
CAPSULE NETWORK BASED SUPER RESOLUTION

METHOD FOR MEDICAL IMAGE ENHANCEMENT

Shashika Chamod Munasingha

189388N

Thesis submitted in partial fulfilment of the requirements for the

Degree of Masters of Science in Artificial Intelligence

Department of Computational Mathematics

Faculty of Information Technology

University of Moratuwa

Sri Lanka

October 2020

ii

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any

material previously submitted for a Degree or a Diploma in any University and to the

best of my knowledge and belief, it does not contain any material previously published

or written by another person or myself except where due reference is made in the text.

I also hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for interlibrary loans, and for the title and summary to be made

available to outside organization.

Name of the student: Shashika Chamod Munasingha

Signature: Date:

The above candidate has carried out research for the Masters/MPhil/PhD thesis/

Dissertation under my supervision.

Name of the supervisor: Subha Fernando (PhD)

Signature of the supervisor: Date:

iii

Abstract

Medical imaging has been one of the most attentive research and development areas since the

1950s, particularly due to the contribution to disease diagnosis. Despite the fact that imaging

technologies have been advanced in multiple ways, yet resolution limitations can be observed.

To overcome the resolution limitations, various image enhancement techniques have been

used. Image Super-Resolution (SR) is the latest technique in the list to achieve higher

resolution with much lower resolution images. Earlier, frequency based and interpolation

based SR techniques were used for SR. The afterward achievements in SR techniques are

obtained via Convolution Neural Network (SRCNN) based methods and have several flaws.

Capsule net (Caps Net) is the state of the art alternative methodology for the problems which

were previously solved by CNN. One recent attempt was made to assess the Caps Net for SR

task. This new area has a lot to be explored. Especially the time inefficiencies of this approach

should be addressed along with accuracy improvements.

In this research several capsule network routing mechanisms have been investigated for Super

Resolution pipeline with a medical image dataset. Standard Dynamic Routing and Expectation

Maximization Routing methods are re-configured to improve the accuracy. Above all, a novel

integration of state of the art routing mechanism, Inverted Dot Product based Attention

Routing mechanism is introduced for Super Resolution task.

With 300,000 medical image training pairs and 2,500 evaluation pairs, every model was

evaluated. Along with different image quality indexes, it was shown that the Dynamic Routing

based method outperformed all methods and the newest Attention Routing based approach has

shown similar image quality performance to that of the state of the art method FSRCNN and

less time complexity to that of the existing Caps Net based approaches. This implies that

clinicians can use this system effectively in a clinical setting.

iv

Dedication

I dedicate this thesis to my parents, my grandmother and my wife who are always

withstand in my successes and failures.

v

Acknowledgment

Throughout the completion of this dissertation I have received great deal of helping

hand from many people around me.

I would first like to thank my supervisor, Dr. Subha Fernando for her effort, patient,

commitment and guidance for the success of this project. Her expertise was invaluable

in formulating the research question and the methodology. Your exceptional support

and feedback always helped me to bring my work to a higher level.

I also would like to thank Prof. Asoka Karunananda for the guidance he has given to

prepare the thesis materials and showing the correct path of conducting the research.

In addition to that, I would like to acknowledge Dr.Sagara Sumathipala for his

immense support in the background to conduct the project in timely manner. My

sincere gratitude goes to all the other lecturers and non- academic staff members who

helped me to make this project a success.

My fellow colleagues, I would like to thank you for your support in completion of this

project.

Finally, I would like to thank my parents, wife and my family members for their wise

counsel and for keeping up with me. You are always there for me and without your

encouragement this project would not end up in great success.

vi

Table of Content

Declaration ... ii

Abstract ... iii

Dedication ... iv

Acknowledgment ... v

List Of Figures ... x

List Of Tables ... xi

List Of Abbreviations .. xii

List Of Appendices ... xiii

Chapter 1 Introduction ... 1

1.1 Prolegomena .. 1

1.2 Background and Motivation .. 1

1.3 Aim and Objectives .. 2

1.4 Problem in Brief .. 3

1.5 Proposed Solution ... 3

1.6 Resource Requirements ... 3

1.7 Outline ... 4

1.8 Summary ... 4

Chapter 2 Super Resolution – Past, Present & Future .. 5

2.1 Introduction .. 5

2.2 Early Approaches to Super Resolution .. 5

2.2.1 Frequency Domain Approaches .. 6

2.2.2 Spatial Domain Approaches .. 7

2.3 State of the art Techniques for SR ... 9

2.4 Challenges in CNN based SR Techniques ... 9

2.5 Literature in Brief ... 10

2.6 Problem Definition ... 11

2.7 Summary .. 12

Chapter 3 Capsule Nets – Next Giant ... 13

3.1 Introduction .. 13

3.2 Convolution Neural Networks ... 13

3.3 Capsule Network .. 15

3.3.1 Inverse Graphics – Backstage of Caps-Net ... 15

vii

3.3.2 Capsules ... 15

3.3.3 Training in Caps-Net ... 16

3.4 Deconvolution (2D) .. 23

3.5 Summary .. 23

Chapter 4 Caps-Net based Approach for SR ... 24

4.1 Introduction .. 24

4.2 Input ... 24

4.3 Output ... 24

4.4 Process .. 25

4.5 Users ... 25

4.6 Features .. 25

4.7 Summary .. 25

Chapter 5 Design of Caps-Net SR ... 26

5.1 Introduction .. 26

5.2 Data Generator Module .. 26

5.2.1 Image Preprocessing Module .. 26

5.2.2 Image cropper .. 26

5.3 Caps-Net SR Module ... 27

5.3.1 Input Image .. 27

5.3.2 Convolution Module .. 27

5.3.3 Capsule Module ... 27

5.3.4 Reconstruction Module .. 28

5.3.5. Output Image .. 28

5.3.6 Evaluation Module... 28

5.3.7. High Resolution Image ... 28

5.4 Evaluation Module ... 28

5.5 Summary .. 29

Chapter 6 Implementation ... 30

6.1 Introduction .. 30

6.2 Data Generator Implementation ... 30

6.2.1 Dataset ... 30

6.2.2 Data Generator ... 30

6.3 Overall implementation .. 32

6.4 Re-usable Layers .. 33

6.4.1 Initial Convolution Layers ... 33

viii

6.4.2 Reconstruction Layers ... 33

6.5 Dynamic Routing ... 34

6.6 Expectation Maximization ... 35

6.7. Attention based Routing .. 36

6.8 Training .. 37

6.9 Summary .. 38

Chapter 7 Evaluation ... 39

7.1 Introduction .. 39

7.2 Evaluation Strategy .. 39

7.2.1 Evaluation at Training ... 39

7.2.2 Overall Evaluation ... 39

7.2.3 PSNR ... 40

7.2.4 SSIM .. 41

7.2.5 MSSSIM .. 42

7.2.6 UIQ .. 42

7.3 Experimental Setup .. 42

7.4 SR Techniques Comparison ... 43

7.5 Summary .. 47

Chapter 8 Conclusion & Further Work .. 48

8.1 Introduction .. 48

8.2 Conclusion .. 48

8.2.1 Achievement of Project Objectives ... 48

8.2.2 Overall Conclusion .. 49

8.3 Limitations and Further Works .. 50

8.4 Summary .. 50

References .. 51

Appendix .. 55

Appendix I: Inverted Dot Product Based Attention Routing 55

Appendix II: Data Generator .. 55

Appendix III – Dynamic Routing ... 57

Appendix IV – EM Routing ... 59

Appendix V - Attention Routing .. 62

Appendix VI: PSNR Implementation .. 65

Appendix VII – Sample 100x100 (HR) and 50x50 (LR) Image Pairs For Evaluation

 .. 66

ix

Appendix VIII - Image Zooming ... 66

Appendix IX – Image Evaluator .. 67

Appendix X – Attached (SR _Result_Verification.pdf) .. 68

x

LIST OF FIGURES

 Page

Figure 2.1 Overview of SR Techniques 5

Figure 3.1 Super Resolution Pipeline 13

Figure 3.2 CNN Architecture for Image Classification 14

Figure 3.3 Capsule Input, Output 17

Figure 3.4 Concurrent Routing 22

Figure 4.1 Approach 24

Figure 5.1 Data Generator Module Components 27

Figure 5.2 Capsule Net Components 28

Figure 5.3 Image Quality Evaluation Model 30

Figure 6.1 Data Generator – Flow Chart 32

Figure 6.2 FSRCNN Architecture 33

Figure 6.3. DR based Caps-Net Architecture 35

Figure 6.4. EM Routing based Caps Net Architecture 36

Figure 6.5. Inverted Dot Product based Routing Caps Net Architecture 38

Figure 7.1 Experimental Setup for Evaluation 44

Figure 7.2 Image Comparison 1 45

Figure 7.3 Image Comparison 2 46

Figure 7.4 PSNR Variation over Epochs 47

xi

LIST OF TABLES

 Page

Table 2.1 Summary of literature review 10

Table 7.1 Quantitative Comparison of Results 44

Table 7.2 Training Performance of SR Techniques 46

xii

LIST OF ABBREVIATIONS

Abbreviation Description

SR Super Resolution

SFSR Single Frame Super Resolution

DR Dynamic Routing

EM Expectation Maximization

Conv Convolution

Net Network

Caps Capsule

GPU Graphical Processing Unit

FSRCNN Fast Super Resolution using Convolutional Neural Network

SRCNN Super Resolution using Convolutional Neural Network

GAN Generative Adversarial Network

(A)NN (Artificial)Neural Network

GUI Graphical User Interface

PSNR Peak Signal to Noise Ratio

LR Low Resolution

HR High Resolution

SSIM Structural Similarity Index

MSSSIM Multi Scale Structural Similarity Index

MRI Magnetic Resonance Imaging

CT Computed Topography

xiii

LIST OF APPENDICES

Appendix Description Page

Appendix I Inverted Dot Product Based Attention Routing 55

Appendix II Data Generator 55

Appendix III Dynamic Routing 57

Appendix IV EM Routing 59

Appendix V Attention Routing 62

Appendix VI PSNR Implementation 65

Appendix VII Sample 100x100 (HR) and 50x50 (LR) Image Pairs For

Evaluation

66

Appendix VIII Image Zooming 66

Appendix IX Image Evaluator 67

Appendix X SR _Result_Verification.pdf 68

1

Chapter 1 Introduction

1.1 Prolegomena

‘Digital imaging along with Deep Learning allow to create images limited by hardware

but just in our imagination’.

From the earliest stage of computers to the most recent technological advancements in

the computing domain, digital images have been playing a significant role in every

domain we can think of. Representing visual objects with a numerical matrix format

made a new computing area, today identified as computer vision. The greatest of all,

the evolutions in the digital imaging domain were found mainly in the medical image

domain amongst other domains due to the vast number of applications in that field.

With the expansion of ideas in the digital image domain, there are always

advancements as well as room for improvements.

The traditional algorithmic methods of digital image processing have been recently

replaced and improved with artificial intelligence related technologies, particularly

deep learning based methods.

1.2 Background and Motivation

The vitality of medical images in medical diagnostic, disease prevention, treatment

and illness management [1] is a trivial fact. Superficial vessel obstructions to hidden

early stage tumors can be identified with medical images. The medical images on

screen or paper are non-other than a 2-D representation of 3-D internal structures in

the human body. To achieve this task, different imaging modalities have been

developed [2] starting from the earliest X-Ray to Functional MRI systems [3]. These

modalities stand for different medical purposes varying from anatomical structure

analysis to functional information analysis. For most of the years in the early

development stages of imaging modalities, the researchers had paid particular attention

to hardware optimization as the main method of image quality enhancement. With the

2

improvement of the software field, image quality improvement has become a software

post-processing challenge [3].

Among the image quality parameters; the spatial resolution is a very important

parameter. The contrast resolution, noise, temporal resolution and radiation luminance

(where applicable) are the other quality causing factors. Spatial resolution is about the

smallest distinguishable objects that can be seen in the image. According to research,

around 40% of the medical malpractices that are reported at the law-suite are due to

misdiagnosis [4] and they are mostly a result of insufficient image resolution. Hence,

even a small resolution upgrade could drastically positively change the diagnostic

results by early detection, low signal to noise ratio (SNR) and increasing accuracy of

measurements.

1.3 Aim and Objectives

Aim - To develop a Super Resolution module for medical imaging system, in order

to generate low noise and high resolution images from low resolution images.

Objectives –

• To critically review of the existing SR techniques and identification of areas to

be improved and further researched

• To select of different Caps-Net Routing techniques for implementing SR

framework.

• To implement and train different Capsule Network architectures (layers,

routing mechanism) on the data set.

• To evaluate those Capsule Network architectures against state of the art SR

methods.

• To perform clinical opinion seeking and publishing the results.

3

1.4 Problem in Brief

The spatial resolution improvement too has been developed as a software related tasks

[6] in the past few decades and achieved breakthrough results.

The state of the art technique using CNN based SR (SRCNN & FSRCNN) has been

named as the current winners of SR techniques. Even though there are some

competitive methods introduced afterward, using GANs and one attempt using

Capsule Network in 2020, still SRCNN and FSRCNN is considered to be the leading

methods in terms of training efficiency and output accuracy. Yet, there are some

drawbacks in these methods like; requirement of a very large dataset for training, the

chessboard effect and the noise induced due to the pre-up sampling process. The

lattermost development of Capsule Network [38] based method can be recommended

as a solution to overcome those problems, but yet improvable in architectural (layers,

routing and reconstruction) design.

1.5 Proposed Solution

Capsule network architecture by Geoffrey Hinton and his team [1] has been proposed

as a solution to the inherited drawbacks in CNN.

In this research, a Capsule Network based SR Technique is proposed. It uses different

routing mechanisms (Dynamic Routing, EM Routing and Attention based Routing)

and layer architectures than the recent research [38] and particularly trained on medical

image dataset to embed the domain specific knowledge to the Caps Net.

1.6 Resource Requirements

For the successful completion of the project, as this is a Deep Learning based method,

it was required a virtual environment with GPU capabilities. To make a more general

model for most of the imaging modalities it was also required several databases of

different medical images.

4

1.7 Outline

The rest of the thesis is outlined as follows. Chapter 2 is dedicated to reviewing the

other research work in the domain of Super Resolution highlighting the pros and cons

of each method with some introduction to the problem that is being addressed in this

research. The next section is describing the core technique that is used in the project.

Following that, in the Approach chapter, you can see the overview of the solution that

I propose here. In the Design chapter, you could see the high-level workflow of the

method proposed. The Implementation chapter describes the end-to-end details of the

design showing how it is realized. The results are layout in the Evaluation chapter

giving the opening to the final chapter, Conclusion where the discussion of our work

and the further development is emphasized.

1.8 Summary

This chapter opens up the research by introducing the area of the research and the

motivation for selecting this particular area for the research. It also highlights the

project objectives and some introductory details related to the problem to be addressed

in this research. The proposed solution and the resources to conduct the research are

also mentioned above. The chapter finally explains the outline of the upcoming

chapters.

5

Chapter 2 Super Resolution – Past, Present & Future

2.1 Introduction

In the previous chapter, an introduction to the overall project was given emphasizing

the importance of SR in medical imaging. This chapter presents our critical review of

research on developments in SR techniques. This chapter is structured under several

headings, namely, early development in SR techniques, breakthrough in SR

techniques, modern development in SR techniques, challenges in SR techniques and

problem definition.

2.2 Early Approaches to Super Resolution

Super Resolution is defined as the process of generating high resolution (HR) images

from one or more low resolution images. Not only limiting to medical imaging [7] [3]

[6], SR has been widely used in several other applications such as Satellite and Aerial

imaging [8], Face recognition [9], Text Image Improvement [10] and Fingerprint

Figure 2.1: Overview of the SR techniques

6

enhancement [11]. These related fields, themselves nourished the SR techniques and

motivated them to experiment on different SR approaches.

In this section, the early approaches of SR are emphasized. Even though they have

been addressed as early approaches, to date these methods have been used in

applications to large and small extent accordingly. Before explaining the early

developments, the terms interpolation and restoration must be distinguished from the

term SR. In interpolation, only the size of the image is increased. During image

restoration, the image is treated for noise removal and contrast adjustment, etc., but

the image size is unchanged. SR does both; size increments and image quality

improvement.

2.2.1 Frequency Domain Approaches

The earliest SR methods are based on the frequency domain [12] [13] [14] [15]

algorithms. The theory behind frequency domain approaches is trivial. The LR images

are first converted to the frequency domain by Fourier transform and estimation of HR

image frequency spectrum is obtained with mathematical models. Then, the HR image

is reconstructed in the spatial domain by inverse Fourier transformation. The very first

SR algorithms [12] [16] by Gercberg and Santis respectively, have used iterative

truncation on the frequency domain for SR. This early approach was unpopular until

the work of Tsai and Huang’s [17] system of satellite image SR. This was one of the

first multiple image SR algorithms, where multiple LR images were used to

reconstruct the HR images.

The wavelet transform is another frequency domain approach where the LR image is

decomposed into sub-images. Nguyen [18] has first proposed interpolation and

restoration based wavelet decomposition for SR. With the decomposition in the

wavelet domain, it is convenient to explore the similarities in the neighboring pixels

and obtain the HR image decomposition. Then, the images are generated via inverse

wavelet transform [19]. The wavelet based methods are not computationally efficient

as Fourier transform based methods, but give appealing results.

In summary, frequency domain methods are relatively efficient in computation, but

they are prone to model based errors and unable to handle complicated motion models.

7

2.2.2 Spatial Domain Approaches

To overcome the drawbacks in frequency domain methods, spatial domain methods

have become the trend. Early spatial domain based approaches used several

techniques; non-uniform interpolation [20], iterative back-projection (IPB) [21],

projection onto convex sets (POCS) [22], Direct methods [23] and Regularization

methods [20]. One similarity to all these methods that they use multiple LR images to

reconstruct the higher resolution images.

Iterative Back Projection is one of the earliest spatial methods in SR. Here, an HR

image is first guessed by averaging multiple LR images. Then, this initial guess is fine-

tuned iteratively. Next, the LR images are simulated with the guessed HR image.

Afterward, the observed LR and simulated LR images are subtracted to obtain the error

term. This error is back projected to HR coordinate for tuning. This process is repeated

over iterations until no change is observed.. The main problem in IBP method is the

convergence to a better solution is not guaranteed as and could oscillate between weak

solutions [24].

Direct methods using Optical Flow [23], Adaboost [25] and many more techniques

have also gained popularization as SR techniques. The following steps are followed in

Direct methods in common; an LR image is selected as the reference and the rest of

the LR images are registered against the reference image. The reference image is

scaled up to the expected scale and the other registered images are injected into the

HR grid using registration information. The fusion of all these images happens next

and finally, denoising kernels will be applied. These methods outperform the IBP

computational wise.

Projection onto Convex Sets (POCS) is another iterative approach [22] [26]. They are

using a non-direct cost function for obtaining SR image. In POCS, it is assumed that

the LR images could generate knowledge on HR images. The generated knowledge is

assumed to be a convex set. To reduce the erroneous results, prior knowledge related

to images; luminance variations, boundedness parameters have been used accordingly

[22].

8

The regularized methods [21] [27] are the most popular due to the effectiveness and

flexibility. The regularization methods work on a framework where an imaging model

is assumed with parameters related to blurring, down-sampling and noise terms. The

imaging model to solve SR is an ill-posed problem; where no limited number of

solutions available but infinitely many solutions [28]. This is where the regularization

term comes to play. It can stabilize the inversion process as well as reconstruction

artifacts. Maximum A-Posteriori (MAP) algorithm based method [27] by Irani found

an estimate of the HR image with Baye’s rule.

During most of the practical scenarios, it is impossible to acquire sufficient LR images

of different viewpoints, different camera sensors [28] etc. Hence, Single Frame SR

(SFSR) methods have been more applicable over more specific tasks. This is because

the images of the same class have close statistics. These algorithms have two basics;

reconstruction or learning. During most of the practical scenarios, it is impossible to

acquire sufficient LR images of different viewpoints, different camera sensors [28]

etc. Hence, Single Frame SR (SFSR) methods have been more applicable over more

specific tasks. This is because the images of same class has close statistics. These

algorithms have two basics; reconstruction or learning.

The very first learning algorithm called Hallucination algorithm [29] was a neural

network based algorithm. The network learns LR to HR relationship of images. The

learned knowledge is represented as vectors and embodied in the reconstruction. From

there onward, many other improvements have been done with learning algorithms like

Feature Pyramids [30] & Belief Networks [31]. The main limitation of these

algorithms is that they could mainly improve primitive image features like; edges,

ridges, corners, junctions, etc.

The internal similarity comparison & correspondence between LR and HR mapped

from external LR-HR dictionaries are the two main pathways of SFSR [28]. Neighbor

embedding [32] & Sparse Coding [33] are such improved methodologies of SFSR

respectively.

9

2.3 State of the art Techniques for SR

Deep learning is used as the technique in a state of the art SFSR. Generative

Adversarial Networks (GANs) [34] and Convolution Neural Networks (CNNs) [35]

[36] [37] are the two network configurations used for SFSR. Both methods have shown

promising results, but researches in CNN based SR are moving forward faster due to

the optimized HW and maturity of CNN architectures.

With more focus on the recovery of textural details in HR images, a new approach

with GAN was introduced as SRGAN [34]. The capability of GANs to generate new

images laid the foundation for this approach. This method was capable of generating

x4 upscaled images for the first time. Apart from the GAN, special loss functions were

used to achieve the SR images. The popular ResNet architecture was used as the

backbone of the NN design. With the very deep network architecture, it showed weak

time performance in practical cases.

The SRCNN [36] is one of the seminal research in SR with Deep Learning techniques.

It was because this method outperforms the popular Sparse Coding [33] method and

implements a similar SR pipeline, which is in Sparse Coding. The major drawback of

this method is the increment of the computational complexity with the size of the

image.

To overcome the problem with SRCNN, another approach was introduced as FSRCNN

[37]. This is a very shallow network compared to SRCNN and implemented a novel

SR pipeline in the following order; feature extraction, shrinking, non-linear mapping,

expanding and deconvolution. To date, this was identified as the most widely used SR

method due to its powerful time and accuracy performance.

2.4 Challenges in CNN based SR Techniques

Even though CNN based SR techniques like SRCNN [36] and FSRCNN [37] are the

most discussed literature in SR techniques, they have the inherited drawbacks of CNN.

10

With an example, it would be easier to understand the drawbacks of CNN. Imagine a

face. What are the components? We have an oval face, two eyes, a nose and a mouth.

For a CNN, the presence of these objects can be a very solid indicator to consider that

there is a face in the image. The orientation and relative spatial relationships between

these components are not very significant factor to CNN. The CNN approach to

solving this issue is to use max pooling or successive convolutional layers that reduce

the spatial size of the data flowing through the network and therefore increase the

“field of view” of higher layer’s neurons, thus allowing them to detect higher order

features in a larger region of the input image. These operations lose valuable image

information that is useful for more precise outputs. Due to the same reason, a large

amount of data is needed to train a CNN to a satisfactory level.

Especially, losing valuable information is a negative impact on image construction

tasks like SR, where it is a must to keep all the image information at the input to

generate additional information or in other words to generate HR images.

2.5 Literature in Brief

In the literature review, major achievements and issues have been identified by

considering most cited researches. These are summarized in Table 2.1

Table 2.1: Summary of literature review

Method Basis Pros Cons

Frequency

Domain

Approaches

Fourier/wavelet based

transform of LR images are

mapped to HR images in

frequency domain.

Mathematical models are

built in frq domain.

Inverese transform to build

HR images.

High computational

efficiency

Sensitivity to model

errors

Difficult to handle

more complicated

motion models

Spatial

Domain

Approaches

Interpolation,

Regularization

Interpolation – most

intuitive and simplest

approach

Poor performance

when magnification

factor increases.

11

Regularization -

Sparse

Encoding

Dictionary based method.

Extracted LR patches are

encoded into LR dictionary

value and corresponding

HR encoding is obtained

from HR dictionary. Then

reconstruction of patches.

Accuracy wise

effective than

regularization

techniques.

Better performance

for single image SR

technique.

SR pipeline is only

optimized for

dictionary building

and mapping

functions, not on

reconstruction.

Building up

dictionaries is time

consuming.

Considerable

pre/post processing

CNN Pipeline of Sparse

Encoding can be fully

represented as convolution

operations.

Little pre/post

processing

No explicit learning

of dictionaries

Pre-upsampling

process induce

noise.

Chessboard effect

when no

upsampling

Caps Net -Similar to CNN- No upsampling is

required at the

beginning

Learns with less

number of samples

than CNN

Better accuracy

Computationally

slow than SRCNN

GAN Model learns the mapping

guided by the GAN loss

(High Res and Super Res)

More appealing to

human eye

Low accuracy wise

performance than

CNN

2.6 Problem Definition

Medical images are a major part of medical diagnosis. Images with higher resolution

provide diagnostically better judgments for clinicians. Hardware limited low

resolution images can be converted to higher resolution images with Super Resolution

12

(SR) techniques. State of the art SR techniques use CNN as the core. CNN has its

inherited faults; additional noise due to up-sampling & chessboard effect while

reconstructing. Anew approach, Capsule Net has overcome these issues and accuracy

wise performed better than CNN. This approach claimed to have time inefficiencies

due to the complexity of the network mechanism. Because of this, the practical

implementation of this technique is also a concern. This novel approach gives a lot of

room to explore the accuracy improvements as well. Moreover, previous attempts were

tested on a common small dataset and specific application in the medical image

domain was not tested.

2.7 Summary

In this chapter, a critical review of SR techniques has been given highlighting the

application of SR techniques, evolution and limitations in SR techniques. In the next

chapter, a highlight on the technology used; Capsule-Net will be described.

13

Chapter 3 Capsule Nets – Next Giant

3.1 Introduction

In the previous chapter, it was presented how the state of the art SR techniques were

evolved around the Deep Learning techniques. Amongst them, CNN based methods

SRCNN [36] and FSRCNN[37] are widely discussed. In this research, the same SR

pipeline that has been used for CNN methods is adopted as the center to the

implementation. This pipeline can be described in three major steps namely; basic

feature extraction, non- linear mapping and reconstruction in a sequence. In one of the

very recent researches, the researchers has attempted to use Capsule Networks [38] in

the same pipeline and shown accuracy wise impressive results. A distinguishable

change to this pipeline was made by introducing some of the newest Capsule network

architectures at the non-linear mapping stage.

The technological content in this chapter can also be described under three SR pipeline

components described above. The feature extraction part of the pipeline is supported

by 2D convolution operation. The non-linear mapping between low-resolution to high

resolution features is done with Caps-Net and finally image reconstruction with feature

maps is carried out with De-convolution technique.

3.2 Convolution Neural Networks

A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take

in an input image, assign importance (learnable weights and biases) to various

aspects/objects in the image and be able to differentiate one from the other [39]. The

pre-processing required in a CNN is much lower as compared to other classification

algorithms. While in primitive methods filters are hand-engineered, with enough

training, CNNs have the ability to learn these filters/characteristics.

Figure 3.1: Super Resolution Pipeline

14

Figure 3.2: CNN Architecture for Image Classification

The simplified architecture of CNN for classification task consists of several

‘Convolution layers’ followed by sampling layers (pooling) and stacking of few such

layers. Lastly, there are several ‘Fully connected’ layers assembling the final

classification output. The objective of the Convolution Operation is to extract the high-

level features such as edges, corners and basic shapes from the input image. When

getting into deeper layers they capture more and more high-level features of the image

giving simple feeds to the fully connected layers. The pooling operations are making

the features more robust and invariant to image orientation and scale changes. The

head layers of the network take the input features and adjust the flow to do the

classification then after.

This smart architecture has driven the Machine Vision tasks to rapid development and

most of the improvements that are being experienced today as AI has some links to

CNN. Due to this advance layout behind the CNN, it has been used for SR tasks by

highlighting the analogous features to Sparse Encoding technique used for SR as

mentioned in Chapter 2.

Within the research, the Convolution layers have been used as the early stage feature

extraction technology without doing an architectural change due to its strengths in

extracting primary features such as edges, corners, lines contrasting regions etc. In

order to keep all the information, the previously mentioned pooling operation have

15

been skipped. Along the SR pipeline, these features set out the basement for extracting

high level features in the later part of the NN layer implementation with Capsule layers.

3.3 Capsule Network

The core technology behind this research; Capsule Networks is being described in this

sub section emphasizing on three routing mechanisms that have been used for this

research namely; Dynamic Routing, EM Routing and Inverted Dot Product Attention

Routing.

3.3.1 Inverse Graphics – Backstage of Caps-Net

Computer graphics deals with constructing a visual image from some internal

hierarchical representation of geometric data. That internal representation is stored in

computer’s memory as arrays of geometrical objects and matrices that represent

relative positions and orientation of these objects.

Inspired by this idea, Hinton argues that brains, in fact, do the opposite of rendering.

He calls it inverse graphics: from visual information received by eyes, they deconstruct

a hierarchical representation of the world around us and try to match it with already

learned patterns and relationships stored in the brain. And the key idea is that

representation of objects in the brain does not depend on view angle.

In 3D graphics, relationships between 3D objects can be represented by a so-called

pose, which is in essence translation plus rotation. In order to correctly do

classification and object recognition, it is important to preserve hierarchical pose

relationships between object parts.

When these relationships are built into internal representation of data, it becomes very

easy for a model to understand that the thing that it sees is just another view of

something that it has seen before. Capsule network embed these pose relationships

explicitly hence be trained with few number of samples.

3.3.2 Capsules

Capsule is a set of neurons which are activated for different image features like,

position, size and hue. They encode probability of detection of a feature as the length

16

of the output vector. If the same feature appears in two different orientations the length

will remain the same while changing the vector orientation. Similar to the neurons

receive inputs from other neurons and multiply them by weights and summing them

and input to nonlinear activation function, capsules also perform analogous operations

to output a vector instead of scalar in ANN.

3.3.3 Training in Caps-Net

With all the understanding about capsule process, next thing to be explored is how the

training is happened in capsule network. This will adjust the weight matrix values (wij)

and scalars (cj). This particular mechanism is called routing and in the recent years

many researchers have introduced different routing mechanisms. The three routing

mechanisms; Dynamic Routing (DR), Expectation Maximisation Routing (EMR) and

Attention based Routing are described next.

3.3.3.1. Dynamic Routing

As mentioned, capsule is a group of neurons whose activity vector represents object’s

visual parameters and the length of the vector represents the probability of presence of

that particular object. The capsule operation is analogous to that of traditional NNs

where a set of activations from lower level capsule agrees upon higher level feature

and activates its neuron.

Dynamic routing[40] is the earliest approach for routing between capsules and

introduced in 2017. It is a ‘routing by agreement’ method where the lower level

capsules’ output to higher level capsules are determined by the magnitude of the scalar

multiplication between lower and higher level capsule vectors.

The main supportive factor that capsule-layers are capable of dynamic routing is that

the output of neuron is of vector form. At the first iteration, all the lower level capsules

are routed to all the parent capsules. The strength between lower – higher level

capsules are determined by a factor called coupling coefficient. The sum of all

coupling coefficients from one lower level capsule to all higher level capsules is scaled

down to one.

Similar to CNNs the higher layers of capsules cover large regions of the image. In the

introductory paper[40] they mention that lower level capsules are ‘place-coded’. This

17

indicates that the object’s location information is determined by which capsule is

activated. At higher level capsules, the positional information are ‘rate-coded’. This

implies that the existence of objects are scrutinized at higher level capsules.

Dynamic Routing – Theory

The ui are the output vectors of previous capsule layer, wij encodes the relationship

between jth capsule and ith feature. For an example, if jth capsule represents a human

face inside a picture, and ith capsule represents lower level feature like ‘nose’ wij

represents the nose-face relationship. After multiplication with wijs output is the

predicted position of the higher level feature w.r.t. lower level feature. If all

multiplications give similar output it can be concluded that there is a face in the image.

The scalar c depends upon to which higher level capsule the lower level capsule should

send the input, it can be understood as this; nose should have a higher c value for face

than that of the finger which is not a part of the face. The squash operation in the

diagram scale the output to 0-1 range in the same time imposing non-linearity.

The squash function is defined as follows.

𝑢𝑗 =
||𝑠𝑗||

2

1 + ||𝑠𝑗||
2

𝑠𝑗

||𝑠𝑗||
(1)

Here, uj is the output vector of the capsule and sj is the summed input to the capsule.

𝑠𝑗 = ∑ 𝑐𝑖𝑗𝑢̂𝑗|𝑖

𝑖

 (2)

 𝑢̂𝑗|𝑖 = 𝑤𝑖𝑗𝑢𝑖 (3)

Figure 3.3: Capsule Input-Output

18

The previously mentioned coupling coefficients are indicated as cij in the above

equation. These coupling coefficients are derived in following manner initially. The

bij are the log probabilities that capsule i should be coupled to capsule j.

𝑐𝑖𝑗 =
exp(𝑏𝑖𝑗)

∑ exp(𝑏𝑖𝑘)𝑘
(4)

The agreement between one lower level capsule and one higher level capsule is

determined by the following product.

𝑎𝑖𝑗 = 𝑣𝑗 . 𝑢̂𝑗|𝑖 (5)

The overall routing algorithm pseudo code can be displayed as follows.

procedure ROUTING(u ˆj|i, r, l)

 for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0.

 for r iterations do

 for all capsule i in layer l: ci ← softmax(bi) (softmax computes Eq. 4)

 for all capsule j in layer (l + 1): sj ← ∑ 𝑐𝑖𝑗ˆ𝐮𝑗|𝑖𝑖

 for all capsule j in layer (l + 1): vj ← squash(sj) (squash computes Eq.

1)

 for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij +

ˆuj|i.vj

 return vj

3.3.3.2 EM Routing

The EM Routing [41] was also introduced by Geoffry Hinton and his team in 2017

after few days of introduction of DR algorithm. This routing mechanism seeks more

on different set of routing properties than that of DR algorithm.

In EM routing the capsules are grouped to build part-whole relationship using the

clustering technique; EM. The basis of the EM routing is to cluster the data points into

Gaussian distributions. The lower level capsules which represent basic features of

image vote for higher level capsules with transformation matrix multiplication similar

19

to the Dynamic routing mechanism. This transformation matrix learns over the training

iterations with the help of EM algorithm.

The basis of the EM routing is as follows. Assume, there is a need to cluster data points

into two clusters; G1 and G2. These clusters are Gaussian distributions defined by

mean 𝜇 and standard deviation 𝜎. The EM algorithm converge until all the data points

in the dataset belongs to two clusters maximizing the probabilities.

𝑀𝑎𝑥 (∑ ∑ 𝑃(𝑥𝑖|𝐺𝑗)𝑛
𝑖=1

𝑚
𝑗=1) (6)

Here, 𝑃(𝑥𝑖|𝐺𝑗) =
1

𝜎𝑗√2𝜋
𝑒−(𝑥𝑖−𝜇𝑗)

2
/2𝜎𝑗

2
 (7)

The capsule o/p computation is different in EM routing. Here, the pose matrix of the

capsule is also presented as Gaussian distribution. In EM routing, the pose matrix of

parent capsule is presented as a Gaussian distribution. One such pose matrix is

represented as 16 Gaussians having 16𝜇s and 16𝜎s where 𝜇 s are extracted from pose

matrix components.

Let 𝑣𝑖𝑗
ℎ be the h-th component of vote from child capsule i to parent capsule j. The

probability of vij belongs to capsule j is calculated with following Gaussian

distribution.

𝑝𝑖|𝑗
ℎ =

1

√2𝜋(𝜎𝑗
ℎ)2

𝑒𝑥𝑝
(−

(𝑣𝑖𝑗
ℎ −𝜇𝑗

ℎ)2

2(𝜎𝑗
ℎ)

2)

(8)

Let’s take the log of 𝑝𝑖|𝑗
ℎ .

ln (𝑝𝑖|𝑗
ℎ) = ln(

1

√2𝜋(𝜎𝑗
ℎ)2

𝑒𝑥𝑝
(−

(𝑣𝑖𝑗
ℎ −𝜇𝑗

ℎ)2

2(𝜎𝑗
ℎ)

2)

)

 = − ln(𝜎𝑗
ℎ) −

ln(2𝜋)

2
−

(𝑣𝑖𝑗
ℎ −𝜇𝑗

ℎ)2

2𝜋(𝜎𝑗
ℎ)2

 (9)

20

The minus of ln(𝑝𝑖|𝑗
ℎ), or in other words negative of the log likelihood is considered

as the cost.

𝑐𝑜𝑠𝑡𝑖𝑗
ℎ = −ln (𝑃𝑖|𝑗

ℎ) (10)

The lower level capsules are not equally linked with the higher level capsules, hence

the cost for one capsule from all lower level capsules is calculated as,

𝑐𝑜𝑠𝑡𝑗
ℎ = ∑ 𝑟𝑖𝑗𝑐𝑜𝑠𝑡𝑖𝑗

ℎ
𝑖 (11)

With substitution from Eq.(9) cost is derived as,

𝑐𝑜𝑠𝑡𝑗
ℎ = (ln(𝜎𝑗

ℎ) + 𝑘) ∑ 𝑟𝑖𝑗𝑖 (12), here k is a constant.

Following equation determine whether the capsule j will be activated.

𝑎𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜆(𝑏𝑗 − ∑ 𝑐𝑜𝑠𝑡𝑗
ℎ))ℎ , here 𝑏𝑗is referred as the cost of describing the

mean and variance of capsule j, and 𝜆 as the inverse temperature parameter. As 𝑟𝑖𝑗s

are trained, 𝜆 is increased to steepen the sigmoid curve.

The EM routing is used for two operations inside the capsule network; pose matrix

calculation and the capsule output calculation. The overall EM routing algorithm

consists of two steps called, E-step and M-step. In E-step, rij s are calculated, whereas

in M-step Gaussian model parameters 𝜇s and 𝜎s are re-calculated.

3.3.3.3 Inverted Dot Product Attention Routing

In previous section, two most widely used routing mechanisms for Capsule networks;

Dynamic routing and EM routing were described. Next, in this section one of the most

recent approaches of routing; Inverted Dot Product Attention Routing [42] is

presented. This method was introduced to achieve the same classification accuracy

with fewer number of training parameters than that of the Dynamic Routing and EM

routing with the ultimate goal of getting Capsule Networks into real-world tasks.

In this project, this can be identified as the newest technology integration and holds

majority of the novelty which is introduced in this project.

21

The overall architecture of the Capsule Net is different from the previous methods,

obviously in routing mechanisms and also with newly introduced layer normalization.

Here, inverted attention mechanism is used to measure agreement between capsules.

In normal attention routing [43] the child capsule units compete to get the attention of

parent capsule units, whereas in this method parent capsules compete to get the

attention of child capsule units. The routing probability of child capsule units to parent

capsule units depends upon two factors; parent’s pose (from previous iteration) and

the child’s vote for parent’s pose (current iteration). Not limiting to the above

differences, clear differences from Dynamic routing and EM routing are identified as

follows. In Dynamic routing[40] the pose is expressed as a vector and the activation

as it’s norm. With EM routing, the pose has expressed as a matrix and the activation

is achieved with EM algorithm. With inverted dot product approach, the pose is

expressed in a similar matrix form as EM but the activation is not directly obtained.

The Inverted Dot Product Attention Routing mechanism has two steps; the first one is

to compute the agreement between child and parent capsules and the next is to update

the pose matrix of parent capsule. These two steps are pretty easy to understand when

compared to EM routing algorithm.

Computing Agreement:

procedure INVERTED DOT-PRODUCT ATTENTION ROUTING(PL, PL+1, WL)

for all capsule i in layer L and capsule j in layer (L + 1):𝑣𝑖𝑗
𝐿 ← 𝑊𝑖𝑗

𝐿 . 𝑝𝑖
𝐿 vote

for all capsule i in layer L and capsule j in layer (L + 1): 𝑎𝑖𝑗
𝐿 ← 𝑝𝑗

𝐿+1. 𝑣𝑖𝑗
𝐿 agreement

Vote 𝑣𝑖𝑗
𝐿 is calculated as the product between transformation matrix 𝑊𝑖𝑗

𝐿 and pose

matrix 𝑝𝑖
𝐿. Next, the agreement is calculated as the product between vote 𝑣𝑖𝑗

𝐿 and the

parent capsule pose 𝑝𝑗
𝐿+1.

Pose Update:

Extending the same routing function, three more steps were added to update the pose

and for layer normalization.

22

for all capsule i in layer L: 𝑟𝑖𝑗
𝐿 ← exp(𝑎𝑖𝑗

𝐿) / ∑ exp (𝑎𝑖𝑗′
𝐿)𝑗′ . routing coefficient

for all capsule j in layer (L + 1): 𝑝𝑗
𝐿+1 ← ∑ 𝑟𝑖𝑗

𝐿𝑣𝑖𝑗
𝐿

𝑖 pose update

for all capsule j in layer (L + 1): 𝑝𝑗
𝐿+1 ← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑝𝑗

𝐿+1). Normalization

The routing probabilities 𝑟𝑖𝑗
𝐿 is calculated by applying softmax function over 𝑎𝑖𝑗

𝐿 s

which are calculated in the previous step. Then, the parent capsule layer pose is

updated with summing all the product between routing probability and votes. Finally,

a layer normalization is done for this new pose matrix.

One of the other distinguishable characteristics introduce in this method is the

concurrent routing. After the first iteration of forward pass, the rest of the iterations

are happened concurrently here. All the capsules get input from previous iteration

preceding capsules and do one iteration simultaneously. This is indicated in Fig 3.4.

However with these modifications in the forward pass, the backward pass or the

learning is still based on the Stochastic Gradient Descent algorithm.

In the SR implementation, the capsule layers from Conv-Capsule layer to Fully-

connected Capsule (Appendix I) layer have been used. We also implement the

concurrent routing mechanism that is introduced above expecting better time

performance at training phase.

Figure 3.4: Concurrent Routing (Source [42])

23

3.4 Deconvolution (2D)

The deconvolution is a mathematical process to restore the original signal which has

undergone the process convolution [44]. In mathematical formula it can be described

as follows.

𝑓 ∗ 𝑔 = ℎ (13)

Here f, is the signal to be recovered and * denotes the convolution operation. The

convolution filter or the transfer matrix g should be known to recover the original

signal f from the convolved output h. When g is unknown, but the form of g is known

there are statistical methods to approximate g.

Once g is approximated or known, f can be recovered by the following equation.

𝐹 = H/G (14)

𝑓 = 𝐼𝐹𝑇(𝐹) (15)

Here F, G and H are the Fourier transforms of the functions f,g and h respectively. IFT

is the Inverse Fourier Transform operation.

 In this application, deconvolution operation is carried out in 2D domain after the

feature mapping layers to generate the image. With the back propagation, the

parameters analogous to G are learnt and F (final image) could be recovered.

3.5 Summary

In this chapter, an insight into CNN, the previous generation giant and why anew

approach Caps-Net is used as a better alternation, describing its strengths and

limitations are presented. The overall theory behind Caps-Net is also be described in

detail. Furthermore, three of the Caps-Net architectures different from the routing

mechanism which are used in this research are intensely explained.

Eventually, the reconstruction technique; 2D De-convolution is described. In the next

chapter, the overall research approach will be put forward.

24

Chapter 4 Caps-Net based Approach for SR

4.1 Introduction

Using the technology described in the Chapter 3; Capsule Networks an approach for

Super Resolution is proposed as follows.

The rest of the chapter will describe the IPO (Input, Output & Process) along with

system users and finally the system features.

With this approach, following hypothesis is set for the project.

Hypothesis – The image quality performance of Capsule Net based Super-Resolution

model for medical image resolution enhancement is further improved by changing the

routing mechanism and the layered architecture.

4.2 Input

The inputs to the system are low resolution medical images of grey scale (single

channel) digital images. These inputs are generated from different imaging modalities

like; MRI Scanners, PET Scanners or CT Scanners, etc. These images are non-other

than cross slices of the human body.

4.3 Output

The output of the system will be a high resolution version of the input image. The

output will also be a grey scale image and the scaling factor will be an integer. The

new image will include the information interpolated by the Caps-Net model.

Figure 4.1: Approach

25

4.4 Process

The Caps-Net Module will get the input as low resolution image and after several

Capsule conversions and internal reconstruction, it will generate the higher resolution

images. In the training phase the difference between the expected high resolution

image and the conversion module based output is compared and fed back to the model

for learning. After the training, the trained model is used as the process core. With the

saved model, the high resolution images can be produced in seconds.

4.5 Users

The proposed solution is particularly focused on a specific type of images; medical

images. Hence the system users will be Radiologist, Other medical consultants and

Imaging Technicians. The Radiologists and Imaging Technicians will be using the

system at the image lab whereas the other consultants will be using the system on PCs

at clinics.

4.6 Features

With the proposed approach following features can be given out by the system.

1. Scale up grey scale images to 2x or 4x

2. Used with all imaging modalities

In this chapter, an overview of the Approach using the system Inputs, Outputs, Process,

Users and Features has been given. The process which has been described in this

chapter will be expanded as the design in the next chapter.

4.7 Summary

The current chapter can be considered as the essence of the overall project as it briefs

about the components in the project. Here, the input, the process, and the output

generated by the process are described along with the other relevancies of the project;

users of the project and special feature stretched out in the implementation. In the next

chapter, the overall design of the process described in this chapter is expanded.

26

Chapter 5 Design of Caps-Net SR

5.1 Introduction

This chapter expands the system process explained in the previous chapter as the

system design by dividing the system into sub-modules. The design diagrams will be

used for the core Caps-Net module explanation and minor Data Generator module

explanation. Even though the Data Generator module provides the input for the Caps-

Net module, the latter will be first explained for the reader’s clarity.

5.2 Data Generator Module

This module acts as the data supplier for the capsule network. With this module, the

dataset used for training and validation van be expanded quickly. Even when there is

no standard dataset, data can be generated with the help of this model.

5.2.1 Image Preprocessing Module

This is the first component of the Data Generator pipeline. Here, the input images,

which are in RGB format first converted to greyscale images. Then, to obtain a larger

amount of training and testing samples, the images were augmented by rotating the

images into several different angles. This will increase the number of image samples.

5.2.2 Image cropper

The augmented images are then passed through the image cropper module to obtain

the final outputs. It first crops the HR image from the original image that is of the size

Figure 5.1: Data Generator Module Components

27

of the desired HR image. Then, it scales down the cropped image to generate its LR

image. These two LR-HR pair is saved for training and validation.

5.3 Caps-Net SR Module

5.3.1 Input Image

This is the input to the Capsule Network. It is a low resolution image patch. During

the training phase of the network, these images are the lower resolution part of the

generated low-high resolution image pairs. Afterward, they act as the input to the

system in the validation and in practical. These low resolution input images are of grey

scale.

5.3.2 Convolution Module

These are identical to the convolution layers in CNN. The primary feature extraction

is achieved in these layers before converting them as capsules. They play a vital role

by filtering the most important features of any input image given as input (See 5.2.1).

5.3.3 Capsule Module

The capsule module acts as the core to the new approach. Its function is to embed the

richer and more sophisticated features that could interpolate the higher resolution

structures. They store pose and probability information about the features input via

Figure 5.2: Capsule Net Components

28

Convolution module. These internal representations of the features inside the capsule

module will be input to the Reconstruction Module.

5.3.4 Reconstruction Module

The reconstruction module does the final rendering of the higher resolution output. As

mentioned in 5.2.3 the feature information generated by the Capsule Module will be

input and arranged in such a way that the higher resolution image is output. As an

overview of this module, one can imagine this as feature to image mapper.

5.3.5. Output Image

This is the output of the reconstruction module. It is a grey scale image of high

resolution. During the training session, this is fed into the Evaluation module,

eventually, this will act as the overall system output. As the output of the system, it

acts as the reflection module of the system performance.

5.3.6 Evaluation Module

This module will only be used in the training process to evaluate the Caps-Net

performance and giving the feedback to the Caps-Net to adjust the weights

accordingly. In the case of Caps-Net it compares the two high resolution pairs;

reference output and Caps-Net output by generating a Signal to Noise Ratio (PSNR)

value. When this value is high, the system performs better.

5.3.7. High Resolution Image

This is the reference/original high resolution image solely used in the training process

of the Caps-Net. It acts as an input the Evaluation module and used to calculate the

PSNR.

5.4 Evaluation Module

Two evaluation instances have been conducted in this project. One evaluation happens

at the time of training itself (See 5.3.6).

For a more comprehensive evaluation, after the training, a new medical image dataset

has been used. With his dataset, HR images from different trained Capsule Net models

were generated. Next, overall evaluation is performed for different image quality

29

matrices namely Peak Signal to Noise Ratio (PSNR),Structure Similarity Index

(SSIM)[45], Multi Scale SSIM (MSSSIM)[46] and Universal Image Quality Index

(UQI)[47].

This part is implemented as two separate sub-modules. The first module is to generate

new evaluation data set. It first runs over a medical image dataset and generates up-

scaled images for each of the Caps Net module and save them in folders.

Secondly, the evaluation model gets two inputs, an up-scaled image from the SR

technique and the original image to generate the image quality matrix. Inside the image

quality comparison module, above mentioned different quality measures have been

implemented. The output of the module will be the image quality index by each

strategy.

5.5 Summary

This chapter gives an insight into the overall design components of the project. It is

prolonged under several major components of the system, namely, Data Generator

Module, Caps Net based SR Module, and the Evaluation Module. What tasks are

completed by each module and sub-modules are described in detail. In the upcoming

chapter, it will be spread out how each of these design components is implemented

and realized.

Figure 5.3: Image Quality Evaluation Model

30

Chapter 6 Implementation

6.1 Introduction

In this chapter, the designs described in the previous chapter are realized. Each module

described in the Design chapter is expanded in the following aspects not only limiting

to Software, Hardware, Algorithms, Flow Charts and Code segments.

Any special hardware component for this project except the GPU in the PC and cloud

environment was not used.

6.2 Data Generator Implementation

6.2.1 Dataset

Similar to any other Deep Learning based project data is a deciding factor for the

success of the project. The focus of this project is to implement SR module for

particularly in the medical image domain. Hence, it was required a large dataset for

the training purpose. The freely available online datasets of medical images were

downloaded for the purposes.

Following datasets are used in this project.

 Kaggle Brain MRI dataset for Tumor Detection -

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-

detection - 98 Images

 SIIM dataset (CT) - https://www.kaggle.com/kmader/siim-medical-images -

100 Images

These two datasets are used to generate the low-high resolution pairs with our Data

Generator Module.

6.2.2 Data Generator

The complete implementation of this project was done with Python programming

language, so was the image generator. For this, two separate image sets were used for

testing and evaluation purposes, respectively.

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/kmader/siim-medical-images

31

The following flowchart describes the overall implementation of the data generator

module.

The original input datasets mentioned in 6.1 were sent through the data generator

process as above. For this implementation Python packages; PIL,

NumPy and h5py were used. PIL and NumPy were used for pixel operations and h5py

was used for training and evaluation data file generation.

The module checks whether the input images have several layers or one if it is an RGB

image, then it will do the grey scale conversion with pil_image conversion module.

Figure 6.1: Data Generator – Flow Chart

32

After that, if the image was represented as an integer (0,255) it was converted to 0-1

range by dividing it by 255. After the conversion, images were cropped either to 20x20

sub images. These were considered the high resolution reference images. When

cropping the images, a stride of 10 pixels was considered.

The reference images were then scaled down using the popular Bicubic interpolation

technique. Here a separate function was used for down-sampling of the images. A

downsampling factor of 2 was used to obtain 10 x 10 images.

Then, they both reference and down-sampled patches were converted to NumPy array.

After iterating through the images in either training or evaluation test, the NumPy array

was written to the h5 file.

By running on two image datasets of training and evaluation, training.h5 and eval.h5

files were obtained. (Appendix II)

6.3 Overall implementation

The core of the system is the Caps-Net module. For the new implementation, the

official implementation of the FSRCNN [37] with Pytorch [48] was used as the base

architecture.

Figure 6.2: FSRCNN Architecture

33

It consists of two components re-used directly with the new implementation;

Convolution Layers and Reconstruction (De-convolution) Layers. The core Capsule

model was introduced between these two components bringing the novelty in this

research.

6.4 Re-usable Layers

6.4.1 Initial Convolution Layers

The convolution layers were implemented using the standard Pytorch Conv2D

function. The number of filters, kernel size, stride and padding parameters were

changed to extract different features at different scales. Several parameter settings

were used and the highest accuracy figure was given by the following configuration.

Number of filters – 56

Kernel size – 3x3

Stride – 1

With padding – 1 each side

6.4.2 Reconstruction Layers

The Reconstruction Module in FSRCNN is also a reusable component in the new

implementation. It is using Deconvolution (ConvTranspose2d) algorithm

implemented by Pytorch. The deconvolution layer consists of several configurable

parameters; kernel size, output stride and padding.

The DeConv configuration that gives the highest accuracy is as follows.

Kernel Size = 9x9

Output Stride = Scale factor -1

Padding 4

The core of the implementation, Caps Net was implemented along with three routing

mechanisms, namely, Dynamic routing, EM routing and Inverted Dot Product based

Attention routing. The next section is dedicated to the description of the

implementation of these Caps Net models.

34

6.5 Dynamic Routing

As described in section 3.4.3.1 Dynamic Routing was the first implementation of

Caps-Net inside the system. The architecture of the DR layers can be identified by Fig.

6.3. The implementation of the layers was inspired by the official DR implementation

(MNIST classification) for PyTorch [49].

The following modifications were imposed on the existing DR implementation.

1. Modification of Primary Capsule layer such that kernel size, striding and

padding can be configured dynamically.

2. Modification of Routing Capsule layer model such that different input sizes are

accepted for the first layer.

After the changes, the highest performance architecture was given as follows.

(Appendix I – DR Training)

For the Primary Capsule Layer

Output channels - 12

Capsule dimensionality - 4

Total number of capsules – 12 (12/4 = 3 Capsules blocks)

Kernel size -1

Figure 6.3: DR based Caps-Net Architecture

35

Stride -1

No Padding

Routing Capsules (3 layers). For each layer following same configuration was used.

Total number of capsules - 12

Dimensionality of the output capsule layer – Original image size

(Appendix III)

This capsule implementation was placed in the FSRCNN architecture replacing the

middle part of the CNN architecture.

6.6 Expectation Maximization

The EM routing mechanism was implemented as the second method. The architecture

of the Caps Conv layers in the EM routing mechanism can be identified by Fig. 6.4.

The implementation of the layers was inspired by the official Matrix-Capsule-with EM

routing implementation (MNIST classification) for PyTorch [50].

In contrast to Dynamic routing architecture, the Primary capsule layer consists of 3

capsule layers each consisting of a 4x4 pose matrix and an activation. Hence, the

capsule dimensionality is 51(= (4 x 4+1) x3).

For the Primary Capsule Layer

Output channels - 3

Pose matrix – 4 x 4

Figure 6.4: EM Routing based Caps Net Architecture

36

Kernel size -1

Stride -1

No Padding

With comparable to DR Routing technique, 3 Convolution Capsule layers were

implemented and routed with EM routing mechanism.

For the Conv-Capsule layers following parameters were used. The number of channels

of 56 was obtained with several configuration changes and evaluating their accuracies.

Output channels – 56 (This is set for all 3 Capsule layers)

Pose matrix – 4 x 4

Kernel size -1

Stride -1

No Padding

With this setting, the density of the output channel becomes 952 (= (4x4+1)*56).

After the iterations, the output was reshaped such that it was compatible with the

deconvolution layer. Here, the density (952 in this case) was switched as the first

dimension of the output. This output was set as the input to the deconvolution layer.

(Appendix IV)

6.7. Attention based Routing

The latest implementation of ‘Inverted Dot Product based Attention Routing’ is

introduced in this section. Similar to the previously mentioned mechanisms, the same

SR pipeline was used. Only the core of the pipeline was replaced with the Attention

Routing Capsules.

37

For this, the code was modified with the help of the official implementation of Inverted

Dot-Product Attention Routing [51].

Up to the Primary Capsule layer, the structure was the same as that of the DR

architecture. After that, Attention Routing was adopted as follows.

Output channels - 4

Pose matrix – 4 x 4

Kernel size -1

Stride -1

No Padding

(Appendix V)

This same structure was repeated for 3 layers. During the training process, the

concurrent routing mechanism was endorsed to reduce the overall training time.

Finally, the Conv-Caps output is routed through the De-Convolution layer to generate

a higher resolution image.

6.8 Training

The training was performed on a PC with the following specifications.

RAM -16 GB

GPU - 4GB, NVidia (1650Q)

CPU – Intel Core i7 – 9750H CPU of 2.6GHz

Figure 6.5: Inverted Dot Product based Routing Caps Net Architecture

38

All the training was done under the utilization of GPU by compelling models and

dataset into GPU arrays with the PyTorch framework based Cuda – GPU commands.

The dataset and training iterations for the training purpose were configured as follows.

Batch size – 16

Epochs – 20

Dataset – 307,520 image pairs (10x10 LR and 20x20HR)

Learning rate - 0.001

After 20 epochs, the model with the best PSNR ratio was saved as the trained model

in ‘.pth’ format.

6.9 Summary

The practical realization of the Capsule Network based SR system is explicated here.

With the detailed diagrams, the implementation of each design component explained

in the previous chapter is described in detail with code segments, network

configurations and training configurations, etc. The upcoming chapter describes how

the implemented system was evaluated against the desired expectations.

39

Chapter 7 Evaluation

7.1 Introduction

The main goal in this section is to compare the CapsNet based SR techniques which

are introduced in this project against state of the art CNN based methods as well as the

traditional highly used SR technique. For the comparison, not only limiting to PSNR,

several other image quality assessment indexes have been used. A brief overview of

these indices is described in the following section.

In addition to the method comparison over image accuracies, time to train, training

accuracy improvement rate parameters are also evaluated for further information.

This chapter describes the evaluation strategies, experimental design and evaluation

results in an orderly manner.

7.2 Evaluation Strategy

7.2.1 Evaluation at Training

For this, the evaluation dataset obtained at the data generation phase was used. There,

50,000 LR and HR image pairs have been used for evaluation with a batch of 16. Peak

Signal to Noise Ratio (PSNR) has been used for this evaluation and acted as an

indicator of the performance of the training phase.

The PSNR calculation function is simply implemented by considering the PSNR

formula and called at the evaluation instance. (Appendix VI)

7.2.2 Overall Evaluation

7.2.2.1 Evaluation Data Generator

The evaluation data generator sub-module was implemented as follows. First, a new

data set of medical images was selected (https://www.kaggle.com/navoneel/brain-mri-

images-for-brain-tumor-detection). An image cropper program was built for this

purpose. It was given the HR image window size and the scaling factor as inputs for

this program. This program reads all the image files in a given directory and crops the

sub images from each image. Then, those sub images are saved in a folder in .png

40

format. Simultaneously, a downscaled version of those images too is saved in another

folder. Image size of 100x100 and scaling factor of 2 were used for this purpose. It

indicates that two folders are containing 100x100 and 50x50 image samples in gray

scale. (Appendix VII).

Then, with a ‘Zooming’ application the downscaled images were converted to up-

scaled image samples. This ‘Zooming’ application accepts the trained model file and

the LR image as input. As the current set of models were trained for zooming 10 x10

patches into 20 x 20 patches, 10x10 patches were extracted from the LR images. For

50 x 50 images, there are 25(= 5 x 5) such patches. Each patch is up-scaled using

different SR models; Bicubic, FSRCNN, DR, EM and Attention routing. Finally, they

were merged to generate one 100x100 up-scaled image. These images were saved in

different folders corresponding to the SR technique. (Appendix VIII)

7.2.2.2 Data Evaluator

This was developed as a separate Python module. It reads the images from the above

mentioned folders, and the original folder to calculate the image comparison matrix.

For this, several image quality assessment methods have been used. The

implementation was not done from the ground level instead of the python package

‘sewar’ [52]. The inbuilt modules; ‘psnr’, ‘ssim’, ‘msssim’ and ‘uqi’ have been used

directly inside the evaluator module. (Appendix IX)

After running through all the images, it calculates the average values for all the quality

indexes by dividing by the image count. In the next sub section, an overview of image

quality indexes is given.

7.2.3 PSNR

The main evaluation method used in the project is the standard image quality

comparison method that is used in the industry, called Peak Signal-to-Noise Ratio

(PSNR). It measures the maximum possible power of a signal and the power of

corrupting noise that affects the fidelity of its representation.

41

For a gray scale image, Mean Squared Error (MSE) is defined as follows.

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]𝑛−1

𝑗=0
2𝑚−1

𝑖=0 (Eq.1)

Here m & n are the width and the height of the image. In our case image is the high

resolution SR output image. ‘I’ represents the reference image whereas ‘K’ represents

the image output from our Caps-Net. As indicated by the equation, it is noticeable

when the SR technique generated image is closer to the reference image MSE value

will be smaller.

𝑃𝑆𝑁𝑅 = 20. log10 𝑀𝐴𝑋𝑖 − 10. log10 𝑀𝑆𝐸 (Eq.2)

Here, MAXi is the maximum possible pixel value of the image. It is evident that, for

the lower MSE images the PSNR value will be higher.

7.2.4 SSIM

The second evaluation index that is considered for evaluation is the Structural

Similarity Index (SSIM) [45]. This index quantifies the image quality degradation

from the original image. It’s more associated with the human perception of differences

between two images, such as luminance, contrast and structure. In contrast to PSNR,

SSIM lays its foundation on the visible structures inside the image. This is because it

has taken into consideration that the pixels have interdependencies in a small sub area.

In some cases, SSIM is recognized to be a more convenient method than PSNR as it

reflects human perception.

The formula for SSIM is given as follows.

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)

Here, x,y represents the original image and the derived image respectively. The µ and

𝜎 have their usual meanings of mean and standard deviation of pixels inside a

considered window.

42

SSIM is dependent upon the distribution of the pixel values. The range of possible

values of SSIM is between (-1, 1) whereas 1 indicates perfect structural mapping.

7.2.5 MSSSIM

The Multi Scale SSIM [46] is one of the extensions to the SSIM. The SSIM is derived

by combining 3 formulas indicating 3 elements; contrast, structure and luminance.

These are highly dependent upon the sub window size of the view scale SSIM

(Typically set at 8pixel, 10 pixel windows). This method tries to generalize SSIM by

evaluating SSIM at different scales and deriving an index.

7.2.6 UIQ

The Universal Image Quality Index (UIQ) [47] was introduced before SSIM and laid

the foundation for SSIM as well. The UIQ is defined as follows.

𝑄(𝑥, 𝑦) =
4𝜎𝑥𝑦𝜇𝑥𝜇𝑦

(𝜇𝑥
2 + 𝜇𝑦

2)(𝜎𝑥
2 + 𝜎𝑦

2)

As indicated by the equation, its resemblance with SSIM is clearly evident. It helps to

evaluate two images without considering the luminance conversion of image into HSV

plane. This is because, the luminance distortion, contract distortion and loss of

correlation is implicitly embedded into the equation.

The upcoming section describes how experimental setup was done to evaluate SR

techniques over the above indices.

7.3 Experimental Setup

The core experimental setup can be described with the following steps.

1. Obtain randomly generated 2500 image pairs of low-high resolution of

different medical imaging modalities

2. Input low resolution images into particular SR algorithm

3. Image quality index calculation via Evaluation module

4. Comparison among different SR algorithms

43

In extension to the, core evaluation training process and model parameter evaluation

was also done with the data obtained at the training time.

7.4 SR Techniques Comparison

Table 7.1 provides a quantitative comparison of the generated dataset explained in

Section 6.2. A comparison has been done for the proposed techniques against the state-

of-the-art technique FSRCNN and the widely used the old method Bicubic

interpolation method. The models were trained for scaling images up to 2x factor only.

Table 7.1: Quantitative Comparison of Results

SR technique PSNR SSIM UQI MSSSIM

Dynamic Routing 42.10754659 0.974436038 0.985257827 0.995784307

EM Routing 36.27424783 0.916861082 0.850859974 0.98513547

Attention Routing 40.32626865 0.950900289 0.89400693 0.994521225

FSRCNN 40.73684391 0.953492091 0.900293958 0.995011494

Bicubic 38.09835088 0.920734985 0.862577213 0.989270289

As indicated by the results, the Dynamic Routing mechanism shows the most

outstanding results amongst all. By all indexes, it is reflected that the DR method leads

not only in one index but in all of the indexes that have been used for evaluation. There

is a significant difference between PSNR and UQI indices in the DR method. The latest

method introduced in this research, the Attention Routing SR technique was performed

Figure 7.1: Experimental Setup for Evaluation

44

slightly below the current state of the art method FSRCNN. The FSRCNN method has

the second best performance for the given dataset. However, this slight quality

difference between FSRCNN and Attention Routing based method is not qualitatively

different as indicated in the following section by the image results. Unexpectedly, the

EM routing performance was even lower than the traditional bicubic method. This

could be because the increased number of Caps-Conv layers may have resulted in over-

fitting the training round evaluation dataset as well. For the versatile new evaluation

dataset, it is unable to generate target capsule candidates to input for the reconstruction

module.

In addition to the quantitative analysis, a qualitative results (Appendix-X) is also

presented for further clarification of the system. There, a set of medical sub-images

(10 images) were given for a medical doctor for evaluation. The medical doctor has

given scores starting from 5 to 1 for each SR method. The highest score is assigned to

the highest quality image and vice versa. The cumulative results show the similar

implication as the above mentioned quantitative analysis. The DR method scores the

Figure 7.2: Original Image (Top-Left), Caps-Net Attention (Top-

Middle), Bicubic (Top-Right), FSRCNN (Bottom-Left), DR

(Bottom-Middle), EM (Bottom-Right)

45

highest among all. The Attention method scores at the second place and in conflicting

FSRCNN scores the third while dragging Bicubic and EM Routing methods fourth and

fifth places respectively.

Further to the image quality assessment, the training performance and model size

analysis was also carried out. This is particularly important as the computing

performance is also an impactful factor in medical imaging applications.

This comparison was done with fully dedicated PC for SR training process (No other

program was run during the training process.)

Table 7.2: Training Performance of SR Techniques

Model Number of Trainable Parameters Time per Epoch

FSRCNN 12,809 7-11 minutes

Dynamic Routing 1,442,273 20-25 minutes

EM Routing 10,128 30-35 minutes

Attention Routing 2,274 12-15 minutes

Figure 7.3: Original Image (Top-Left), Caps-Net Attention (Top-Middle),

Bicubic (Top-Right), FSRCNN (Bottom-Left), DR (Bottom-Middle), EM

(Bottom-Right)

46

With the analysis, it exhibits that FSRCNN has the best performance during the

training and EM routing based SR technique takes the longest time for training

amongst the tested methods.

Another important fact to be noticed is that, the number of trainable parameters show

no correlation with the training time.

The powerful learning capability of Attention Routing in SR task is emphasized

through this simple analysis as well. With 1/6 th of learnable parameters, Attention

Routing based SR technique achieves the same level of accuracy of FSRCNN.

In addition to the time performance analysis, for the selected architectures from each

of the techniques a training evaluation was also done. The average PSNR was

considered to be the evaluation parameter for this.

Figure 7.4: PSNR Variation over Epochs

47

It is worth pointing out that, Dynamic Routing surpasses the other techniques from the

very beginning as well. The Attention Routing mechanism started with low PSNR at

the beginning and the end of 20 epochs, it has reached the same PSNR ratio obtained

by the FSRCNN. Probably, with more iterations, the Attention routing method could

transcend the performance of FSRCNN as well.

7.5 Summary

The current method in generating HR images is evaluated against the state of the art

method and one of the traditional methods in the domain. This detailed evaluation is

explained starting from the strategy to the results through the experimental design. The

evaluated results will back-up the overall conclusion that is pointed out in the next

chapter.

48

Chapter 8 Conclusion & Further Work

8.1 Introduction

In this research, a novel integration of state of the art Capsule Net routing mechanism;

(Inverted Dot Product based) Attention Routing to one of the existing single image SR

pipeline was introduced. Moreover, several architectural modifications to previously

introduced Caps Net based approaches were also brought up. Unlike the previous

literature where an existing dataset was used, a custom medical image dataset was

generated and used for modeling and evaluation. This was done to highlight the

relevance of the SR techniques in medical image analysis. The previous chapter, a

thorough evaluation was presented on the new SR approach and it was positioned

among state-of-the-art techniques. This chapter will conclude the dissertation by

emphasizing the achievement of the objectives, drawn conclusions and further work

to be conducted in this area of research with the support of the information provided

in the evaluation chapter.

8.2 Conclusion

8.2.1 Achievement of Project Objectives

The overall project process was relied on achieving the objectives mentioned in the

introduction chapter. By following the proper project process, all of the objectives

were achieved as expected.

With a thorough and substantial literature review, several drawbacks in the current SR

techniques and attempts to address these issues were identified. By spotting the current

research trend in SR methods, one of the recently developed and one time-attempted

method was considered to lay down a new solution in the SR domain. The Capsule

Network was identified as the learning core of the new solution.

The existing SR pipeline established in FSRCNN was altered by introducing the

newest Caps Net routing algorithm, namely Inverted Dot Product based Attention

Routing. For the completion of the solution, two of the previously used routing

49

techniques; Dynamic Routing and EM Routing were also used with different

configurations.

All of the Caps Net techniques were implemented and integrated into the SR pipeline

enabling richer information flow inside the SR pipeline. As indicated in Chapter 7 –

Implementation, several configurations were tried for each of the Caps Net methods

and the best-trained models were saved for further use. Another important point to be

noticed is that a new dataset was generated for the training purpose with one of the

freely available medical image datasets.

After the implementation of these methods, each of them was evaluated using a new

dataset, which was also generated with another open-source medical database. Several

standard image quality indexes were used for the evaluation. Moreover, training time

and parameter analysis of each model was also carried out explaining more about this

novel approach.

According to the last objective, with the image results, clinician opinion was attained

and the responses were positive and pleasing. Finally, at the time of the dissertation

submission, one conference paper was drafted fully as ‘Super-Resolution Techniques’

paper with the study expecting to submit to an upcoming conference.

8.2.2 Overall Conclusion

To overcome the drawbacks like chessboard effect, initial resizing of the image and

also to exploit the ability of different Caps Net based SR techniques in the field of

medical image domain, several Capsule Network based SR pipelines were introduced.

Amongst the 3 Caps-Net architectures namely; Dynamic Routing, EM Routing, and

Inverted Dot Product based Attention Routing, the last mentioned technique was

introduced. The modified DR based Caps Net outperforms all of the SR techniques

that were evaluated in this research. The newly proposed Attention Routing based

Caps Net has shown significant results comparable with FSRCNN method as indicated

in the Evaluation chapter. This provides evidence that the richness of Caps Net inner

structure to map between low resolutions features to high-resolution features.

Particularly, achieving the same level of image quality with a much less number of

50

NN parameters in Attention Routing mechanism indicates the profound information

compression and embedding in this SR method.

Showing no significant correlation between the training time and the number of

training parameters of the tested models manifests the impact of routing or the

complexity of forward passing in a model.

By using a specific medical image dataset for training and evaluation, the networks

were specially trained for capturing features related to medical images. According to

the feedbacks from the clinicians about the system, the system is capable to deploy in

a medical imaging system setting.

With the evaluation results and the step by step concluded outcomes, the project

hypothesis that image quality performance of Capsule Net based Super Resolution

model for medical image resolution enhancement is further improved by changing the

routing mechanism and the layered architecture is proved.

8.3 Limitations and Further Works

Even though the Attention-Routing mechanism inside the SR pipeline significantly

reduces the training time compared to DR and EM routing mechanisms, FSRCNN

training time is still comparably low even with a higher number of parameters. Further

research should be carried out for time optimization of Caps Net based architectures.

The tested models could also be further evaluated not only by changing the core feature

learning part, but also the reconstruction methodology of the algorithm.

Lastly, to practical deployment of the system in a clinical setting, the models should

be integrated with a GUI based application.

8.4 Summary

By bringing the end to the thesis, this chapter describes, to which extent the objectives

were achieved, the overall conclusion and the limitations and the further works to be

done. Few sideline tasks were identified further to explore the SR field more and to

bring the current method into practical ground.

51

References

[1] S. Fu, M. Zhang, C. Mu, and X. Shen, “Advancements of Medical Image

Enhancement in Healthcare Applications,” Journal of Healthcare Engineering,

Mar. 29, 2018. https://www.hindawi.com/journals/jhe/2018/7035264/ (accessed

Jun. 02, 2020).

[2] Y. Y. Abdallah, “History of Medical Imaging,” Arch Med Health Sci, vol. 5, no.

2, p. 275, 2017, doi: 10.4103/amhs.amhs_97_17.

[3] H. Greenspan, “Super-Resolution in Medical Imaging,” The Computer Journal,

vol. 52, no. 1, pp. 43–63, Feb. 2008, doi: 10.1093/comjnl/bxm075.

[4] A. Pinto, “Spectrum of diagnostic errors in radiology,” WJR, vol. 2, no. 10, p.

377, 2010, doi: 10.4329/wjr.v2.i10.377.

[5] R. L. Morin and M. Mahesh, “The Importance of Spatial Resolution to Medical

Imaging,” Journal of the American College of Radiology, vol. 15, no. 8, p. 1127,

Aug. 2018, doi: 10.1016/j.jacr.2018.03.042.

[6] D. Kouame and M. Ploquin, “Super-resolution in medical imaging : An

illustrative approach through ultrasound,” in 2009 IEEE International

Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA,

Jun. 2009, pp. 249–252, doi: 10.1109/ISBI.2009.5193030.

[7] J. L. Prince, A. Carass, C. Zhao, B. E. Dewey, S. Roy, and D. L. Pham, “Image

synthesis and superresolution in medical imaging,” in Handbook of Medical

Image Computing and Computer Assisted Intervention, Elsevier, 2020, pp. 1–24.

[8] R. Hardie, “A Fast Image Super-Resolution Algorithm Using an Adaptive

Wiener Filter,” IEEE Trans. on Image Process., vol. 16, no. 12, pp. 2953–2964,

Dec. 2007, doi: 10.1109/TIP.2007.909416.

[9] C. Fookes, F. Lin, V. Chandran, and S. Sridharan, “Evaluation of image

resolution and super-resolution on face recognition performance,” Journal of

Visual Communication and Image Representation, vol. 23, no. 1, pp. 75–93, Jan.

2012, doi: 10.1016/j.jvcir.2011.06.004.

[10] D. Capel and A. Zisserman, “Super-resolution enhancement of text image

sequences,” in Proceedings 15th International Conference on Pattern

Recognition. ICPR-2000, Barcelona, Spain, 2000, vol. 1, pp. 600–605, doi:

10.1109/ICPR.2000.905409.

[11] H. Lian, “Variational local structure estimation for image super-resolution,”

Accessed: Jun. 04, 2020. [Online]. Available:

https://www.researchgate.net/publication/1764515_Variational_local_structure

_estimation_for_image_super-resolution.

[12] R. W. Gerchberg, “Super-resolution through Error Energy Reduction,” Optica

Acta: International Journal of Optics, vol. 21, no. 9, pp. 709–720, Sep. 1974, doi:

10.1080/713818946.

[13] S. P. Kim, N. K. Bose, and H. M. Valenzuela, “Recursive reconstruction of high

resolution image from noisy undersampled multiframes,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 38, no. 6, pp. 1013–1027, Jun.

1990, doi: 10.1109/29.56062.

[14] H. Greenspan, G. Oz, N. Kiryati, and S. Peled, “MRI inter-slice reconstruction

using super-resolution,” Magnetic Resonance Imaging, p. 10, 2002.

52

[15] R. Willett, R. Nowak, I. Jermyn, and J. Zerubia, “Wavelet-Based Superresolution

in Astronomy,” p. 10.

[16] P. D. Santis and F. Gori, “On an Iterative Method for Super-resolution,” Optica

Acta: International Journal of Optics, vol. 22, no. 8, pp. 691–695, Aug. 1975,

doi: 10.1080/713819094.

[17] y Tsai and T. Huang, “Multipleframe Image Restoration and Registration,”

Greenwich, pp. 317–339.

[18] N. Nguyen and P. Milanfar, “An efficient wavelet-based algorithm for image

superresolution,” in Proceedings 2000 International Conference on Image

Processing (Cat. No.00CH37101), Sep. 2000, vol. 2, pp. 351–354 vol.2, doi:

10.1109/ICIP.2000.899387.

[19] H. Demirel and G. Anbarjafari, “IMAGE Resolution Enhancement by Using

Discrete and Stationary Wavelet Decomposition,” IEEE Trans. on Image

Process., vol. 20, no. 5, pp. 1458–1460, May 2011, doi:

10.1109/TIP.2010.2087767.

[20] M. K. Ng, “A Fast MAP Algorithm for High-Resolution Image Reconstruction

with Multisensors,” p. 22.

[21] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP:

Graphical Models and Image Processing, vol. 53, no. 3, pp. 231–239, May 1991,

doi: 10.1016/1049-9652(91)90045-L.

[22] H. Stark and P. Oskoui, “High-resolution image recovery from image-plane

arrays, using convex projections,” J. Opt. Soc. Am. A, vol. 6, no. 11, p. 1715,

Nov. 1989, doi: 10.1364/JOSAA.6.001715.

[23] S. Baker and T. Kanade, “Super-Resolution Optical Flow.”

https://www.researchgate.net/profile/Takeo_Kanade/publication/2449746_Supe

r-Resolution_Optical_Flow/links/57e38d3c08aecd0198de8aea.pdf (accessed

Jun. 05, 2020).

[24] M. Irani and S. Peleg, “Super resolution from image sequences,” in [1990]

Proceedings. 10th International Conference on Pattern Recognition, Atlantic

City, NJ, USA, 1990, vol. ii, pp. 115–120, doi: 10.1109/ICPR.1990.119340.

[25] K. Simonyan, S. Grishin, D. Vatolin, and D. Popov, “Fast video super-resolution

via classification,” in 2008 15th IEEE International Conference on Image

Processing, San Diego, CA, USA, 2008, pp. 349–352, doi:

10.1109/ICIP.2008.4711763.

[26] M. Elad and A. Feuer, “Restoration of a single superresolution image from

several blurred, noisy, and undersampled measured images,” IEEE Trans. on

Image Process., vol. 6, no. 12, pp. 1646–1658, Dec. 1997, doi:

10.1109/83.650118.

[27] P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, and R. Hanson, “Super-Resolved

Surface Reconstruction from Multiple Images,” in Maximum Entropy and

Bayesian Methods, G. R. Heidbreder, Ed. Dordrecht: Springer Netherlands, 1996,

pp. 293–308.

[28] L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang, and L. Zhang, “Image super-

resolution: The techniques, applications, and future,” Signal Processing, vol.

128, pp. 389–408, Nov. 2016, doi: 10.1016/j.sigpro.2016.05.002.

[29] E. Mjolsness, “Neural networks, pattern recognition, and fingerprint

hallucination,” 1986, doi: 10.7907/M0VQ-DJ43.

53

[30] S. Baker and T. Kanade, “Hallucinating faces,” in Proceedings Fourth IEEE

International Conference on Automatic Face and Gesture Recognition (Cat. No.

PR00580), Grenoble, France, 2000, pp. 83–88, doi:

10.1109/AFGR.2000.840616.

[31] W. T. Freeman, “Learning Low Level Vision,” International Journal of

Computer Vision, vol. 40, no. 1, pp. 25–47, 2000, doi:

10.1023/A:1026501619075.

[32] Hong Chang, Dit-Yan Yeung, and Yimin Xiong, “Super-resolution through

neighbor embedding,” in Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.,

Washington, DC, USA, 2004, vol. 1, pp. 275–282, doi:

10.1109/CVPR.2004.1315043.

[33] Jianchao Yang, J. Wright, T. S. Huang, and Yi Ma, “Image Super-Resolution Via

Sparse Representation,” IEEE Trans. on Image Process., vol. 19, no. 11, pp.

2861–2873, Nov. 2010, doi: 10.1109/TIP.2010.2050625.

[34] C. Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a

Generative Adversarial Network,” in 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Honolulu, HI, Jul. 2017, pp. 105–114, doi:

10.1109/CVPR.2017.19.

[35] C.-H. Pham et al., “Multiscale brain MRI super-resolution using deep 3D

convolutional networks,” Computerized Medical Imaging and Graphics, vol. 77,

p. 101647, Oct. 2019, doi: 10.1016/j.compmedimag.2019.101647.

[36] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep

Convolutional Networks,” arXiv:1501.00092 [cs], Jul. 2015, Accessed: Feb. 20,

2020. [Online]. Available: http://arxiv.org/abs/1501.00092.

[37] C. Dong, C. C. Loy, and X. Tang, “Accelerating the Super-Resolution

Convolutional Neural Network,” arXiv:1608.00367 [cs], Aug. 2016, Accessed:

May 24, 2020. [Online]. Available: http://arxiv.org/abs/1608.00367.

[38] J.-T. Hsu, C.-H. Kuo, and D.-W. Chen, “Image Super-Resolution Using Capsule

Neural Networks,” IEEE Access, vol. 8, pp. 9751–9759, 2020, doi:

10.1109/ACCESS.2020.2964292.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks,” in Advances in Neural Information

Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[40] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between Capsules,”

arXiv:1710.09829 [cs], Nov. 2017, Accessed: Feb. 24, 2020. [Online].

Available: http://arxiv.org/abs/1710.09829.

[41] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,”

presented at the International Conference on Learning Representations, Feb.

2018, Accessed: Oct. 16, 2020. [Online]. Available:

https://openreview.net/forum?id=HJWLfGWRb.

[42] Y.-H. H. Tsai, N. Srivastava, H. Goh, and R. Salakhutdinov, “CAPSULES WITH

INVERTED DOT-PRODUCT ATTENTION ROUTING,” p. 15, 2020.

[43] J. Choi, H. Seo, S. Im, and M. Kang, “Attention Routing Between Capsules,” in

2019 IEEE/CVF International Conference on Computer Vision Workshop

54

(ICCVW), Seoul, Korea (South), Oct. 2019, pp. 1981–1989, doi:

10.1109/ICCVW.2019.00247.

[44] “Deconvolution,” Wikipedia. Sep. 21, 2020, Accessed: Oct. 30, 2020. [Online].

Available:

https://en.wikipedia.org/w/index.php?title=Deconvolution&oldid=979490499.

[45] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality

Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on

Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004, doi:

10.1109/TIP.2003.819861.

[46] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for

image quality assessment,” in The Thrity-Seventh Asilomar Conference on

Signals, Systems & Computers, 2003, Pacific Grove, CA, USA, 2003, pp. 1398–

1402, doi: 10.1109/ACSSC.2003.1292216.

[47] Zhou Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal

Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002, doi: 10.1109/97.995823.

[48] “yjn870/FSRCNN-pytorch: PyTorch implementation of Accelerating the Super-

Resolution Convolutional Neural Network (ECCV 2016).”

https://github.com/yjn870/FSRCNN-pytorch (accessed Sep. 06, 2020).

[49] “motokimura/capsnet_pytorch: PyTorch implementation of Geoffrey Hinton’s

Dynamic Routing Between Capsules.”

https://github.com/motokimura/capsnet_pytorch (accessed Sep. 06, 2020).

[50] Y. Meng, YuxianMeng/Matrix-Capsules-pytorch. 2020.

[51] Y.-H. H. Tsai, yaohungt/Capsules-Inverted-Attention-Routing. 2020.

[52] “sewar · PyPI.” https://pypi.org/project/sewar/ (accessed Oct. 26, 2020).

55

Appendix

Appendix I: Inverted Dot Product Based Attention Routing

 Concurrent Routing Pseudo Code

Appendix II: Data Generator

import argparse
import glob
import h5py
import numpy as np
import PIL.Image as pil_image
from utils import calc_patch_size, convert_rgb_to_y

def train(args):
 h5_file = h5py.File(args.output_path, 'w')

 lr_patches = []
 hr_patches = []

 for image_path in sorted(glob.glob('{}/*'.format(args.images_dir))):
 hr = pil_image.open(image_path).convert('RGB')
 hr_images = []

 if args.with_aug:
 for s in [1.0, 0.9, 0.8, 0.7, 0.6]:
 for r in [0, 90, 180, 270]:
 tmp = hr.resize((int(hr.width * s), int(hr.height * s)), resample=pil_image.BICUBIC)
 tmp = tmp.rotate(r, expand=True)
 hr_images.append(tmp)
 else:
 hr_images.append(hr)

 for hr in hr_images:

56

 hr_width = (hr.width // args.scale) * args.scale
 hr_height = (hr.height // args.scale) * args.scale
 hr = hr.resize((hr_width, hr_height), resample=pil_image.BICUBIC)
 lr = hr.resize((hr.width // args.scale, hr_height // args.scale), resample=pil_image.BICUBIC)
 hr = np.array(hr).astype(np.float32)
 lr = np.array(lr).astype(np.float32)
 hr = convert_rgb_to_y(hr)
 lr = convert_rgb_to_y(lr)

 for i in range(0, lr.shape[0] - args.patch_size + 1, args.scale):
 for j in range(0, lr.shape[1] - args.patch_size + 1, args.scale):
 lr_patches.append(lr[i:i + args.patch_size, j:j + args.patch_size])
 hr_patches.append(hr[i * args.scale:i * args.scale + args.patch_size * args.scale,
 j * args.scale:j * args.scale + args.patch_size * args.scale])

 lr_patches = np.array(lr_patches)
 hr_patches = np.array(hr_patches)

 h5_file.create_dataset('lr', data=lr_patches)
 h5_file.create_dataset('hr', data=hr_patches)

 h5_file.close()

def eval(args):
 h5_file = h5py.File(args.output_path, 'w')

 lr_group = h5_file.create_group('lr')
 hr_group = h5_file.create_group('hr')

 for i, image_path in enumerate(sorted(glob.glob('{}/*'.format(args.images_dir)))):
 hr = pil_image.open(image_path).convert('RGB')
 hr_width = (hr.width // args.scale) * args.scale
 hr_height = (hr.height // args.scale) * args.scale
 hr = hr.resize((hr_width, hr_height), resample=pil_image.BICUBIC)
 lr = hr.resize((hr.width // args.scale, hr_height // args.scale), resample=pil_image.BICUBIC)
 hr = np.array(hr).astype(np.float32)
 lr = np.array(lr).astype(np.float32)
 hr = convert_rgb_to_y(hr)
 lr = convert_rgb_to_y(lr)

 lr_group.create_dataset(str(i), data=lr)
 hr_group.create_dataset(str(i), data=hr)

 h5_file.close()

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('--images-dir', type=str, required=True)
 parser.add_argument('--output-path', type=str, required=True)
 parser.add_argument('--scale', type=int, default=2)
 parser.add_argument('--patch-size', type=int, default=20)
 parser.add_argument('--with-aug', action='store_true')
 parser.add_argument('--eval', action='store_true')
 args = parser.parse_args()

 if not args.eval:
 train(args)

57

 else:
 eval(args)

 print(out.size())

if __name__ == "__main__":
 main()

Appendix III – Dynamic Routing

DR Implementation

class RoutingCapsules(nn.Module):
 def __init__(self, in_dim, in_caps, num_caps, dim_caps, num_routing, device: torch.device):
 """
 Initialize the layer.
 Args:
 in_dim: Dimensionality (i.e. length) of each capsule vector.
 in_caps: Number of input capsules if digits layer.
 num_caps: Number of capsules in the capsule layer
 dim_caps: Dimensionality, i.e. length, of the output capsule vector.
 num_routing: Number of iterations during routing algorithm
 """
 super(RoutingCapsules, self).__init__()
 self.in_dim = in_dim
 self.in_caps = in_caps
 self.num_caps = num_caps
 self.dim_caps = dim_caps
 self.num_routing = num_routing
 self.device = device

 self.W = nn.Parameter(0.01 * torch.randn(1, num_caps, in_caps, dim_caps, in_dim))

 def __repr__(self):
 tab = ' '
 line = '\n'
 next = ' -> '
 res = self.__class__.__name__ + '('
 res = res + line + tab + '(' + str(0) + '): ' + 'CapsuleLinear('
 res = res + str(self.in_dim) + ', ' + str(self.dim_caps) + ')'
 res = res + line + tab + '(' + str(1) + '): ' + 'Routing('
 res = res + 'num_routing=' + str(self.num_routing) + ')'
 res = res + line + ')'
 return res

 def forward(self, x):
 batch_size = x.size(0)
 # (batch_size, in_caps, in_dim) -> (batch_size, 1, in_caps, in_dim, 1)
 x = x.unsqueeze(1).unsqueeze(4)
 #
 # W @ x =
 # (1, num_caps, in_caps, dim_caps, in_dim) @ (batch_size, 1, in_caps, in_dim, 1) =

58

 # (batch_size, num_caps, in_caps, dim_caps, 1)
 u_hat = torch.matmul(self.W, x)
 # (batch_size, num_caps, in_caps, dim_caps)
 u_hat = u_hat.squeeze(-1)
 # detach u_hat during routing iterations to prevent gradients from flowing
 temp_u_hat = u_hat.detach()

 '''
 Procedure 1: Routing algorithm
 '''
 b = torch.zeros(batch_size, self.num_caps, self.in_caps, 1).to(self.device)

 for route_iter in range(self.num_routing - 1):
 # (batch_size, num_caps, in_caps, 1) -> Softmax along num_caps
 c = F.softmax(b, dim=1)

 # element-wise multiplication
 # (batch_size, num_caps, in_caps, 1) * (batch_size, in_caps, num_caps, dim_caps) ->
 # (batch_size, num_caps, in_caps, dim_caps) sum across in_caps ->
 # (batch_size, num_caps, dim_caps)
 s = (c * temp_u_hat).sum(dim=2)
 # apply "squashing" non-linearity along dim_caps
 v = squash(s)
 # dot product agreement between the current output vj and the prediction uj|i
 # (batch_size, num_caps, in_caps, dim_caps) @ (batch_size, num_caps, dim_caps, 1)
 # -> (batch_size, num_caps, in_caps, 1)
 uv = torch.matmul(temp_u_hat, v.unsqueeze(-1))
 b += uv

 # last iteration is done on the original u_hat, without the routing weights update
 c = F.softmax(b, dim=1)
 s = (c * u_hat).sum(dim=2)
 # apply "squashing" non-linearity along dim_caps
 v = squash(s)

 return v

DR - SR Model

class DynamicRoutingModel(nn.Module):
 def __init__(self, scale_factor=4, num_channels=1, out_channels=56, s=12, m=4, batch_size=16,
image_size=10):
 super(DynamicRoutingModel, self).__init__()
 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

 self.batch_size = batch_size

 primary_caps_total_out_channel = 12
 per_channel_capsules = 4
 capsule_channels = primary_caps_total_out_channel // per_channel_capsules
 routing_caps_in_caps = capsule_channels * image_size * image_size
 routing_capsule_channel_dimensionality = image_size * image_size

59

 self.first_part = nn.Sequential(
 nn.Conv2d(num_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=3 //
2),
 nn.PReLU(out_channels)
)
 self.primary_caps = PrimaryCapsules(in_channels=56, out_channels=12, dim_caps=4,
 kernel_size=1, stride=1, padding=0)

 self.routing_capsule = RoutingCapsules(in_dim=4, in_caps=routing_caps_in_caps,
 num_caps=12, num_routing=3,
 dim_caps=routing_capsule_channel_dimensionality,
 device=device)

 self.last_part = nn.ConvTranspose2d(in_channels=12, out_channels=1, kernel_size=9,
stride=scale_factor,
 padding=9 // 2,
 output_padding=scale_factor - 1)

Appendix IV – EM Routing

EM Routing Implementation

class ConvCaps(nn.Module):
 r"""Create a convolutional capsule layer
 that transfer capsule layer L to capsule layer L+1
 by EM routing.
 Args:
 input_channels: input number of types of capsules
 output_channels: output number on types of capsules
 kernel_size: kernel size of convolution
 pose_matrix_size: size of pose matrix is pose_matrix_shape*pose_matrix_shape
 stride: stride of convolution
 iters: number of EM iterations
 coor_add: use scaled coordinate addition or not
 w_shared: share transformation matrix across w*h.
 Shape:
 input: (*, h, w, out_channels*(pose_matrix_shape*pose_matrix_shape+1))
 output: (*, h', w', C*(pose_matrix_shape*pose_matrix_shape+1))
 h', w' is computed the same way as convolution layer
 parameter size is:
kernel_size*kernel_size*out_channels*C*pose_matrix_shape*pose_matrix_shape +
out_channels*pose_matrix_shape*pose_matrix_shape
 """

 def __init__(self, input_channels=32, output_channels=32, kernel_size=3, pose_matrix_size=4,
stride=2, iters=3,
 coor_add=False, w_shared=False):
 super(ConvCaps, self).__init__()
 # TODO: lambda scheduler
 # Note that .contiguous() for 3+ dimensional tensors is very slow
 self.B = input_channels
 self.C = output_channels
 self.K = kernel_size

60

 self.P = pose_matrix_size
 self.psize = pose_matrix_size * pose_matrix_size
 self.stride = stride
 self.iters = iters
 self.coor_add = coor_add
 self.w_shared = w_shared
 # constant
 self.eps = 1e-8
 self._lambda = 1e-03
 self.ln_2pi = torch.cuda.FloatTensor(1).fill_(math.log(2 * math.pi))
 # params
 # Note that \beta_u and \beta_a are per capsule type,
 # which are stated at https://openreview.net/forum?id=HJWLfGWRb¬eId=rJUY2VdbM
 self.beta_u = nn.Parameter(torch.zeros(output_channels))
 self.beta_a = nn.Parameter(torch.zeros(output_channels))
 # Note that the total number of trainable parameters between
 # two convolutional capsule layer types is 4*4*k*k
 # and for the whole layer is 4*4*k*k*out_channels*output_channels,
 # which are stated at https://openreview.net/forum?id=HJWLfGWRb¬eId=r17t2UIgf
 self.weights = nn.Parameter(
 torch.randn(1, kernel_size * kernel_size * input_channels, output_channels, pose_matrix_size,
 pose_matrix_size))
 # op
 self.sigmoid = nn.Sigmoid()
 self.softmax = nn.Softmax(dim=2)

 def m_step(self, a_in, r, v, eps, b, B, C, psize):
 """
 \mu^h_j = \dfrac{\sum_i r_{ij} V^h_{ij}}{\sum_i r_{ij}}
 (\sigma^h_j)^2 = \dfrac{\sum_i r_{ij} (V^h_{ij} - mu^h_j)^2}{\sum_i r_{ij}}
 cost_h = (\beta_u + log \sigma^h_j) * \sum_i r_{ij}
 a_j = logistic(\lambda * (\beta_a - \sum_h cost_h))
 Input:
 a_in: (b, output_channels, 1)
 r: (b, out_channels, output_channels, 1)
 v: (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape)
 Local:
 cost_h: (b, output_channels, pose_matrix_shape*pose_matrix_shape)
 r_sum: (b, output_channels, 1)
 Output:
 a_out: (b, output_channels, 1)
 mu: (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape)
 sigma_sq: (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape)
 """
 r = r * a_in
 r = r / (r.sum(dim=2, keepdim=True) + eps)
 r_sum = r.sum(dim=1, keepdim=True)
 coeff = r / (r_sum + eps)
 coeff = coeff.view(b, B, C, 1)

 mu = torch.sum(coeff * v, dim=1, keepdim=True)
 sigma_sq = torch.sum(coeff * (v - mu) ** 2, dim=1, keepdim=True) + eps

61

 r_sum = r_sum.view(b, C, 1)
 sigma_sq = sigma_sq.view(b, C, psize)
 cost_h = (self.beta_u.view(C, 1) + torch.log(sigma_sq.sqrt())) * r_sum

 a_out = self.sigmoid(self._lambda * (self.beta_a - cost_h.sum(dim=2)))
 sigma_sq = sigma_sq.view(b, 1, C, psize)

 return a_out, mu, sigma_sq

 def e_step(self, mu, sigma_sq, a_out, v, eps, b, C):
 """
 ln_p_j = sum_h \dfrac{(\V^h_{ij} - \mu^h_j)^2}{2 \sigma^h_j}
 - sum_h ln(\sigma^h_j) - 0.5*\sum_h ln(2*\pi)
 r = softmax(ln(a_j*p_j))
 = softmax(ln(a_j) + ln(p_j))
 Input:
 mu: (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape)
 sigma: (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape)
 a_out: (b, output_channels, 1)
 v: (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape)
 Local:
 ln_p_j_h: (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape)
 ln_ap: (b, out_channels, output_channels, 1)
 Output:
 r: (b, out_channels, output_channels, 1)
 """
 ln_p_j_h = -1. * (v - mu) ** 2 / (2 * sigma_sq) \
 - torch.log(sigma_sq.sqrt()) \
 - 0.5 * self.ln_2pi

 ln_ap = ln_p_j_h.sum(dim=3) + torch.log(a_out.view(b, 1, C))
 r = self.softmax(ln_ap)
 return r

 def caps_em_routing(self, v, a_in, C, eps):
 """
 Input:
 v: (b, out_channels, output_channels, pose_matrix_shape*pose_matrix_shape)
 a_in: (b, output_channels, 1)
 Output:
 mu: (b, 1, output_channels, pose_matrix_shape*pose_matrix_shape)
 a_out: (b, output_channels, 1)
 Note that some dimensions are merged
 for computation convenient, that is
 `b == batch_size*oh*ow`,
 `out_channels == self.kernel_size*self.kernel_size*self.out_channels`,
 `psize == self.pose_matrix_shape*self.pose_matrix_shape`
 """
 b, B, c, psize = v.shape
 assert c == C
 assert (b, B, 1) == a_in.shape

 r = torch.cuda.FloatTensor(b, B, C).fill_(1. / C)

62

 for iter_ in range(self.iters):
 a_out, mu, sigma_sq = self.m_step(a_in, r, v, eps, b, B, C, psize)
 if iter_ < self.iters - 1:
 r = self.e_step(mu, sigma_sq, a_out, v, eps, b, C)

 return mu, a_out

SR – EM Routing Model

class EMRouting(nn.Module):
 def __init__(self, scale_factor=2, num_channels=1, out_channels=56, s=12, m=4, batch_size=16,
image_size=10):

 super(EMRouting, self).__init__()
 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
 self.batch_size = batch_size

 self.first_part = nn.Sequential(
 nn.Conv2d(num_channels, out_channels=out_channels, kernel_size=5, stride=1, padding=5 //
2),
 nn.PReLU(out_channels)
)
 self.primary_caps = PrimaryCaps(in_channels=56, out_channels=3, kernel_size=1,
pose_matrix_shape=4, stride=1)
 # self.conv_caps1 = ConvCaps(input_channels=3, output_channels=56, kernel_size=1,
pose_matrix_size=4, stride=1,
 # iters=5)
 self.conv_caps1 = ConvCaps(input_channels=3, output_channels=4, kernel_size=1,
pose_matrix_size=4, stride=1,
 iters=3)
 # self.last_part = nn.ConvTranspose2d(in_channels=952, out_channels=1, kernel_size=9,
stride=(2, 2),
 # padding=9 // 2,
 # output_padding=2 - 1)
 self.last_part = nn.ConvTranspose2d(in_channels=68, out_channels=1, kernel_size=9, stride=(2,
2),
 padding=9 // 2,
 output_padding=2 - 1)

Appendix V - Attention Routing

Implementation – Network Parameters

{
 "backbone": {
 "kernel_size": 3,
 "output_dim": 56,
 "input_dim": 1,
 "stride": 1,
 "padding": 1,
 "out_img_size": 16
 },
 "primary_capsules": {

63

 "kernel_size": 1,
 "stride": 1,
 "input_dim": 56,
 "caps_dim": 4,
 "num_caps": 3,
 "padding": 0,
 "out_img_size": 10
 },
 "capsules": [
 {
 "type" : "CONV",
 "num_caps": 4,
 "caps_dim": 4,
 "kernel_size": 1,
 "stride": 1,
 "matrix_pose": true,
 "out_img_size": 10
 }
]
}

Attention Routing – Model

Note: Here, the variable ‘params’ is correspond to the above parameter file

Primary Capsule Layer
self.pc_num_caps = params['primary_capsules']['num_caps']
self.pc_caps_dim = params['primary_capsules']['caps_dim']
self.pc_output_dim = params['primary_capsules']['out_img_size']
General
self.num_routing = num_routing # >3 may cause slow converging

Building Networks
Backbone (before capsule)
if backbone == 'simple':
 self.pre_caps = layers.simple_backbone(params['backbone']['input_dim'],
 params['backbone']['output_dim'],
 params['backbone']['kernel_size'],
 params['backbone']['stride'],
 params['backbone']['padding'])
elif backbone == 'resnet':
 self.pre_caps = layers.resnet_backbone(params['backbone']['input_dim'],
 params['backbone']['output_dim'],
 params['backbone']['stride'])

Primary Capsule Layer (a single CNN)
self.pc_layer = nn.Conv2d(in_channels=params['primary_capsules']['input_dim'],
 out_channels=params['primary_capsules']['num_caps'] * \
 params['primary_capsules']['caps_dim'],
 kernel_size=params['primary_capsules']['kernel_size'],
 stride=params['primary_capsules']['stride'],
 padding=params['primary_capsules']['padding'],
 bias=False)

self.pc_layer = nn.Sequential()

self.nonlinear_act = nn.LayerNorm(params['primary_capsules']['caps_dim'])

Main Capsule Layers

64

self.capsule_layers = nn.ModuleList([])
for i in range(len(params['capsules'])):
 if params['capsules'][i]['type'] == 'CONV':
 in_n_caps = params['primary_capsules']['num_caps'] if i == 0 else \
 params['capsules'][i - 1]['num_caps']
 in_d_caps = params['primary_capsules']['caps_dim'] if i == 0 else \
 params['capsules'][i - 1]['caps_dim']
 self.capsule_layers.append(
 layers.CapsuleCONV(in_n_capsules=in_n_caps,
 in_d_capsules=in_d_caps,
 out_n_capsules=params['capsules'][i]['num_caps'],
 out_d_capsules=params['capsules'][i]['caps_dim'],
 kernel_size=params['capsules'][i]['kernel_size'],
 stride=params['capsules'][i]['stride'],
 matrix_pose=params['capsules'][i]['matrix_pose'],
 dp=dp,
 coordinate_add=False
)
)
 elif params['capsules'][i]['type'] == 'FC':
 if i == 0:
 in_n_caps = params['primary_capsules']['num_caps'] * params['primary_capsules']['out_img_size'] * \
 params['primary_capsules']['out_img_size']
 in_d_caps = params['primary_capsules']['caps_dim']
 elif params['capsules'][i - 1]['type'] == 'FC':
 in_n_caps = params['capsules'][i - 1]['num_caps']
 in_d_caps = params['capsules'][i - 1]['caps_dim']
 elif params['capsules'][i - 1]['type'] == 'CONV':
 in_n_caps = params['capsules'][i - 1]['num_caps'] * params['capsules'][i - 1]['out_img_size'] * \
 params['capsules'][i - 1]['out_img_size']
 in_d_caps = params['capsules'][i - 1]['caps_dim']
 self.capsule_layers.append(
 layers.CapsuleFC(in_n_capsules=in_n_caps,
 in_d_capsules=in_d_caps,
 out_n_capsules=params['capsules'][i]['num_caps'],
 out_d_capsules=params['capsules'][i]['caps_dim'],
 matrix_pose=params['capsules'][i]['matrix_pose'],
 dp=dp
)
)

Attention Routing Implementation – Forward Pass

def forward(self, x, lbl_1=None, lbl_2=None):
 #### Forward Pass
 ## Backbone (before capsule)
 c = self.pre_caps(x)
 # print(c.size())

 ## Primary Capsule Layer (a single CNN)
 u = self.pc_layer(c)
 u = u.permute(0, 2, 3, 1)
 u = u.view(u.shape[0], self.pc_output_dim, self.pc_output_dim, self.pc_num_caps,
 self.pc_caps_dim)
 u = u.permute(0, 3, 1, 2, 4)
 init_capsule_value = self.nonlinear_act(u) # capsule_utils.squash(u)

65

 ## Main Capsule Layers
 # concurrent routing
 if not self.sequential_routing:
 # first iteration
 # perform initilialization for the capsule values as single forward passing
 capsule_values, _val = [init_capsule_value], init_capsule_value
 for i in range(len(self.capsule_layers)):
 _val = self.capsule_layers[i].forward(_val, 0)
 capsule_values.append(_val) # get the capsule value for next layer

 # second to t iterations
 # perform the routing between capsule layers
 for n in range(self.num_routing - 1):
 _capsule_values = [init_capsule_value]
 for i in range(len(self.capsule_layers)):
 _val = self.capsule_layers[i].forward(capsule_values[i], n,
 capsule_values[i + 1])
 _capsule_values.append(_val)
 capsule_values = _capsule_values
 # sequential routing
 else:
 capsule_values, _val = [init_capsule_value], init_capsule_value
 for i in range(len(self.capsule_layers)):
 # first iteration
 __val = self.capsule_layers[i].forward(_val, 0)
 # second to t iterations
 # perform the routing between capsule layers
 for n in range(self.num_routing - 1):
 __val = self.capsule_layers[i].forward(_val, n, __val)
 _val = __val
 capsule_values.append(_val)

out = capsule_values[-1]
out = out.reshape(out.shape[0], out.shape[1] * out.shape[4], out.shape[2], out.shape[3])

out = self.last_part(out)

Appendix VI: PSNR Implementation

def calc_psnr(img1, img2):

 return 10. * torch.log10(1. / torch.mean((img1 - img2) ** 2))

Evaluation at training phase

for data in eval_dataloader:
 inputs, labels = data
 # print(labels)

 inputs = inputs.to(device)
 labels = labels.to(device)

 model.set_batch_size(batch_size=16)

66

 with torch.no_grad():
 preds = model(inputs).clamp(0.0, 1.0)

 epoch_psnr.update(calc_psnr(preds, labels), len(inputs))

Appendix VII – Sample 100x100 (HR) and 50x50 (LR) Image Pairs For

Evaluation

Appendix VIII - Image Zooming

class ImageZoomerApplication:

 def __init__(self):
 print('Initializing')

 def image_zoomer(self, input_image, scaling_factor, sub_image_size, model, weights_file,
save_path):
 # calculating o/p size
 w, h = input_image.shape
 w_new, h_new = w * scaling_factor, h * scaling_factor
 new_image_array = np.empty([w_new, h_new, 3])

 # splitting image, scaling and merging
 for i in range(0, w, sub_image_size):
 for j in range(0, h, sub_image_size):
 sub_image = input_image[i:i + sub_image_size, j: j + sub_image_size]

 state_dict = model.state_dict()
 for n, p in torch.load(weights_file, map_location=lambda storage, loc: storage).items():
 if n in state_dict.keys():
 state_dict[n].copy_(p)
 else:
 raise KeyError(n)

 model.eval()

67

 sub_image = pil_image.fromarray(sub_image).convert('RGB')

 bicubic = sub_image.resize((sub_image.width * scaling_factor, sub_image.height *
scaling_factor),
 resample=pil_image.BICUBIC)
 _, ycbcr = preprocess(bicubic, device)

 lr, _ = preprocess(sub_image, device)

 with torch.no_grad():
 preds = model(lr).clamp(0.0, 1.0)

 # print(preds.shape)
 preds = preds.mul(255.0).cpu().numpy().squeeze(0).squeeze(0)
 output = np.array([preds, ycbcr[..., 1], ycbcr[..., 2]]).transpose([1, 2, 0])
 output = np.clip(convert_ycbcr_to_rgb(output), 0.0, 255.0).astype(np.uint8)

 new_image_array[i * scaling_factor: (i + sub_image_size) * scaling_factor,
 j * scaling_factor: (j + sub_image_size) * scaling_factor] = output

 input_image = pil_image.fromarray(input_image)
 image_size = w * scaling_factor
 bicubic_image = input_image.resize((image_size, image_size))

 new_image_array = new_image_array.astype(int)
 upscaled_image = pil_image.fromarray(new_image_array[:, :, 2] * 255)
 upscaled_image.save(save_path)
 return upscaled_image, bicubic_image

Appendix IX – Image Evaluator

import numpy as np
from skimage.measure import compare_ssim
from sewar.full_ref import uqi, msssim, psnr

def calculate_evaluation(original_image, upsampled_image):
 psnr = calculate_psnr(original_image, upsampled_image)
 ssim = calculate_ssim(original_image, upsampled_image)
 uqi_val = calculate_uqi(original_image, upsampled_image)
 msssim_val = np.absolute(calculate_msssim(original_image, upsampled_image))

 return psnr, ssim, uqi_val, msssim_val

def calculate_psnr(original_image, upsampled_image):
 return psnr(original_image, upsampled_image, 255)

def calculate_ssim(original_image, upsampled_image):
 (score, diff) = compare_ssim(original_image, upsampled_image, full=True)
 return score

68

def calculate_uqi(original_image, upsampled_image):
 return uqi(original_image, upsampled_image)

def calculate_msssim(original_image, upsampled_image):
 return msssim(original_image, upsampled_image)

Appendix X – Attached (SR _Result_Verification.pdf)

