ESTIMATING AND FORECASTING THE YIELD CURVE: SRI LANKAN GOVERNMENT SECURITIES MARKET

L. T. Senarath Yapa

(178123H)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Financial Mathematics

Department of Mathematics

University of Moratuwa

Sri Lanka

October 2021

CANDIDATE'S DECLARATION

"I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text"

UOM Verified Signature

••••••

L. T. Senarath Yapa

10.10.2021

Date:

SUPERVISOR'S DECLARATION

"I have supervised and accepted this thesis for the submission of the degree"

UOM Verified Signature

10.10.2021

.....

Dr. V. Welagedara

Date

DEDICATION

This thesis is dedicated to my parents for their endless love, support and encouragement.

ACKNOWLEDGEMENT

First and foremost, I thank and pay respect to my parents who has been my pillars of strength giving me moral support at all times. My two younger brothers deserve my wholehearted thanks as well, for assisting me in so many ways, from helping to debug a code, to sharing their ideas, to simply being there whenever I needed their support.

I'm very much indebted to thank those who made completion of this thesis a reality, primarily supervisor Dr. V. Welagedara for guiding me throughout the thesis providing research materials, valuable advice and insightful feedback which pushed me to sharpen my thinking while raising the standard of my work. And I kindly thank Ms. Selina Reinicke for providing me with the programs to construct the forecasting design used in her study, which I have employed in my thesis with further extensions.

Further I extend my thanks to Mr. A. D. Perera (Head of Risk Management, Cargills Bank) for giving me the initial idea of the topic to base my study, and to Mr. C. U. Mendis (Head of Institutional Sales, Lanka Securities (Pvt) Ltd) for advising & assisting me in obtaining relevant resources and data for my study.

Thavisha Senarath Yapa

ABSTRACT

In this study, I evaluate two versions of the Nelson and Siegel (1987) model, namely the Nelson-Siegel model using the methodology presented in Diebold and Li (2006) and Nelson-Siegel-Svensson model (1994), with the purpose of fitting the current yield curve and forecasting the yield curve for the Sri Lankan government securities market.

The study finds that using the Svensson model which has an additional curvature factor compared to the Nelson -Siegel (Diebold and Li model) leads to a better in-sample fit of the term structure, and thus a better fit of the yield curve is observed. The superior in-sample fit of the Svensson model is clearly visible in the graphical outputs obtained and is further supported by the higher R^2 and lower RMSE associated with the Svensson model.

The results obtained are robust for recent events such as the COVID -19 pandemic that affected the country.

Forecasting performance of the two models, indicated opposite results compared to results obtained in the estimation of yield curves. Yield curves from Nelson-Siegel (Diebold and Li) model are predicted better compared to the Svensson model under both the short forecast horizon of one month and longer forecast horizon of six months. This is clearly exhibited in the lower RMSE associated with the Nelson -Siegel (Diebold and Li) model under the rolling window forecasting design that was applied using an AR(1) forecasting model.

Keywords: Yield curve, Term structure of interest rates, Nelson-Siegel, Diebold & Li, Svensson, Estimating, Forecasting.

TABLE OF CONTENTS

Candidate's Declaration		
Supervisor's Declaration		
Dedication		
Acknowledgement		
Abstract	v	
Table of contents	vi-viii	
List of Figures		
List of Tables		
List of Abbreviations	xiii	
Chapter 1: Introduction	1-4	
1.1 Introduction	1	
1.1.1 Significance of the study	1	
1.2 Research Problem	3	
1.3 Objectives	3	
1.4 Outline of the study	4	
Chapter 2: Literature Review & Hypothesis Development	5-12	
2.1 Literature Review	5	
2.1.1 Nelson-Siegel model and the methodology presented		
in Diebold and Li, 2006)	5	
2.1.2 Nelson and Siegel's criteria for an acceptable yield		
curve model	6	
2.1.3 Features of the Nelson-Siegel model	6	
2.1.4 The Nelson-Siegel-Svensson model and comparisons	7	
2.1.5 In-sample fit and out-of-sample fit of extensions of the		
Nelson and Siegel Model	8	
2.1.6 Modeling & forecasting the yield curve,		
Reinicke (2019)	8	
2.1.7 Literature in Sri Lanka	9	
2.2 Hypothesis Development	10	

Chapter 3: Theoretical Models	13-17	
3.1 Economic importance and features of the yield curve	13	
3.2 Model Description		
3.2.1 Nelson-Siegel yield curve model (using		
the methodology presented in Diebold and Li, 2006)	14	
3.2.2 Nelson-Siegel-Svensson yield curve model	16	
Chanter 4. Data and Mathadala av	10.20	
Chapter 4: Data and Methodology	18-30	
4.1 Data	18	
4.1.1 Data Description - Part 1: Estimating the current term	10	
structure of interest rates (Fitting the yield curve)	18	
4.1.2 Data Description - Part 2: Forecasting the term structure		
of interest rates (Forecasting the yield curve)	21	
4.2 Methodology	23	
4.2.1 Methodology - Part 1: Estimating the current term		
structure of interest rates (Fitting the yield curve)	25	
4.2.1.1 Model Comparison	25	
4.2.2 Methodology - Part 2: Forecasting the term structure of		
interest rates (Forecasting the yield curve)	26	
4.2.2.1 Forecasting model	26	
4.2.2.2 Description of study design	27	
4.2.2.3 Measurement of prediction accuracy –		
Root Mean Square Error (RMSE)	29	
Chapter 5: Results	31-46	
5.1 Part 1: Estimating the current term structure of	51 10	
interest rates (Results)	31	
5.1.1 Nelson-Siegel yield curve fit method - using the	51	
methodology presented in Diebold and Li 2006	31	
5.1.2 Nelson-Siegel-Svensson vield curve fit method	32	
5.1.2 D^2 and DMSE	32	
5.1.5 A and KNISE	21	
5.1.4 KOUUSUIESS CIECK	20	
5.1.6 Deremeter Estimation	30 40	
5.1.0 Parameter Estimation	40	

5.2 Part 2: Forecasting the term structure of interest rates (Results)	42
5.2.1 Nelson-Siegel yield curve (using the methodology	
presented in Diebold and Li, 2006)	42
5.2.2 Nelson-Siegel-Svensson yield curve	42
5.2.3 Sample Autocorrelation and Results	42
Chapter 6: Conclusion, Limitations & Recommendations	47-49
6.1 Conclusion	47
6.2 Limitations & Recommendations for future work	. 48
References	. 50-55
Appendices	56-132
Appendix A	56
Appendix B	110

LIST OF FIGURES

Figure 4.1:	Daily yield curves of Sri Lankan Treasury securities	
	from November 2014 to July 2020 across 13 maturities	19
Figure 4.2:	Median data-based yield curve with pointwise interquartile range	21
Figure 4.3:	Weekly yield curves of Sri Lankan Treasury securities from November 2014 to July 2020 across 13 maturities	22
Figure 4.4:	(a) Average yield curve (mean curve) from November 2014 to July 2020	22
Figure 4.4:	(b) Average yield curve (mean curve) of part of the data set: March 2020 to July 2020	23
Figure 4.5:	Illustration of out-of-sampling forecasting	27
Figure 4.6:	Illustration of forecasting procedure with stepwise shifting of the rolling window	28
Figure 4.7:	Illustration of varying size of training sample within out-of-sample and cross validation testing framework	29
Figure 5.1:	Graphical daily average yield curve output obtained using R function for the NS model	31
Figure 5.2:	Graphical daily average yield curve output obtained using R function for the SV model	32
Figure 5.3:	actual (data-based) and fitted (model-based) yield curves for NS & SV models as at 18.04.2019	34

Figure 5.4: actual (data-based) and fitted (model-based) yield curves	
for NS & SV models as at 22.04.2019	34
Figure 5.5: actual (data-based) and fitted (model-based) yield curves	
for NS & SV models as at 30.04.2019	35
Figure 5.6: actual (data-based) and fitted (model-based) yield curves for	
NS & SV models as at 13.02.2020	36
Figure 5.7: actual (data-based) and fitted (model-based) yield curves for	
NS & SV models as at 22.07.2020	36
Figure 5.8: Graphical weekly average yield curve output obtained using	
R function for the NS model	38
Figure 5.9: Graphical weekly average yield curve output obtained using	
R function for the SV model	39
Figure 5.10: Time series of estimated parameters β_0 , $\beta_1 \& \beta_2$ of the NS model	. 40
Figure 5.11: Time series of estimated parameters β_0 , β_1 , $\beta_2 \& \beta_3$	
of the SV model	41
Figure 5.12: Sample autocorrelations of the estimated β -vector of NS Model	
with lags in weeks, plotted with a 95%-confidence interval	43
Figure 5.13: Sample autocorrelations of the estimated β -vector of SV Model	
with lags in weeks, plotted with a 95%-confidence interval	43
Figure 5.14: Influence of window size on RMSE using the NS model and SV	
model for multiple steps ahead forecasts of Sri Lankan	
Treasury securities data	45

Figure 5.15:	Boxplots of RMSE using the NS model and SV model for multiple	
	steps ahead forecast	46

LIST OF TABLES

Table 4.1:	Descriptive Statistics, yield curves	20
Table 5.1:	Results: R^2 and RMSE values obtained for the two models using the R function for the entire daily data set	33
Table 5.2:	Results: R^2 and RMSE values (Impact of Easter Sunday Attacks)	35
Table 5.3:	Results: R^2 and RMSE values (Impact of COVID-19 Pandemic)	37
Table 5.4:	Results: R^2 and RMSE values obtained for the two models using the R function for the entire weekly data set	39

LIST OF ABBREVIATIONS

Abbreviation	Description
AIC	Akaike Information Criterion
AR	Auto Regressive
CBSL	Central Bank of Sri Lanka
ESS	Explained Sum of Squares
MAPE	Mean Absolute Prediction Error
NS Model	Nelson-Siegel model, using the methodology presented in
	Diebold and Li, 2006
OLS	Ordinary Least Squares
QAR	Quantile Autoregression
R ²	Coefficient of Determination
RMSE	Root Mean Squared Error
SV Model	Nelson-Siegel-Svensson model
TSS	Total Sum of Squares