OPTIMISING THE OPERATIONAL PARAMETERS AND CONDITIONS TO ENHANCE THE ENVIRONMENTAL SUSTAINABILITY OF TURNING OPERATION

W. L. R. Fernando

198112R

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

March 2021

OPTIMISING THE OPERATIONAL PARAMETERS AND CONDITIONS TO ENHANCE THE ENVIRONMENTAL SUSTAINABILITY OF TURNING OPERATION

W. L. R. Fernando

198112R

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science by Research in Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

March 2021

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the master's thesis under my supervision.

Name of the supervisor: Dr. J. R. Gamage

Signature of the supervisor:

Date:

Name of the supervisor: Dr. H. P. Karunathilake

Signature of the supervisor:

Date:

ABSTRACT

The manufacturing sector accounts for nearly 40% and 25% of global energy and resources consumption respectively. The die and mould manufacturing (DMM) sector, contributes largely to the energy and resource consumption in emerging economies. Turning is a popular and essential mode of machining within this sector. Furthermore, operational energy usage and metalworking fluid (MWF) consumption of turning have been identified as the key sources of environmental impacts in this process. However, there is a lack of evidence on analysing environmental impacts of lathe operations in the DMM sector compared to milling operation. Therefore, the purpose of this study is to identify and analyse the life cycle environmental impacts of the commercial turning operation. A series of case studies was conducted in DMM centres to explore the state-of-the-art industrial turning operation. Then, a set of experiments was designed using the Taguchi L₉ method, considering the mostly used workpiece material, cooling condition and cutting parameters. Experiments were performed to evaluate the energy consumption, metalworking fluid (MWF) consumption, surface roughness and material removal rate during turning of AISI P20 with both wet and dry machining. A life cycle assessment (LCA) was performed using SimaPro LCA software with Ecoinvent database version 8.5 to assess the environmental performance of turning. A multiresponse optimisation was performed using Grey-based Taguchi method to identify the optimum operating conditions. The results show that turning with wet machining yields better machining and environmental performances compared to dry machining. The largest portion of the energy is consumed for non-productive operations. The LCA results reveals electrical energy as the highest contributor under most of the impact categories. The workpiece material, AISI P20 and cutting insert material show significant contributions to aquatic ecosystems and resource consumption. However, the contribution of MWF on the midpoint impact categories is negligible. Further, the research presents optimum turning parameters to obtain better machining performances while maintaining lower environmental footprint in the context of turning of AISI P20 with wet machining.

Keywords: Sustainable machining, Life cycle assessment, Environmental impact, Turning operation

DEDICATION

I dedicate this thesis to my loving father, *Roy Antony Fernando*, and my mother, *Mary Juliet Kostha*, who guided me always to this achievement. Furthermore, I would like to dedicate this to my elder brothers, *Prasanna Fernando* and *Chamley Fernando*, who supported me to make this work success. Finally, I would like to dedicate this to my loving husband, *Anton Rexi Croos*, for staying with me all the time and encouraged me to this achievement.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to all the following individuals who contributed towards the successful completion of this research. First, I would like to express my heartiest gratitude to Dr. J. R. Gamage, Senior Lecturer, Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, for selecting me as an MSc Research Scholar and for his guidance and constant supervision throughout this work. Next, I would like to offer my appreciation to Dr. H. P. Karunathilake, Lecturer, Department of Mechanical Engineering, Faculty of Support and Supervision for this work and especially during the preparation of research articles. I would further like to express my thanks to Mr. K. H. J. Mangala, Director of the Die & Mould Facilitation and Development Centre, University of Moratuwa, for his valuable comments on this work and providing facilities to conduct research experiments.

I would like to acknowledge the financial support given by the University of Moratuwa, Sri Lanka, through the University Senate Research Committee research grant (Grant numbers: SRC/ST/2019/23, SRC/ST/2019/50, SRC/CAP/2018/04) for this research. I would like to extend my thank to Dr. H. K. G. Punchihewa and Mr. S. W. M. A. I. Senavirathne for providing workpiece and tool materials for the experimental study. Moreover, I sincerely appreciate the collaboration and support given by Mr. I. M. J. Priyankara and all the technicians in the Die & Mould Facilitation and Development Centre. Furthermore, I would like to thank Mrs. N. H. Dias, Technical officer, Metrology Laboratory for providing laboratory facilities and Mr. N. A. D. K. A. Jayawardana, System analyst, for the support during software reinstallation. Finally, I would like to extend my appreciation to all my colleagues who encouraged me and all the citizens in Sri Lanka who support free education.

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
List of figures	viii
List of tables	xi
List of abbreviations	xii
List of nomenclature	XV
Chapter 1 Introduction	1
1.1 Background	1
1.2 Motivation	2
1.3 Aim and objectives	3
1.3.1 Aim	3
1.3.2 Objectives	4
1.4 Structure of the thesis	4
Chapter 2 Literature review	6
2.1 Sustainable Manufacturing	6
2.2 Environmental impacts of turning operation	7
2.2.1 Impacts of energy consumption	8
2.2.2 Impact of metalworking fluid consumption	10
2.3 Mitigating the environmental impacts of turning operations	11
2.3.1 Reduction of energy consumption	12
2.3.2 Reduction of metalworking fluid consumption	19
2.3.3 Identifying the best strategy for impact mitigation	21

2.4	Lif	e Cycle Assessment	22
2	.4.1	Evidence of Life cycle assessment-based research	24
2	.4.2	Challenges and limitations of life cycle assessment	32
2.5	Sri	Sri Lankan die and mould sector	
2.6	Su	mmary	34
Chapt	er 3	Research methodology	36
3.1	Da	ta collection methods	36
3.2	Re	view methodology	36
3.3	Ba	ckground study	39
3.4	Ex	perimental study	40
3	.4.1	Design of experiments	40
3	.4.2	Selection of tool insert and cutting parameters	41
3	.4.3	Workpiece	44
3	.4.4	Taguchi L9 orthogonal array	46
3	.4.5	Experiment arrangements	48
Chapte	er 4	Data analysis	52
4.1	An	alysis of literature using Microsoft Excel	52
4.2	An	alysis of interview replies using the modified digital logic method	55
4.3	Ex	perimental data analysis	56
4	.3.1	Energy consumption analysis	56
4	.3.2	Analysis of MWF consumption, Ra and MRR	60
4.4	En	vironmental performance analysis	61
4	.4.1	Goal and scope	62
4	.4.2	Inventory analysis	62
4	.4.3	Life cycle impact assessment	64
4.5	Mu	alti-response optimisation	68

vi

4.5	.1 Confirmation test	70
Chapter 5 Results and discussion		71
5.1 Background study		71
5.2 Experimental study		75
5.2	.1 Energy consumption	75
5.2	.2 Metalworking fluid consumption	77
5.2	.3 Surface roughness (Ra)	77
5.2	.4 Material removal rate (MRR)	78
5.3	Environmental performance analysis	79
5.4	Multi-response optimisation	84
5.4	.1 Confirmation test	84
Chapter	6 Conclusion	88
6.1	Research summary	88
6.2	Contribution to knowledge and practice	88
6.3 Research limitations		90
6.4	Further research directions	91
Publicat	ions	93
Reference	ces	94
Appendi	x A: Questionnaire for lathe machine operators	106
Appendi	x B: Patterns of power consumption during turning operations	108
Appendi	x C: Variation of impact categories with operating conditions	114

LIST OF FIGURES

]	Page
Figure 2-1: Share of literature entries on the factors of the environmental impact	ct of
conventional machining	8
Figure 2-2: Amount of CO_2 due to different cooling conditions used in [17]	13
Figure 2-3: Environmental impacts of different MWF systems in the use p	hase
(Source: [100])	26
Figure 2-4: Analysed environmental impact of different cooling conditions using	g the
method, EPS 2000 (Source: [101])	27
Figure 2-5: Analysed environmental impacts of different cooling conditions using	g the
method Impact 2002+ (Source: [101])	28
Figure 2-6: The analysed results for abiotic resource depletion (Source: [5])	29
Figure 2-7: The analysed results for climate change (Source: [5])	30
Figure 2-8: The analysed results for land use (Source: [5])	31
Figure 2-9: Demand for dies from different manufacturing sectors (Source: [105]]) 33
Figure 3-1: Distribution of the selected research papers over the years	37
Figure 3-2: Summary of selected publications for the study	38
Figure 3-3: Experimental plan	41
Figure 3-4: Geometry of the tool insert (all dimensions are in mm)	43
Figure 3-5: The Mitsubishi tool insert manufacturer-recommended depth of cut	(a _p)
and feed rate (f) ranges for turning (Source: [118])	43
Figure 3-6: The recommended and practised values of feed rate and depth of cut	44
Figure 3-7: Workpiece with dimensions	45
Figure 3-8: Usage of optimisation techniques for surface roughness in literation	ature
(Source: [120])	46
Figure 3-9: Design of experiment techniques usage in the literature	47
Figure 3-10: 3-\u00f6 Wye configuration	49
Figure 3-11: Coupling of FLUKE 1736 power logger through the panel board of C	CNC
lathe machine (left) and mini circuit breaker of air conditioning system (right)	49
Figure 3-12: Measuring the surface roughness of the machined area	50
Figure 3-13: Three locations around the periphery of the machined area	51

Figure 4-1: Different themes used to analyse the literature context	53
Figure 4-2: Energy consumption pattern by the CNC lathe machine during turn	ning
operation	57
Figure 4-3: Power consumption by the CNC lathe machine during spindle accelera	tion
	57
Figure 4-4: Tool moving path during turning operation	58
Figure 4-5: Schematic representation of the system boundary	62
Figure 5-1: Usage of different lathe operations as percentages	71
Figure 5-2: Usage of different materials as percentages within case companies	72
Figure 5-3: Composition of materials machined by wet and dry machining	73
Figure 5-4: Composition of machining modes during a working day	74
Figure 5-5: Pattern of energy consumption with different operating conditions (T	able
3-6)	76
Figure 5-6: Composition of energy consumption during turning each experim	nent
(Table 3-7)	76
Figure 5-7: Pattern of metalworking fluid consumption with different operation	ting
conditions in wet machining (Table 3-6)	77
Figure 5-8: Variation of surface roughness with different operating conditions (T	able
3-6)	78
Figure 5-9: Variation of material removal rate with different operating condit	ions
(Table 3-6)	79
Figure 5-10: Contribution of inputs on impact categories in wet machining un	nder
different operating conditions (Table 3-6)	80
Figure 5-11: Contribution of inputs on impact categories in dry machining un	nder
different operating conditions (Table 3-6)	80
Figure 5-12: Variation of the contribution of energy consumption, cutting insert	and
workpiece material (AISI P20) on climate change in each experiment (Table 3-7)	81
Figure 5-13: Variation of climate change impact with operating conditions (Table 3	8-6),
during one hour of turning	82
Figure 5-14: Variation of environmental impact with the change of operation	ting
conditions in wet machining (n: spindle speed, f: feed rate, a _p : depth of cut)	83

Figure 5-15: Variation of environmental impact with the change of operating
conditions in dry machining (n: spindle speed, f: feed rate, a_p : depth of cut)83Figure 5-16: Signal to noise ratios of grey relational grades (n: spindle speed, f: feed
rate, a_p : depth of cut)84

Figure 5-17: Comparison of machining performances of the confirmation test (CT); (a) Energy consumption, (b) Material removal rate (MRR), (c) Surface roughness, and

85

(d) Metalworking fluid consumption

LIST OF TABLES

Table 2-1: Results of energy study during turning of Inconel 718 (Source: [32])	14
Table 2-2: Patterns of energy consumption during turning under different coo	ling
techniques	16
Table 2-3: The most influencing parameters on energy consumption during turning	g of
different materials	19
Table 2-4: Advantages and disadvantages with implications on the sustainability	y of
alternatives to flood cooling	21
Table 3-1: Mapping of objectives with data collection methods	36
Table 3-2: Summary of commonly used cutting insert types and most practised cut	ting
parameters during turning operation of AISI P20	42
Table 3-3: Summary of selected cutting parameters	44
Table 3-4: The range of chemical composition of AISI P20 (percentages in wei	ght,
%wt) [119]	45
Table 3-5: The actual chemical composition of AISI P20 used for the resea	arch
experiments (percentages in weight, %wt)	45
Table 3-6: Taguchi L9 orthogonal array design for the experiments	47
Table 3-7: Summary of experiments under two machining conditions	48
Table 4-1: Summary of experimental data of each experiment	61
Table 4-2: Inventory summary	64
Table 4-3: Life cycle impacts of turning operations under flood lubrication	66
Table 4-4: Life cycle impacts of turning operations under dry machining	67
Table 4-5: S/N ratios and normalized S/N ratios of responses (E: energy consumpt	ion,
Ra: surface roughness, MWF _C : MWF consumption, MRR: Material removal rate)	68
Table 4-6: Deviation sequences, grey relation coefficients and grey relational gra	ides
of responses (E: energy consumption, Ra: surface roughness, MWF _C : M	WF
consumption, MRR: Material removal rate)	70
Table 4-7: Summary of inventory items of the confirmation test	70
Table 5-1: Wastage of metalworking fluid during turning	75
Table 5-2: Machining performances of the confirmation test	85
Table 5-3: Environmental impacts of turning with optimised operation condition	87

LIST OF ABBREVIATIONS

Abbreviation	Description
AC	Air Conditioning
ADP	Abiotic Depletion Potential
AISI	American Iron and Steel Institute
Al ₂ O ₃	Aluminium Oxide
ANOVA	Analysis of variance
AP	Acidification Potential
BOD	Biological Oxygen Demand
CC	Climate change
CFC	Chlorofluorocarbon
CH ₄	Methane
Cl	Chlorine
CNC	Computer Numerical Control
CO ₂	Carbon Dioxide
COD	Chemical Oxygen Demand
COVID-19	Coronavirus Disease 2019
СТ	Confirmation Test
CV	Coefficient of Variation
CVD	Chemical Vapour Deposition
DCB	Dichlorobenzene
DMM	Die and Mould Manufacturing
DOC	Dissolved Organic Carbon
DOE	Design of Experiments
FAEP	Freshwater Aquatic Toxicity Potential
FD	Fossil resource scarcity
FE	Freshwater eutrophication
FET	Freshwater ecotoxicity
GRG	Grey Relational Grade

GWP	Global Warming Potential
H ₃ BO ₃	Boric Acid
HPJAM	High Pressure Jet Assisted Machining
НТс	Human toxicity: cancer
HTnc	Human toxicity: non-cancer
HTP	Human Toxicity Potential
IR	Ionising radiation
ISO	International Organization of Standardization
LCA	Life Cycle Assessment
LCC	Life Cycle Costing
LCSA	Life Cycle Sustainability Assessment
LN ₂	Liquid Nitrogen
LO	Land use
MDL	Modified Digital Logic
ME	Marine eutrophication
MET	Marine ecotoxicity
MoS_2	Molybdenum Disulphide
MQL	Minimum Quantity Lubrication
MRD	Mineral resource scarcity
MRR	Material Removal Rate
MWF	Metalworking Fluid
N ₂ O	Dinitrogen Monoxide
Na	Sodium
NH ₃	Ammonia
NH ₄	Ammonium Carbonate
NIOSH	National Institute of Occupational Safety and Health
NMVOC	Non Methane Volatile Organic Carbon compound
NO ₃	Nitrate
NO _x	Nitrogen Oxides
OD	Ozone depletion

ODP	Stratospheric ozone depletion potential
OECD	Organization for Economic Co-operation and Development
РАН	Polycyclic Aromatic Hydrocarbons
PCBN	Polycrystalline Cubic Boron Nitride
PM	Particulate Matter
PMF	Fine particulate matter formation
PO_4	Phosphate
POFE	Photochemical oxidant formation: Terrestrial ecosystems
POFH	Photochemical oxidant formation: Human health
PROSA	Product Sustainability Assessment
PVD	Physical Vapour Deposition
Ra	Arithmetical mean surface roughness
RSM	Response Surface Methodology
SD	Standard Deviation
SEM	Standard Error of the Mean
SLCA	Social Life Cycle Assessment
SO_2	Sulphur Dioxide
ТА	Terrestrial acidification
TET	Terrestrial ecotoxicity
Ti	Titanium
TiAlN	Titanium Aluminium Nitride
TiCN	Titanium Carbon Nitride
TiN	Titanium Nitride
TOC	Total Organic Carbon
USA	United States of America
WC	Tungsten Carbide
WD	Water use

LIST OF NOMENCLATURE

Symbol	Definition	Units
a _p	Depth of cut	mm
E	Energy consumption	kWh
E _{ac}	Energy consumption by air conditioning system	kWh
Ec	Cutting Energy	kWh
E _{co}	Changeover Energy	kWh
Eı	Energy consumption by lights	kWh
E _m	Machining Energy	kWh
E _{nm}	Non-machining Energy	kWh
E _{total}	Total Energy	kWh
ε	Distinguishing coefficient	
f	Feed rate	mm/rev
i	Operating condition	
j	Responses	
k	Total number of responses	
MWF _c	MWF Consumption	ml
n	Spindle speed	rev/min
Ν	Possible decisions	
η	Signal to noise ratio	
t	Time	
t _c	Cutting Time	S
t _{co}	Changeover Time	S
t _m	Machining Time	S
t _{nm}	Non-machining Time	S
Vc	Cutting speed	m/min
Z_{ij}	Normalized signal to noise ratio	
α	Weighting factor	
γij	Grey relation coefficient	
$\Delta_{ m i}$	Deviation sequences	
$\overline{\gamma_{\iota}}$	Grey relational grade	