_factor] = output 
 
        input_image = pil_image.fromarray(input_image) 
        image_size = w * scaling_factor 
        bicubic_image = input_image.resize((image_size, image_size)) 
 
        new_image_array = new_image_array.astype(int) 
        upscaled_image = pil_image.fromarray(new_image_array[:, :, 2] * 255) 
        upscaled_image.save(save_path) 
        return upscaled_image, bicubic_image 

 

Appendix IX – Image Evaluator 

import numpy as np 
from skimage.measure import compare_ssim 
from sewar.full_ref import uqi, msssim, psnr 
 
 
def calculate_evaluation(original_image, upsampled_image): 
    psnr = calculate_psnr(original_image, upsampled_image) 
    ssim = calculate_ssim(original_image, upsampled_image) 
    uqi_val = calculate_uqi(original_image, upsampled_image) 
    msssim_val = np.absolute(calculate_msssim(original_image, upsampled_image)) 
 
    return psnr, ssim, uqi_val, msssim_val 
 
 
def calculate_psnr(original_image, upsampled_image): 
    return psnr(original_image, upsampled_image, 255) 
 
 
def calculate_ssim(original_image, upsampled_image): 
    (score, diff) = compare_ssim(original_image, upsampled_image, full=True) 
    return score 
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def calculate_uqi(original_image, upsampled_image): 
    return uqi(original_image, upsampled_image) 
 
 
def calculate_msssim(original_image, upsampled_image): 
    return msssim(original_image, upsampled_image) 

 

Appendix X – Attached (SR _Result_Verification.pdf) 

 


