DEVELOPMENT OF COIR FIBER BASED INSULATIVE COMPOSITE MATERIAL TO REDUCE THERMAL HEAT IN BUILDINGS

Lanka Geeganage Chamath

(208020D)

Thesis submitted in partial fulfilment of the requirements for the degree

Master of Philosophy

Department of Materials Science and Engineering

University of Moratuwa Sri Lanka

November 2022

DECLARATION

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

I hereby grant to The University of Moratuwa the irrevocable, non-exclusive, and royalty free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

Signature: UOM Verified Signature

Date: 24/11/2022

L.G. Chamath

The above candidate has carried out research for the MPhil thesis under my supervision.

Signature of the supervisor:UOM Verified SignatureDate: 24/11/2022Name of the Supervisor: Dr. (Mrs) G.A. Sewvandi

Signature of the supervisor: *UOM Verified Signature* Date: 2022/11/24

Name of the Supervisor: Dr. L.K.T. Srimal

DEDICATION

This dissertation is dedicated to my loving parents who always encouraged and motivated me during my ups and downs.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my research supervisor, Dr.(Mrs) A.S. Galhenage, not only for her guidance throughout my research but also for the knowledge and experience that she has shared with me. Her guidance and advice carried me through all the stages of this research she played a major role in my career development also. Next, I would also like to thank my other supervisor, Dr. L.K.T Srimal, Senior Lecturer, Department of Mechanical and Manufacturing Engineering, University of Ruhuna, for closely guiding me in this work and having fruitful discussions throughout the period.

I also thank Mrs. M.M.P.D Samarasekara, former director of the Institute of Technology, University of Moratuwa (ITUM), Major General (Rted.) S.K. Thirunavukarasu, Director/ITUM, and Eng J.M.P. Gunasekara, Head of the Division of Mechanical Engineering Technology, for allowing me to join the staff of the ITUM, and giving invaluable support in administrative issues. Many thanks are due to the academic staff members for reducing my academic workload and permitting me to focus on my research work. I would like to take this opportunity to acknowledge the support given by Mr. K.L.D.J Liyanage of Production Laboratory, and all the academic and non-academic members in Division of Mechanical Engineering Technology, ITUM and Division of Chemical Engineering Technology ITUM.

Special thanks are due to the academic and non-academic staff in the Department of Materials Science and Engineering for their continuous support during my research works. Further, I am thankful to Mrs. T.L.K. Kumari, and Department of Mechanical Engineering, University of Moratuwa. Special thank goes to Department of Physics, The Open University of Sri Lanka, for providing lab facilities for this study.

Finally, my heartfelt appreciation to my family members for taking many hardships to warrant me a disturbance-free environment for successful completion of this study.

L.G. Chamath

ABSTRACT

Energy consumption is a critical factor in building design. Maintaining a comfortable indoor temperature consumes high energy than other necessities such as lighting and cooking. The building envelope is the main component of the building that transfers heat between indoor and outdoor environments. During the daytime, a proper ventilation system or an air conditioning system can control the heat in a building. Insulation layers are also used under the roofing sheets to control the heat transfer through the roof because a building's roof contributes to a significant heat gain in tropical countries.

Sustainable insulation materials have been more attractive in the last two decades due to biodegradability, low embodied energy, availability, and non-toxicity. Sustainable insulation materials are primarily fabricated using lignocellulose fiber (natural plant fibers). Then it is mandatory to add binder material to adhere to fibers and the material formulated as a composite material, and an air void should be introduced to the combination of fiber and binder to increase insulation properties. Now the whole material can be identified as a three-phase composite material. Thus, the volume fraction of each phase (fiber, binder, and air void) is the most critical factor which controls these composites' insulation properties.

The insulation properties of the material can be analysed using experimental, analytical, and numerical methods. Analytical and numerical methods are more attractive than experimental methods. However, there are limited number of studies on the effect of volume fraction with insulation properties in a three-phase composite. In this study, the effective thermal conductivity (K_{eff}) of the composite was analysed through the analytical and numerical models and validated through the experimental results. The results concluded that the experimental results agreed with the numerical and analytical results. Furthermore, a novel mathematical model has been proposed to find the K_{eff} of the three-phase composite using the analytical and numerical methods. The proposed model shows better agreement with the experimental result. Therefore, it can be used to develop this research area further.

Keywords: Building insulation, Composites, Coir fibers, Thermal conductivity

TABLES OF CONTENTS

Declaration	ii
Dedication	iii
Acknowledgements	iv
Abstract	v
Table of contents	vi
List of figures	ix
List of tables	xi
List of abbreviations	xii
1.0 Introduction	1
1.1 Objectives	4
2.0 Literature review	5
2.1 Classification of roof insulation materials	5
2.2 Selection of lignocellulose fiber for roof insulation	8
2.2.1 Application and working conditions	8
2.2.2 Thermal conductivity of natural fibers	8
2.2.3 Density comparison of natural fibers	10
2.2.4 Structure of natural fibers	11
2.2.5 Water absorption of natural fibers	15
2.2.6 Mechanical properties of natural fibers	17
2.2.7 Thermal degradation of natural fibers	18
2.2.8 Embodied energy	22
2.3 A numerical method to analyse the thermal conductivity of composites.	24
2.3.1 Generation of the unit cell	25
2.3.2 Boundary conditions	28
2.4 Analytical method to analyse the thermal conductivity of composites	29
2.4.1 Rule of mixtures	29
2.4.2 Maxwell model	30
2.4.3 Bruggmen's model	30
2.4.4 Rayleigh's model	31
2.4.5 Lewis Nielsen model	31
2.5 Experimental procedure to analyse the thermal conductivity of natural fi	iber
composites	34

2.5.1 Alkaline treatment for fiber surface	35
2.5.2 Adhesive materials for coir fibers	40
2.5.3 Fabrication technique for natural fiber composites	42
2.5.4 Experimentally determining the thermal conductivity of insulation ma	aterial
	43
3.0 Identification of the concentration of the alkaline treatment and studyin thermal stability of the coir fiber	1g the
3.1 Introduction	40
3.2 Methodology	49
3.2.1 Surface treatment for fibers	
3.2.2 Analysing the surface properties of fibers	50
3.2.3 Analysing the mechanical properties of fibers.	50
3.2.4 Differential scanning calorimetry (DSC)	52
3.2.5 Thermogravimetric analysis (TGA) and activation energy	52
3.3 Results and discussion	52
3.3.1 SEM image analysis	52
3.3.2 FTIR spectrum analysis	55
3.3.3 Mechanical properties	57
3.3.4 DSC analysis of coir fibers	62
3.3.5 TG analysis	64
3.3.6 Activation energy	65
3.3.7 Lifetime analysis for 4% treated fiber	68
3.4 Conclusion	70
4.0 Determination of the transverse thermal conductivity of fiber	72
4.1 Introduction	72
4.2 Methodology	73
4.2.1 Density measurement of coir fibers	73
4.2.2 Fabrication of the composite	73
4.2.3 Calculation	75
4.2.4 Finite element method	77
4.2.5 Boundary condition for FEM to analyze thermal conductivity	79
4.2.6 Preparation of coir fiber specimen to measure thermal conductivity	80
4.3 Results and Discussion	80

Appendix A : Analysing the mechanical properties of coir fibers extracted different places	a d from 134
References	
List of publications	123
8.2 Recommendations	121
8.1 Conclusions	120
8.0 Conclusions and recommendations	120
7.4 Conclusion	119
7.3 Discussion	117
7.2 Development of a mathematical model for solid-gas phase	113
7.1 Development of a mathematical model for solid-solid phase	109
the composite	109
7.0 Development of a mathematical model to predict the thermal conduc	tivity of
6.4 Conclusion	
6.3.2 Discussion	103
6.3.1 Methodology	100
6.3 Evaluation of the K _{eff} of solid-gas phase	
6.2.2 Discussion	
6.2.1 Methodology	
6.2 Evaluation of the K _{eff} of solid-solid phase	
6.1 Introduction	94
6.0 Analysing the thermal conductivity of the insulation material	
5.5 Conclusions	
5.4 Determination of the thermal conductivity of latex after the vulcanised	process.
5.3 Determination of the thermal conductivity of latex with aging time	91
5.2 Measurement of the total solid content of the latex compound	90
5.1 Introduction	89
5.0 Determination of the thermal conductivity of latex	89
4.4 Conclusion	88
4.3.3 Thermal conductivity of compacted coir fibers	87
4.3.2 Numerically validating the thermal conductivity of fibers	86
4.3.1 Thermal conductivity of coir fabricated composite	80

LIST OF FIGURES

Figure 1.1: Typical building energy consumption in tropical countries	1
Figure 2.1: Classification of roofing insulation materials	5
Figure 2.2: The demand for thermal insulation materials	6
Figure 2.3: Thermal conductivity of natural fibers	9
Figure 2.4: Density of natural fibers	11
Figure 2.5: Structure of natural plant fiber	12
Figure 2.6: Fundamental structure of cellulose	13
Figure 2.7: Chemical structure of hemicellulose	13
Figure 2.8: Fundamental structure of lignin	14
Figure 2.9: Cell wall substances responsible for the properties of natural plant fibe	r14
Figure 2.10: Chemical compositions of various plant fibers	15
Figure 2.11: Typical TG and DTG curves of natural fibers	20
Figure 2.12: Embodied energy of different natural fibers	22
Figure 2.13: Arrangement of the fiber direction - a) longitudinal, b) transverse	25
Figure 2.14: Micromechanical arrangement of fiber-reinforced composites	26
Figure 2.15: Boundary conditions in the unit cell	28
Figure 2.16: FTIR spectrum of untreated coir fiber	36
Figure 2.17: TGA analysis for treated and untreated jute fiber	39
Figure 2.18: The hand layup technique	43
Figure 2.19: Hot disk method	45
Figure 3.1: Composite fabrication process	51
Figure 3.2: Sample preparation and performance of the tensile test	51
Figure 3.3: Plane view of untreated coir fiber (×750)	52
Figure 3.4: Plane view of 2% alkaline treated coir fiber (×750)	53
Figure 3.5: Plane view of 4% alkaline treated coir fiber (×750)	53
Figure 3.6: Plane view of 6% alkaline treated coir fiber (×750)	54
Figure 3.7: Plane view of 8% alkaline treated coir fiber (×750)	54
Figure 3.8: FTIR spectrum for untreated and treated coir fibers	55
Figure 3.9: Comparison for the changes of the transmittance for the main peaks	56
Figure 3.10: Effect of the composite's tensile strength with the fiber volume fraction	on
and fiber length	58
Figure 3.11: Comparison of tensile strength of composites	60
Figure 3.12: SEM images of coir fibers (×750), a) 3% NaOH treated fiber, b) 4%	
NaOH treated fiber, c) 5% treated fiber	61
Figure 3.13: DSC analysis for untreated and treated coir fibers	62
Figure 3.14: TG and DTG curves for 4% treated fiber at a heating rate of 5 °C/min	n 64
Figure 3.15: Linear plot of FWO method obtained at different degrees of conversion	on
	66
Figure 3.16: Linear plots of KAS method obtained at different degrees of conversi	on
	66
Figure 3.17: Linear plots of Friedman method method obtained at different degree	s
of conversion	67

Figure 3.18: The estimated lifetime of 4% treated coir fibers	69
Figure 4.1: Measuring the thermal conductivity of the fabricated composite	75
Figure 4.2: Cross section of a coir fiber (×1000)	78
Figure 4.3: Fiber distribution in a) Square pattern, b) Hexagonal pattern	78
Figure 4.4: A quarter unit cell of a) Square array, b) Hexagonal array	79
Figure 4.5: Preparation of binder-less coir fiber disk	80
Figure 4.6: Thermal conductivity of the composite	81
Figure 4.7: Behaviour of thermal conductivity of fiber with analytical models a)	
Thermal conductivity value of 0.3192 W/mK, b) Thermal conductivity value of	
0.2977 W/mK, c) Thermal conductivity value of 0.3016 W/mK d) Thermal	
conductivity value of 0.3058 W/mK	84
Figure 4.8: The temperature distribution in quarter unit cell a) square array pattern	.86
Figure 4.9: Comparison of experimental, and numerical results	87
Figure 5.1: Prepared samples after the aging process	91
Figure 5.2: Thermal conductivity of aged samples	92
Figure 5.3: Measuring the thermal conductivity of the fabricated composite	93
Figure 6.1: A cross sectional view of the composite (×100)	96
Figure 6.2: A quarter unit cell of a) Hexagonal array b) Square array	97
Figure 6.3: The temperature distribution in the quarter unit cell a) Hexagonal array	/ b)
Square array	98
Figure 6.4: Thermal conductivity of solid-solid phase using analytical, and numeri	cal
methods	99
Figure 6.5: A quarter unit cell of a) Close pores structure b) Open pores structure.	101
Figure 6.6: Measuring the K _{eff} of the insulation material	102
Figure 6.7: The temperature distribution in the quarter unit cell a) Close pores	
structure b) Open pores structure.	103
Figure 6.8: The K _{eff} of the insulation using analytical, and numerical methods	104
Figure 6.9: Thermal conductivity of the fabricated insulation material	105
Figure 6.10: Thermal conductivity of the insulation material using analytical,	
numerical, and experimental methods	106
Figure 7.1: The three-dimensional view of a square unit cell for the solid-solid pha	ise
	109
Figure 7.2: The three-dimensional view of a quarter unit cell for the solid-solid pha	ase
	110
Figure 7.3: The series models in the quarter unit cell	110
Figure 7.4: The three dimensional view of the close pores structure for solid-gas	
phase	113
Figure 7.5: The three dimensional view of quarter structure for solid-gas phase	114
Figure 7.6: The series models in the quarter unit cell for solid-gas phase	114
Figure 7.7: Comparison of the developed model with analytical and numerical	
models in the solid-solid phase	117
Figure 7.8: The comparison of developed model with analytical, numerical, and	
experiment methods in solid-gas phase	118

LIST OF TABLES

Table 2.1: Weight of analysis data for fiber properties	23
Table 2.2: Five types of point scales	23
Table 2.3: Empirical models for analysing the K _{eff} of the composite	32
Table 3.1: Fiber length and the volume fractions of the composite	51
Table 3.2: Thermal analysis of untreated and treated fibers	63
Table 3.3: Activation energies calculated from three methods for conversion	rates of
0.1-0.9	68
Table 4.1: The volume fraction of fiber to epoxy resin	74
Table 4.2: Values for 'A' for various systems	76
Table 4.3: Values for ϕ_m for various system	77
Table 4.4: Thermal conductivity value obtained from each model for the resp	ective
fiber loading	82
Table 4.5: The percentage errors with the regression line in Figure 4.7a)	85
Table 4.6: Mean value of \overline{X} in Figure 4.7a) – d)	85
Table 5.1: The prescribed period for the samples	91
Table 6.1: Composition of the fabricated insulation material	102
Table 6.2: Moisture content of the fabricated composite	107

LIST OF ABBREVIATIONS

GHG	Global Greenhouse Gas
IEA	International Energy Agency
AC	Air Condition
MFA	Microfibril Angle
TGA	Thermal Gravimetric Analysis
DTGA	Derivative Thermal Gravimetric Analysis
FWO	Flynn Wall Ozawa
FEM	Finite Element Method
EMA	Effective Medium Approximation
EMT	Effective Medium Theories
FTIR	Fourier Transform Infra-Red Spectroscopy
SEM	Scanning Electron Microscope
NR	Natural Rubber
GHP	Guarded Hot Plate
DSC	Differential Scanning Calorimetry
KAS	Kissinger Akahira Sunose