TREATMENT OF TEXTILE WASTEWATER CONTAINING DYE STUFF BY FENTON OXIDATION PROCESS AND ADSORPTION

Dilani Parimalarajah

(168877L)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Environmental Management

Department of Civil Engineering

University of Moratuwa

Sri Lanka

September 2021

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief, it does

not contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right

to use this content in whole or part in future works (such as articles or books)."

Signature:	Date:
The above candidate has carried out research for the Master's thesi	s under my supervision.
Name of the supervisor: Prof. M. W. Jayaweera	
Signature of the supervisor:	Date:
The above candidate has carried out research for the Master's thesis under my supervision.	
Name of the co-supervisor: Prof. (Ms.) W. B. Gunawardana	
Signature of the supervisor:	Date:

ii

Abstract

Environmental pollution is the most severe global issue threatening our ecosystem in the

current scenario. Pollution is present in every strata of the earth, and the negative effects

associated with it are a major source of concern in the modern era. Textile industry hazardous

effluents are regarded as one of the major contributors to water pollutants discharged untreated

into bodies of water. The discharged effluents from these industries have been demonstrated to

bear a high pollution load (high dissolved solids, COD, colour and chloride content) with poor

biodegradability. Therefore, untreated textile wastewater causes severe damage to the

environment if discharged without treatment. Many techniques like electrochemical

coagulation, reverse osmosis, nanofiltration, adsorption using activated materials etc., draw

attention to treatment. With traditional approaches, treating textile wastewater, which is of

great strength and complexity, has become a significant challenge.

Advanced oxidation processes represent a powerful treatment for refractory and toxic

pollutants in textile wastewaters. The present investigation is focused on COD removal, using

Fenton oxidation and combined treatment with materials of TiO₂, Commercial activated carbon

and TiO₂ impregnated activated carbon (AT). Initial COD level of 2100mg/l decrease up to

710 mg/l through Fenton oxidation process. Further to discharge treated wastewater into the

water body (<250mg/l) is achieved with 8g of TiO₂,7 g of CAC, and 6g of TiO₂ impregnated

AC. CAC was selected as the best material economically for post-treatment. Many factors

influenced the degradation rate in the Fenton process, such as initial hydrogen peroxide

concentrations(0.65ml/l), initial iron concentration (1.5 g/l) and pH (2-3).

CAC gave maximum COD removal at pH 2. The data were fitted to the Langmuir adsorption

isotherm, with a maximum adsorption capacity of 8.16 mg/g and monolayer dye adsorption to

the material. The Langmuir adsorption separation factor was 0.033, indicating that the

Langmuir adsorption is favourable. The reaction proceeded in a pseudo-second-order, implying

chemisorption to the substance. The optimum regeneration agent was found to be NaOH, and

the material was exhausted after two regeneration cycles.

From the results Fenton with CAC adsorption is most efficient treatment method at higher dye

concentrations and for textile industry effluent.

Keywords: Adsorption, Fenton, COD, TiO2, Iron

iii

ACKNOWLEDGEMENT

It is pleasant time to impress my gratitude for all who supported me throughout the journey. I would begin my thanks giving with the almighty without whose blessings, my thesis entitled "Treatment of textile wastewater containing dye stuff by Fenton oxidation and adsorption" would have not been completed.

First of all, I would like to extend my heartfelt gratitude to my supervisor Prof. Mahesh Jayaweera, for giving me the opportunity to complete the research. Your guidance and encouragement given at every step of the way in the research helped me to achieve the goals. Your support was immense, and I am very fortunate to have you as my supervisor. I extremely appreciate the advice given in experiments, writings and moral assistance given to complete this research.

I am very grateful to my co-supervisor Prof. Buddhika Gunawardana, for providing her guidance and support for the research project. Your feedback on my experiments, writing, helped me to complete a very productive study. Furthermore, I would like to extend my gratitude to Prof. Jagath Manatunge for guiding me to conduct fruitful and successful research. Your advice and guidance helped me to complete a very productive study.

I extend my sincere thanks to the laboratory staff of Environmental Engineering Laboratory, Department of Civil of Engineering, University of Moratuwa; Ms. Nilanthi Gunathilake, Mr. Kasun Zoysa, Mr. Justin and Mr. Dhananjaya for the assistance received to conduct my research experiments successfully in the Environmental engineering laboratory.

I would like to thank head and the staff of Analytical Laboratory, Department of Materials Science and Engineering, University of Moratuwa for allowing me to use laboratory equipment.

I would like to thank Mahesh, Madusha, Thilini and Nipuni for their friendship, guidance, strength and assistance given in the period of the research study.

I am grateful to my family for being there for me, giving their unconditional love and support to fulfill my aims. Finally, I would like to thank my spouse for supporting, encouraging, and understanding me in my quest.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF FIGURES	viii
LIST OF TABLES	X
LIST OF ABBREVIATIONS	xi
1.INTRODUCTION	1
1.1 General	1
1.2 Scope of the study	4
1.3 Objectives of the study	4
1.4 Approach	5
2.LITERATURE REVIEW	6
2.1 Properties of dyes	6
2.2 Textile Dye Classification	7
2.2.2 Basic dyes	8
2.2.3 Direct or Substantive dyes	8
2.2.4 Reactive dyes	8
2.2.5 Vat dyes	8
2.2.6 Disperse dyes	8
2.2.7 Sulphur dyes	9
2.2.8 Azoic dyes	9
2.3 Dye intermediates	9
2.4 Toxicity of dyes	9
2.5 Textile dyeing processes	10
2.5.1 Pre-treatment processes of dyeing	10
2.6 Wastewaters from textile processing	11
2.7 Treatment and disposal of textile industry wastewater	13
2.8 Primary treatment	14
2.9 Advanced oxidation process	
2.9.1 Uses of the Fenton's reagent	
2.10 Adsorption	

	2.11 Titanium dioxide	23
	2.12 Treatment methods and their advantages and limitations	25
3	.MATERIAL AND METHODS	28
	3.1Textile Industry Effluent	28
	3.2 Classification of dyes	29
	3.3 Chemical Oxygen Demand analysis	32
	3.4 Synthesis of TiO ₂	34
	3.5 Synthesis of TiO ₂ impregnated Activated Carbon	34
	3.6 Fenton Oxidation process	35
	3.7 Evaluation of COD removal efficiency for different combination of synthesized TiC and AC	
	3.8 Selection of Best Material for COD removal	36
	3.9 Characterization of CAC using SEM, EDX, XRD, and FTIR	36
	3.10 Optimization of experiment condition for the CAC for COD removal	38
	3.10.1 Optimum Contact time	38
	3.10.2 Optimum pH	39
	3.11 Adsorption isotherms and kinetic studies for CAC	39
	3.11.1 Adsorption isotherms	39
	3.11.2 Kinetic studies	40
	3.12 Regeneration Studies for Commercial Activated Carbon	41
	4.1 Wastewater Characterization	42
	4.2 Operating Parameters of Fenton Oxidation Process	42
	4.3 Best pairing selection of AC: TiO ₂ ratio to remove COD	44
	4.4 Effect of (AT) _{opt} on COD removal	44
	4.5 Effect of TiO ₂ loading on COD removal	46
	4.6 Effect of Activated Carbon loading on COD removal	47
	4.7 Selection of best material for COD removal	48
	4.8 Characterization of Activated carbon using SEM, EDX, XRD and FTIR	50
	4.8.1 ESEM and EDX Analysis	51
	4.8.2 XRD Analysis of AC	53
	4.8.3 FTIR analysis for AC	54
	4.9 Optimum condition for COD removal using AC	54

4.9.1 Impact of contact time	54
4.9.2 Effects of pH	56
4.10 Adsorption Isotherms and kinetic studies	58
4.10.1 Adsorption isotherms for COD removal by AC	58
4.10.2 Kinetic studies	61
4.11 Regeneration studies for AC	64
A schematic diagram of a wastewater treatment module for dyestuffs is shown	n below65
5. CONCLUSIONS AND RECOMMENDATIONS	66
5.1 Conclusions	66
5.2 Recommendations	67
LIST OF REFERENCES	69

TABLE OF FIGURES

Figure 2. 1: Classification of textile dyes (Christie 2007, Hunger 2003, Sabnis 2010)	7
Figure 2. 2: The constituents and wastewater characteristics from various textile processi	ng
steps (Verma et al., 2012)	12
Figure 2. 3: Stages of wastewater treatment	13
Figure 3. 1 : Structure of Disperse red	29
Figure 3. 2: Structure of Disperse yellow	30
Figure 3. 3: Structure of Disperse orange	30
Figure 3. 4: Structure of Disperse navy blue	30
Figure 3. 5 : Structure of Sunset yellow	30
Figure 3. 6: Structure of Suncid red	31
Figure 3. 7: Structure of Disperse Rubine	31
Figure 3. 8: Structure of Disperse blue8	31
Figure 3. 9: COD reflux condenser	33
Figure 3. 10: Titration setup and color change	33
Figure 3. 11: Aerating the wastewater with Fenton reagent	35
Figure 3. 12: The laboratory setup for the batch studies on the mechanical stirrer	36
Figure 3. 13: Environmental Scanning Electron Microscopy- Energy-Dispersive X-ray	
Spectroscopy	37
Figure 3. 14: Fourier Transform- Infrared Spectroscopy	37
Figure 3. 15: X-Ray Diffraction spectroscopy	38
Figure 3. 16: The experimental setup for batch experiments	38
Figure 4. 1: COD Removal efficiency with different AT _{opt} dosages	45
Figure 4. 2: COD Removal efficiency with different dosage of TiO ₂	47
Figure 4. 3: COD removal efficiency with different CAC dosage	48
Figure 4. 4: Final COD with different dosage of CAC, TiO2 and TiO2 impregnated AC	49
Figure 4. 5: Treatment cost for 11 of Fenton treated water for three materials	50
Figure 4. 6 SEM image of AC before Adsorption	51
Figure 4. 7: SEM image of AC After Adsorption	51
Figure 4. 8: The EDX image of CAC	52

Figure 4. 9: XRD analysis of AC	53
Figure 4. 10: FTIR analysis of AC before and after adsorption	54
Figure 4. 11: Final COD vs the contact time	55
Figure 4. 12: Final COD with different pH	57
Figure 4. 13: The Langmuir isotherm for COD removal with AC	59
Figure 4. 14: The Freundlich isotherm for COD removal with AC	60
Figure 4. 15: Pseudo first order kinetic model for adsorption onto AC	62
Figure 4. 16: The reaction kinetic data is fitted to second order kinetic model	63
Figure 4. 17: The COD removal efficiency of AC after each regeneration cycle	64

LIST OF TABLES

Table 2. 1: Highlights of published work on Fenton's/photo-Fenton oxidation of textile dyes/
wastewater17
Table 2. 2: Available COD removal methods and their advantages and limitation25
Table 3. 1: Characteristics of textile industry effluent before treatment
Table 3. 2:Properties of dyes
Table 3. 3: Mixing weight ratio of AC and TiO ₂
Table 4. 1:Characteristics of effluent
Table 4. 2: COD removal percentage for different ratio of AC:TiO ₂ 44
Table 4. 3: COD removal percentage with different dosage of AT _{opt} 45
Table 4. 4: COD removal percentage with dosage of synthesized TiO ₂ 46
Table 4. 5: COD removal percentage with dosage of AC
Table 4. 6:The analyzing method with the relevant analyzed characteristics50
Table 4. 7: The weight and atomic composition of the CAC
Table 4. 8: The Optimum contact time for COD removal
Table 4. 9: Optimum pH investigation
Table 4. 10: Adsorption data fitted to Langmuir isotherm
Table 4. 11: Adsorption data to fitted Freundlich isotherm
Table 4. 12: The pseudo first order reaction results
Table 4. 13: The kinetic experiment results of AC

LIST OF ABBREVIATIONS

Abbreviation	Description
COD	Chemical Oxygen Demand
BOD	Biochemical Oxygen Demand
DO	Dissolved Oxygen
AOP	Advance Oxidation Process
CAC	Commercial Activated Carbon
FTIR	Fourier-Transform Infrared spectroscopy
SEM	Scanning electron microscope
EDX	Energy-dispersive X-ray spectroscopy
XRD	X-ray Diffraction Analysis