SYNTHESIS OF POROUS GRAPHENE FROM SRI LANKAN GRAPHITE FOR SUPERCAPACITOR APPLICATIONS

Makandana Kankanamalage Ayesha Sandaruwani

198043F

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Materials Science and Engineering University of Moratuwa Sri Lanka

July 2022

DECLARATION

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

I hereby grant to The University of Moratuwa the irrevocable, non-exclusive, and royalty free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

Signature:

Date:

M.K.A.Sandaruwani

The above candidate has carried out research for the MPhil thesis under my supervision.

Signature of the supervisor:

Date:

Date: 23/11/2021

Name of the Supervisor: Dr. (Mrs)H.S.Sitinamaluwa

Signature of the supervisor: UOM Verified Signature

Name of the Supervisor: Dr. G.D.D. Galpaya

ACKNOWLEDGEMENT

I would like to give my acknowledge and warmest thank to my research supervisor, Dr.(Mrs) H.S.Sitinamaluwa, not only for her guidance throughout my research but also for the knowledge and experience that she has shared with me. Her guidance and advice carried me through all the stages of this research she played a major role in my career development also. Next, I would also like to thank my other supervisor, Dr. Dilini Galpayage for her brilliant comments and suggestions.

The staff [Academic and Non-academic] at the Department of Materials Science and Engineering, especially all the research assistants who were there with me working together is a main part of the success of this research. I would like to give my heartiest gratitude to all of them for being with me. I would like to give my special thanks to all the academic and non-academic staff of the Department of Chemical and Process Engineering, who helped me to make this work possible.

Finally, I would like to acknowledge SRC grant of SRC/CAP/2019/01, which provided the financial assistance for this project.

ABSTRACT

A feasible process to synthesize porous graphene with ultra-high surface area is presented in this thesis. Graphene oxide (GO) was synthesized from Sri Lankan graphite via the modified hummers method. Then, GO was subjected to a chemical activation process to produce graphene with a mesoporous structure, where KOH was used as the activation agent. The influence of the critical activation process parameters on the specific surface area of graphene was studied. In this study, activation time at 60 min, activation temperature at 800 °C and KOH/GO mass ratio at 4 were identified as the optimum activation parameters for high surface area. As an alternative route to find the specific surface area (SSA), a dye adsorption based SSA calculation method was followed, and the methylene blue adsorption kinetics were studied for that. Second order kinetic model and Langmuir isotherms were the most suitable kinetic models for the methylene blue adsorption onto porous graphene which were produced from Sri Lankan vein graphite. A combined mathematical model of methylene blue number (MBN) and iodine number (IN) was used to calculate the SSA for high accuracy. The obtained optimum activated graphene sample showed a high specific surface area of 768.15 m^2/g as measured from the dye adsorption method and it was verified by BET analysis. Furthermore, methylene blue and Iodine adsorption methods are studied as a low-cost and feasible method for surface area determination of porous graphene. The high surface area of the obtained graphene would make it a promising material for supercapacitor applications. The present study mainly focuses on the value addition to Sri Lankan vein graphite trough the utilization of vein graphite as an electrode material in electrochemical double layer capacitor (EDLC).

Contents		
DECLARATION	i	
ACKNOWLEDGEMENT	ii	
ABSTRACT	iii	
LIST OF FIGURES		
LIST OF TABLES		
LIST OF ABBREVIATIONS vi		
1. INTRODUCTION	9	
2. LITERATURE REVIEW	12	
2.1. Energy storage devices	12	
2.2. Supercapacitor categories	13	
2.3. Mechanisms of Electric Double Layer Formation	16	
2.3.1. Helmholtz model	17	
2.3.2. Gouy-Chapman or Diffuse model	17	
2.3.3. Stern model for diffuse double layer	18	
2.3.4. Electric double layer in supercapacitors	18	
2.4. Electrode materials for EDLC	19	
2.4.1. Important characteristics of electrode material	20	
2.4.2. Electrode material selection	23	
2.4.3. Synthesis routes for preparation of graphene from graphite	28	
2.4.4. Tailoring pore structure	30	
2.4.5. Tailoring surface chemistry	30	
2.4.6. KOH activation mechanism	32	
Mechanism of KOH activation	32	
2.5. Electrolyte	35	

2.5.	1.	Aqueous electrolytes	37
2.5.	2.	Organic electrolytes	38
2.5.	3.	Ionic liquid (IL) electrolytes	38
2.6.	Sri	Lankan vein graphite	39
2.7.	Na	tional Relevance	40
3. F	RESE	EARCH METHODOLOGY	41
3.1.	Ma	terials	41
3.2.	Gra	aphene oxide (GO) Synthesis	41
3.3.	Ac	tivation	41
3.4.	Mo	orphology, composition, and structure characterization	42
3.5.	Su	rface area analysis	42
3.5.	1.	Determination of methylene blue number (MBN)	42
3.5.	2.	Determination of iodine number (IN)	43
4. F	RESU	JLTS AND DISCUSSION	46
4.1.	Sui	rface area analysis of porous graphene	46
4.1.	1.	Kinetic Models	46
4.1.	2.	Methylene blue number (MBN)	58
4.1.	3.	Iodine Number (IN)	59
4.1.	4.	Specific Surface area calculation	62
4.2.	Pre	eparation and optimization of porous graphene	66
4.2.	1.	Basic characteristics of graphite	66
4.2.	2.	GO characterization.	69
4.2.	3.	Activation	73
5. C	CON	CLUSION	87
REFERENCES		88	

LIST OF FIGURES

Figure 1. Ragone plot [36]	12
Figure 2. Schematic diagram of supercapacitor [37]	14
Figure 3. Diagrams of (a) electric double layer capacitor (EDLC), (b) Pseudocap	acitor,
and (c) hybrid supercapacitor [40]	16
Figure 4. EDL models, (a) Helmholtz model, (b) Gouy-Chapman model, and (c) Stern
model	17
Figure 5. Charging discharging process of electric double layer capacitor [40]	19
Figure 6. (a).Slits: size distance between walls (b).Cylinders: size diameter (c)	.Voids
between connected solids: size of void [43]	20
Figure 7. Schematic representation of the electrolyte ions penetrate onto the acc	essible
surface of the porous electrode (a) Electrolyte ions adsorption onto densely	packed
morphology, (b) Electrolyte ions penetration through less dense porous morph	hology
[50]	22
Figure 8. Preparation methods of graphene-based electrode materials	27
Figure 9. A flow chart of graphene synthesis processes[68]	28
Figure 10. Effects of the electrolyte on the energy storage performance [92]	36
Figure 11. Percentage of different electrolytes used for the electroch	emical
supercapacitors. Source: Web of Science [93]	37
Figure 12: (a) The spectrophotometer absorption curve in whole wavelength, (b) The
spectrophotometer calibration curve of MB at λ =664nm	48
Figure 13: Effect of initial MB concentration on q_{eq}	49
Figure 14: Effect of activation time on the quantity of MB adsorption	51
Figure 15: (a) Plot for the 1 st order kinetic model, (b) Plot for the 2 nd order	kinetic
model	52
Figure 16: Evaluation of intraparticle model for MB adsorption onto AGO	54
Figure 17: Adsorption isotherms of MB on AGO at $25^\circ C$	57
Figure 18: Nitrogen adsorption-desorption isotherm of AGO(800)-4-60	63
Figure 19: Pore size distribution plot.	65
Figure 20: FTIR spectrum of graphite	67

Figure 21: XRD spectrum of graphite	67
Figure 22:SEM image of graphite powder	68
Figure 23: SEM image of the graphite powder particle surface	68
Figure 25:XRD Spectrum of GO	71
Figure 26:FTIR spectrum of GO	71
Figure 27: SEM image of GO	72
Figure 28: MB absorption performance for graphite (left) and GO (right)	72
Figure 29:EDAX of activated graphene oxide when alumina was used as the cr	rucible
material	74
Figure 30: EDAX of AGO when stainless steel was used as the crucible materia	al74
Figure 31: TGA analysis for GO and KOH mixture	75
Figure 32:GO samples (a) After oven drying (b) After freeze drying	76
Figure 33: EDAX characterization of activated GO before adequate washing	77
Figure 34:EDAX characterization of activated GO after washing until the	filtrate
become neutral pH	77
Figure 35:SEM image of AGO	78
Figure 36:FTIR spectrum for GO and AGO	79
Figure 37: MB adsorption performance of graphite (left), GO (middle) and AGC	(right)
	79
Figure 38: $q_{eq}(mg/g)$ vs activation time (activation at 800 °C)	82
Figure 39:(a) qeq(mg/g) mass of absorbed methylene blue of KOH activate	ed GO
samples Vs KOH/GO mass ratio at 800 °C , (b) Rise of qeq vs KOH/GO mas	s ratio
(activation temperature at 800 °C for 60 min)	84
Figure 40:Adsorption capacity (Q_{max}) of AGO samples (a)Activated at 7	00 ℃,
(b)Activated at 800°C	85
Figure 41: Adsorption capacity (Q_{max}) of AGO samples at the activation temper	ratures
of 700°C and 800°C	86

LIST OF TABLES

Table I. Physical properties of graphene	24
Table II: Summery of kinetic models	53
Table III: Summary of adsorption isotherms	57
Table IV:Summary of the Langmuir model for AGO samples	59
Table V: Calculated Iodine Numbers	62
Table VI: Calculated MBN, IN, And SSA	63
Table VII: Sample names	80

LIST OF ABBREVIATIONS

Abbreviation	Description
GO	Graphene Oxide
AGO	Activated Graphene Oxide
SSA	Specific Surface Area
BET	Brunauer, Emmett and Teller
XRD	X-Ray Diffraction
SEM	Scanning Electron Microscopy
FTIR	Fourier Transform Infrared
EDX	Dispersive X-Ray analysis
EDLC	Electrochemical Double Layer Capacitor
КОН	Potassium Hydroxide