FORECASTING RETAIL PRICES OF THE MOST COMMONLY USED RICE IN SRI LANKA

Warnakulasuriya Sudarshan Dushmantha Fernando

168854N

MSc in Financial Mathematics

Department of Mathematics

University of Moratuwa

Sri Lanka

November 2021

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

W. S. D. Fernando

Date

The above candidate has carried out research for the Master of Financial Mathematics thesis/ dissertation under my supervision...

.....

Name of the Supervisor

Supervisor's signature:

.....

Date

Acknowledgement

The timely and successful completion of the book could hardly be possible without the helps and supports from a lot of individuals.

I will take this opportunity to thank all of them who helped me either directly or indirectly during this important work.

First of all, I wish to express my sincere gratitude and due respect to my two supervisors Mr. T.M.J.A. Cooray. (B.Sc.), P.G.Diploma, (Mathematics), M.Sc. (Stat), M.Phil. (Stat) and Mr.Rohana Dissanayake, B.Sc. Mathematics (Colombo), M.Sc. (Pune). I am immensely grateful to them for their valuable guidance, continuous encouragements and positive supports which helped me a lot during the period of my work.

I would like to appreciate him for always showing keen interest in my queries and providing important suggestions. And I owe a lot to my family for their constant love and support. I also express whole hearted thanks to my friends and classmates for their care and moral supports.

Last but not the least I am also thankful to entire faculty staff and staff of department of mathematics for their unselfish help, I got whenever needed during the course of my work.

W. S. D. Fernando

Abstract

This thesis focuses on Modeling and forecasting Maximum Retail Price (MRP) of Samba, Nadu, Kekulu White and Kekulu Red rice in Sri Lanka using Univariate and Multivariate Time Series approaches. Sri Lanka is a developing country with population of 21.4 million as estimated in 2020. Rice is the most commonly used food in Sri Lanka. Thus, the finding a model for the forecasting prices is most economical advantage for Sri Lankan government. The fluctuations of the prices of rice making a great risk of investing, buffer stock maintaining, international trade and other associated actions. Thus, it is vital to forecast future prices for decision making purposes.

Our objective is to forecast the average weekly prices of selected four products. In this study, we consider weekly average retail prices of Samba, Nadu, Kekulu White and Kekulu Red from September 2017 to March 2019. Thus, each series consists of 93 data points. The missing values are estimated using expectation maximization algorithm. Data is collecting from Central Bank of Sri Lanka. First 83 data points are used to build the model and remaining 10 data points are used to validate the forecasting model. To select the best model, selection criteria based on the Akaike information criterion (AIC).

We observe that the best model for the Samba prices is exponential smoothing. Nadu price is ARIMA (2,1,0) and best model for Kekulu White and Kekulu Red are ARIMA (1,1,0) and ARIMA (1,1,0) respectively. Then, the testing data set is used to validate the prediction. Since there is a strong correlation between prices, we consider vector auto regression (VAR) model to improve the forecasts. Among several plausible models VAR of order 2 results in the best model. Nadu prices is independent of other three prices. VAR models provides better forecasts for prices of Nadu, Kekulu White, Kekulu Red.

Keywords: ADF, KPSS, PP, ARIMA, VAR, Cross correlation

TABLE OF CONTENTS

Declaration	i
Acknowledgement	ii
Abstract	iii
Table of Contents	iv
List of Figures	ix
List of Tables	xi
List of Abbreviations	xiv
Chapter 1. Introduction	1
 Background of the study Research Problem Objective of the study Significance of the study Thesis Organization 	1 2 3 3 3
Chapter 2. Literature Review	4
Chapter 3. Materials and Methods	7
 3.1 Data sources 3.2 Types of Time series modeling methods 3.2.1 Univariate Time series 3.2.2 Multivariate Time series 3.3 Graphs 2.2.1 Time series 	7 7 7 7 7
 3.3.1 Time series plot 3.3.2 Autocorrelation Function 3.3.3 Partial Autocorrelation Function 3.3.4 Quantile-Quantile plot 3.4 Model Selection Criteria 	7 8 8 9 10
 3.5 Transform of Data 3.6 Stationery of time series data 3.6.1 Unit root test for stationery 3.6.1.1 Augmented Dickey-Fuller test 	10 10 11 11
 3.6.1.2 Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 3.6.1.3 Phillips–Perron (pp) test 3.7 Forecast performance Measures 3.7.1 Mean Absolute Error (MAE) 3.7.2 Root Mean Squared Error 3.7.3 Mean Absolute Percentage Error 2.7.4 Adjusted D assured 	11 11 12 12 12 12 12
3.8 Box-Jenkins Methodology	13 13

3.8.1 Auto Regressive (AR) process	14
3.8.2 Moving Average Process (MA)	14
3.8.3 ARIMA model	14
3.8.4 Seasonal ARIMA model	15
3.8.5 Identification of Model	16
3.8.6 Parameter Estimation	16
3.8.7 Diagnostic Checking	17
3.8.7.1 Ljung-Box test for residuals	17
3.8.7.2 Ljung-Box test for squared residuals	17
3.7.7.3 Jarque-Bera test	18
3.9 Exponential Smoothing	18
3.9.1 Model selection	18
3.9.1.1 Single exponential smoothing	18
3.9.1.2 Trend Estimated Exponential smoothing	19
3.9.2 Parameter estimation	19
3.9.3 Diagnostic checking	20
3.9.3.1 Histogram of residuals and Quantile-Quantile plot	20
3.10 Vector Auto Regressive model (VAR)	20
3.10.1 Cointegration test	21
3.10.2 Model Identification	21
3.10.2.1 Lag Length Selection	21
3.10.3 Parameter Estimation	22
3.10.4 Diagnostic checking	22
3.10.4.1 Portmanteau Serial Test	22
3.10.4.2 Jarque-Bera test	23
3.10.4.3 Granger Causality	23
3.10.4.4 Instantaneous Causality	23
3.10.4.5 Multivariate ARCH Test	23
Chapter 4. Results	25
4.1 Data Presentation	25
4 2 Data Aggregation	25
A 3 Missing Value Estimation of retail rice prices	25
4.3.1 Output of SPSS for Missing Value Estimation of retail prices	25
4.3.1 1 Missing value Analysis (MVA)	20 26
4.3.1.2 EM Estimated Statistics	20
4.5.1.2 EM Estimated Statistics	27
4.4 Ketan Price of Samba	29
4.4.1 Samba retail prices forecast using ARIMA model	29
4.4.1.1 Time Series Plot of Samba price	29
4.4.1.2 Time series plot of Transformed data for the price of Samba	30
4.4.1.3 Stationery Test	30
4.4.1.4 Model Identification	31
4.4.1.4.1 ACF and PACF of transformed data	32
4.4.1.5 Model selection	33

4.4.1.6 Parameter Estimation	33
4.4.1.7 Diagnostic checking	34
4.4.1.8 Forecasting using ARIMA (1,0,0)	36
4419 Accuracy of ARIMA (100)	37
4.4.2 Forecasting retail price of Samba Using Exponential Smoothing	38
4 4 2 1 Diagnostic checking of exponential smoothing	38
4 4 2 2 Forecasting using exponential smoothing	40
4.4.2.2 Accuracy of exponential smoothing	
4.4.2.5 Accuracy of exponential smoothing	+1 /1
4.5 Detail Drive of Nedu	41
4.5 1 Nadu retail prices forecast using ARIMA model	42
4.5.1.1 Time Series Plot of Nadu price	42
4.5.1.2 Time series plot of Transformed data for the price of Nadu	$\frac{12}{42}$
4 5 1 3 Stationery Test	43
4.5.1.4 Stationery Test for log differenced data	43
4.5.1.5 Model Identification	44
4.5.1.5.1 ACF and PACF of transformed & difference data	44
4.5.1.6 Model selection	45
4.5.1.7 Parameter Estimation	46
4.5.1.8 Diagnostic checking	47
4.5.1.9 Forecasting using ARIMA (2,1,0)	49
4.5.1.10 Accuracy of ARIMA (2,1,0)	50
4.5.2 Forecasting Retail Price of Nadu using Double	
Exponential Smoothing	50
4.5.2.1 Diagnostic checking of double exponential smoothing	51
4.5.2.2 Forecasting using exponential smoothing	53
4.5.2.3 Accuracy of double exponential smoothing	53
4.5.3 Forecasting evaluation of Nadu Price	54
4.6 Retail Price of Kekulu White Rice	54
4.6.1 Kekulu White retail prices forecast using ARIMA model	54
4.6.1.1 Time Series Plot of Kekulu White price	54
4.6.1.2 Time series plot of Transformed data for the	
price of Kekulu White)) 55
4.0.1.5 Stationery Test	55 56
4.6.1.5 Model Identification	50 57
4.6.1.5 Model Identification 4.6.1.5.1 ACE and PACE of transformed & difference data	57
4.6.1.6 Model selection	58
4.6.1.7 Parameter Estimation	59
4.6.1.8 Diagnostic checking	59
4 6 1.9 Forecasting using ARIMA (1.1.0)	61
4.6.1.10 Accuracy of ARIMA (1.1.0)	62
	02
4.6.2 Forecasting Retail Price of Kekulu White using	
Double Exponential Smoothing	63
- •	

4.6.2.1 Diagnostic checking of double exponential smoothing	63
4.6.2.2 Forecasting using exponential smoothing	65
4.6.2.3 Accuracy of double exponential smoothing	66
4.6.3 Forecasting evaluation of Kekulu White	66
4.7 Retail Price of Kekulu Red Rice	67
4.7.1 Kekulu Red retail prices forecast using ARIMA model	67
4.7.1.1 Time Series Plot of Kekulu Red price	67
4.7.1.2 Time series plot of Transformed data for the	
price of Kekulu Red	67
4.7.1.3 Stationery Test	68
4.7.1.4 Stationery Test for log differenced data	68
4.7.1.5 Model Identification	69
4.7.1.5.1 ACF and PACF of transformed & difference data	69
4.7.1.6 Model selection	70
4.7.1.7 Parameter Estimation	71
4.7.1.8 Diagnostic checking	72
4.7.1.9 Forecasting using ARIMA (1,1,0)	74
4.7.1.10Accuracy of ARIMA (1,1,0)	75
4.7.2 Forecasting Retail Price of Kekulu Red using	
Double Exponential Smoothing	75
4.7.2.1 Diagnostic checking of double exponential smoothing	76
4.7.2.2 Forecasting using exponential smoothing	78
4.7.2.3 Accuracy of double exponential smoothing	78
4.7.3 Forecasting evaluation of Kekulu Red	79
4.8 Vector Autoregressive model	79
4.8.1 Correlation matrix of Samba, Nadu, Kekulu White	
and Kekulu Red prices	79
4.8.2 Selection of VAR	80
4.8.3 Lag selection of VAR	80
4.8.4 Parameter estimation of VAR (2)	80
4.8.5 Diagnostic checking of VAR (2)	82
4.8.6 Causality Analysis	84
4.8.7 Forecasting Using VAR (2)	87
4.8.8 Forecasting evaluation of VAR (2)	87
Chapter 5. Discussion	89
5.1 ARIMA model	89
5.2 Exponential method	80
5.2 VAD model	09
	89
5.4 Challengers and Limitation	89
5.5 Further Improvements	90
Chapter 6. Conclusion	91
Reference	92

Appendix

List of Figures

Page

93

Figure 3.1: ACF graph	8
Figure 3.2: PACF graph	9
Figure 3.3: Q-Q plot	9
Figure 3.4: Histogram of residuals and Q-Q plot	20
Figure 4.1: Time series plot of retail price of Samba	29
Figure 4.2: Time series plot of Transformed data for price of Samba	30
Figure 4.3: ACF plot of original Samba log transformed data	32
Figure 4.4: PACF plot of original Samba log transformed data	32
Figure 4.5: ACF and PACF plot of residuals and residual plot of	
ARIMA (1,0,0)	34
Figure 4.6: Histogram of residual of ARIMA (1,0,0)	35
Figure 4.7: Actual vs Forecast graph of ARIMA (1,0,0)	37
Figure 4.8: ACF and PACF of residuals and Residuals plot of	
exponential smoothing	38
Figure 4.9: Histogram of residuals of exponential smoothing	39
Figure 4.10: Time series graph of retail price of Nadu	42
Figure 4.11: Time series graph of Log transformed price of Nadu	42
Figure 4.12: ACF plot of transformed 1st differenced observations of Nadu	45
Figure 4.13: PACF plot of transformed 1st differenced observations of	
Nadu	45
Figure 4.14: ACF and PACF plot of residuals and residual plot of	
ARIMA (2,1,0)	47
Figure 4.15: Histogram of residual of ARIMA (2,1,0)	48
Figure 4.16: ACF and PACF of residuals and Residuals plot of	
double exponential smoothing	51
Figure 4.17: Histogram of residuals of double exponential smoothing	52
Figure 4.18: Time series graph of retail price of Kekulu White	54
Figure 4.19: Time series graph of Log transformed price of Kekulu White	55
Figure 4.20: ACF plot of transformed 1 st differenced observations of	
Kekulu White	57
Figure 4.21: PACF plot of transformed 1st differenced observations	
of Kekulu White	58
Figure 4.22: ACF and PACF plot of residuals and residual plot	
of ARIMA (1,1,0)	59
Figure 4.23: Histogram of residual of ARIMA (1,1,0)	60
Figure 4.24: Actual vs Forecast graph of ARIMA (1,1,0)	62
Figure 4.25: ACF and PACF of residuals and Residuals plot of	
double exponential smoothing	63
Figure 4.26: Histogram of residuals of double exponential smoothing	64
Figure 4.27: Time series graph of retail price of Kekulu Red	67

67
70
70
72
73
74
76
77

List of Tables

Table 1.1: Average Rice Price Change Percentage	2
Table 3.1: Accuracy measurements criteria	13
Table 3.2: Accuracy measurements criteria	16
Table 4.1: Univariate Statistics of missing values estimation	26
Table 4.2: Summary of Estimated Means of missing values estimation	27
Table 4.3: Summary of Estimated Standard Deviation of missing	
values estimation	27
Table 4.4: EM Means of missing values estimation	28
Table 4.5: EM Covariance of missing values estimation	28
Table 4.6: EM Correlation of missing values estimation	29
Table 4.7: Results of ADF test of price of Samba log transformed	
level data	30
Table 4.8: Results of KPSS test of price of Samba log transformed	
level data	31
Table 4.9: Results of PP test of price of Samba log transformed	
level data	31
Table 4.10: Parameter estimation of ARIMA (1,0,0)	33
Table 4.11: Box-test results of ARIMA (1,0,0)	34
Table 4.12: Jarque-Bera test results of ARIMA (1,0,0)	36
Table 4.13: Forecast values of ARIMA (1,0,0)	37
Table 4.14: Accuracy measurements of ARIMA (1,0,0)	37
Table 4.15: Parameter estimation of Exponential smoothing	38
Table 4.16: Box test of exponential smoothing	39
Table 4.17: Jarque-Bera test results of exponential smoothing	40
Table 4.18: Forecast using exponential smoothing	40
Table 4.19: Accuracy measurements of exponential smoothing	41
Table 4.20: Forecasting evaluation models of Samba Price	41
Table 4.21: Results of ADF test of price of Nadu log transformed	
level data	43
Table 4.22: Results of KPSS test of price of Nadu log transformed	
level data	43
Table 4.23: Results of ADF test of price of Nadu log transformed	
1 st differenced data	44
Table 4.24: Results of KPSS test of price of Nadu log transformed	
1 st differenced data	44
Table 4.25: Results of model selection of ARIMA (2,1,0)	46
Table 4.26: Parameter estimation of ARIMA (2,1,0)	46
Table 4-27: Box-test results of ARIMA (2,1,0)	48
Table 4.28: Jarque-Bera test results of ARIMA (2,1,0)	49
Table 4.29: Forecast values of ARIMA (2,1,0)	49

Table 4.30: Accuracy measurements of ARIMA (2,1,0)	50
Table 4.31: Parameter estimation of Double Exponential smoothing	50
Table 4.32: Box test of double exponential smoothing	51
Table 4.33: Jarque-Bera test results of double exponential smoothing	52
Table 4.34: Forecast using double exponential smoothing for weekly	
average retail price of Nadu	53
Table 4.35: Accuracy measurements of double exponential smoothing	53
Table 4.36: Forecasting evaluation models of Nadu Price	54
Table 4.37: Results of ADF test of price of Kekulu White	
log transformed level data	55
Table 4.38: Results of KPSS test of price of Kekulu White	
log transformed level data	55
Table 4.39: Results of ADF test of price of Kekulu White	
log transformed 1 st differenced data	56
Table 4.40: Results of KPSS test of price of Kekulu White	
log transformed 1 st differenced data	56
Table 4.41: Results of PP test of price of Kekulu White	
log transformed 1 st differenced	57
Table 4.42: Results of model selection of ARIMA (1,1,0)	58
Table 4.43: Parameter estimation of ARIMA (1,1,0)	59
Table 4.44: Box-test results of ARIMA (1,1,0)	60
Table 4.45: Jarque-Bera test results of ARIMA (1,1,0)	61
Table 4.46: Forecast values of ARIMA (1,1,0)	62
Table 4.47: Accuracy measurements of ARIMA (1,1,0)	62
Table 4.48: Parameter estimation of Double Exponential smoothing	63
Table 4.49: Box test of double exponential smoothing	64
Table 4.50: Jarque-Bera test results of double exponential smoothing	65
Table 4.51: Forecast using double exponential smoothing for weekly	
average retail price of Kekulu White	65
Table 4.52: Accuracy measurements of double exponential smoothing	66
Table 4.53: Forecasting evaluation models of Kekulu White Price	66
Table 4.54: Results of ADF test of price of Kekulu Red	
log transformed level data	68
Table 4.55: Results of KPSS test of price of Kekulu Red	
log transformed level data	68
Table 4.56: Results of ADF test of price of Kekulu Red	
log transformed 1 st differenced data	69
Table 4.57: Results of KPSS test of price of Kekulu Red	
log transformed 1 st differenced data	69
Table 4.58: Results of model selection of ARIMA (1,1,0)	71

Table 4.59: Parameter estimation of ARIMA (1,1,0)	71
Table 4.60: Box-test results of ARIMA (1,1,0)	72
Table 4.61: Jarque-Bera test results of ARIMA (1,1,0)	73
Table 4.62: Forecast values of ARIMA (1,1,0)	74
Table 4.63: Accuracy measurements of ARIMA (1,1,0)	75
Table 4.64: Parameter estimation of Double Exponential smoothing	75
Table 4.65: Box test of double exponential smoothing	76
Table 4.66: Jarque-Bera test results of double exponential smoothing	77
Table 4.67: Forecast using double exponential smoothing for weekly	
average retail price of Kekulu Red	78
Table 4.68: Accuracy measurements of double exponential smoothing	78
Table 4.69: Forecasting evaluation models of Kekulu Red Price	79
Table 4.70: Correlation matrix	79
Table 4.71: Lag selection criteria	80
Table 4.72: Parameter estimation of Samba as a dependent variable	80
Table 4.73: Parameter estimation of Nadu as a dependent variable	81
Table 4.74: Parameter estimation of Kekulu White as a	
dependent variable	81
Table 4.75: Parameter estimation of Kekulu Red as a	
dependent variable	82
Table 4.76: Results of multivariate ARCH test VAR (2)	83
Table 4.77: Results of Portmanteau serial test of VAR (2)	83
Table 4.78: Jarque-Bera test(multivariate)	83
Table 4.79: Granger causality test for Samba	84
Table 4.80: Instantaneous causality test for Samba	84
Table 4.81: Granger causality test for Nadu	85
Table 4.82: Instantaneous causality test for Nadu	85
Table 4.83: Granger causality test for Kekulu White	85
Table 4.84: Instantaneous causality test for Kekulu White	86
Table 4.85: Granger causality test for Kekulu Red	86
Table 4.86: Instantaneous causality test for Kekulu Red	87
Table 4.87: Forecasting values of VAR (2)	87
Table 4.88: Accuracy measurements of VAR (2)	88

List of Abbreviations

ACF	Autocorrelation function
ADF	Augmented Dickey-Fuller
AIC	Akaike information criterion
AR	Autoregressive
ARIMA	Autoregressive integrated moving average
BIC	Bayesian information criterion
CBSL	Central bank of Sri Lanka
HQIC	Hannan–Quinn information criterion
KPSS	Kwiatkowski–Phillips–Schmidt–Shin
MA	Moving average
MAE	Mean absolute error
MAPE	Mean absolute percentage error
PACF	Partial autocorrelation function
PP	Phillips Perron
RMSE	Root Mean Squared Error
VAR	Vector Auto Regression
VECM	Vector Error Correction Model