DESIGN AND DEVELOPMENT OF SHAPE MEMORY ALLOY BASED NOVEL ACTUATORS FOR MINIMALLY INVASIVE SURGERIES

T.A.U. Roshan 168042A

Degree of Master of Philosophy

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

January 2022

DESIGN AND DEVELOPMENT OF SHAPE MEMORY ALLOY BASED NOVEL ACTUATORS FOR MINIMALLY INVASIVE SURGERIES

Thalangama Arachchige Uditha Roshan 168042A

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy in Mechanical Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

January 2022

DECLARATION

I declare that this is my work, and this dissertation does not incorporate without acknowledgment of any material previously submitted for a Degree or Diploma in any other Universities or institutes of higher learning and to the best of my knowledge and believe it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other media. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the M.Phil. thesis under my supervision.

Signature of the Supervisor(s):

Date:

Prof. Y.W.R. Amarasinghe

Dr. N.W.N. Dayananda

ABSTRACT

This work relates to the design and development of Shape Memory Alloy (SMA) based novel actuators for Minimally Invasive Surgeries (MIS). Compared to conventional open surgery, MIS procedures are favorable and developments are possible towards improving the effectiveness of MIS. Handheld slender instruments used in MIS are with limited degrees of freedom achieved using conventional actuation mechanisms which possess disadvantages in handling, durability, and cost.

In this study, an SMA-based approach was considered to improve the operation of an MIS tool effectively. The complex behaviour of SMA led to the investigation of material behaviour before the application-oriented study. SMAs are smart alloys that are capable of remembering a parent shape according to the heat treatment (HT) temperature and aging time providing unique activation temperatures. Commercially available binary SMA material that is known as NiTiNOL was used for the study. NiTiNOL was subjected to different HT conditions and Differential Scanning Calorimetric (DSC) analysis was performed on the resulting material to obtain transformation temperatures. Test results demonstrated the ability to alter activation temperature by varying the HT conditions. Also, the samples were observed under an Optical Microscope (OM) and Scanning Electron Microscope (SEM) to identify morphology and elemental composition by Energy Dispersive X-Ray Spectroscopy (EDX) respectively. Furthermore, an SMA spring actuator element was fabricated using a NiTiNOL wire through a novel fixture to obtain desired spring parameters and geometry. NiTiNOL wire was held in the fixture undergoing a HT at experimented temperatures and aging times. Then, spring actuators were characterized based on maximum attainable force using a specially developed apparatus. A customizable hardware controller and a software interface were developed to set values, monitor temperature, and force output. Using the mentioned apparatus, the controller was validated in both temperature and force feedback controlling modes based on a Proportional-Integral-Derivative (PID) type controller.

Two linear actuators were designed and developed using the characterized spring element. Firstly, an actuator was developed based on external heating using a heated fluid and cooled fluid to heat and cool the spring element, respectively. A novel actuator structure was developed to facilitate the spring element with leak-proof assembly and was used as the drive source of a gripper mechanism. Strain gauge-based force sensing and PID-based force feedback controlling methods were introduced to the gripper assembly. The second approach was utilizing a Joule heating-based method for activation which the passing current generates heat due to the inherent resistance of NiTiNOL resulting in an increment in temperature. The actuator was characterized in terms of stroke and then introduced to a laparoscopic retractor application to control the flexion-extension motion. A specially developed apparatus and a software interface are used to control parameters and acquire data. Finally, the retractor tool was characterized in terms of stroke.

Key Words:Shape Memory Alloy; Minimally Invasive Surgeries; Differential Scanning
Calorimetry; PID Controlling; SMA Spring Actuated Gripper; Laparoscopic
Retractor; External Heating; Joule Heating

DEDICATION

I dedicate this dissertation work to my family and my teachers. A special feeling of gratitude to my loving parents, Mr. Rathnasena and Mrs. Malani Weerasooriya and my loving wife Mrs. Thilini de Silva, and my lovely daughter Miheli Aryana, whose words of encouragement and push for tenacity ring in my ears. Finally, I'm grateful for my fellow Sri Lankan citizens who are paying taxes to sustain free education unconditionally.

ACKNOWLEDGMENT

I am deeply grateful to the Head of the Department, Department of Mechanical Engineering Dr. Himan Punchihewa, and all the academic and non-academic staff of the department for their constant encouragement in the period of research. Especially my research supervisors, Prof. Y.W.R. Amarasighe, Dr. N.W.N. Dayananda who gave me support and attention towards my work. Without their keen supervision, none of this would have been possible for me alone. I consider myself very fortunate for being able to work with such resourceful individuals.

Moreover, I'm particularly grateful to the research coordinator of the Department of Mechanical Engineering Dr. Nalaka Samaraweera, and the members of the progress review panel Prof. Ruwan Gopura and Dr. Angelo Karunarathne for their valuable comments and advice given throughout the research to guide me on the correct path.

Furthermore, I would like to express my heartfelt gratitude to Mr. Janaka Basnayake who gave me the technical expertise on electronic developments and the support and encouragement he gave me throughout the research is invaluable. Also, I would like to extend my gratitude to Mr. Peshan Sampath, Mr. Dimuthu Wijethunge, Mr. Praveen Nuwantha Gunarathne, Mr. Eranga De Silva, and Dr. Dumith Jayathilake for their assistance given me throughout the research.

Also, I would like to thank, Mr. Suranja Lakmal from the Open University of Sri Lanka (OUSL), Mr. Sandaruwan Jayalath, Mrs. Thilini Thathsara from the Institute of Technology University of Moratuwa (ITUoM), and Mrs. Rashmi Kumarasinghe from the Sri Lanka Institute of Nanotechnology (SLINTEC) for their valuable support given me by facilitating and spending time with the testing carried out throughout the research at their facilities.

Last but not the least, I owe my thankfulness to Mr. R.A.D.N.S. Ranasinghe, Mr. K.D.C. Jeewantha, and Mr. M.N.M. Musammil from the Mechatronics and MEMS/NEMS laboratory for providing me the facilities required for conducting my research works whenever required. Also, I'm grateful for the help received by Mrs. T.L.K. Kumari from the Applied Mechanics Laboratory for providing equipment for testing and Mr. M.D.S. Ananda from the Machine shop for performing precision fabrication processes on several components required for the testings conducted.

Thalangama Arachchige Uditha Roshan, M.Phil. Postgraduate, Department of Mechanical Engineering, University of Moratuwa.

TABLE OF CONTENTS

Declaration		i
Abstract		ii
Dedication	i	V
Acknowledg	nent	v
Table of Con	tents	7i
List of Figure	es x	V
List of Table	s xxi	ii
List of Abbro	eviations xxi	V
List of Apper	ndicesxxv	vi
CHAPTER 1		8
Introduction		8
1.1	Motivation	8
1.2	Objectives and Contribution of the Research	9
1.3	Methodology	0
1.4	Thesis Organization	1
CHAPTER 2		2
Literature re	view3	2
2.1	Shape Memory Alloy 3	2
	2.1.1 History and Evolution of SMAs	2
	2.1.2 Micro-structure of SMA and Phase Transformation	n
	Phenomenon	4
	2.1.3 Properties of SMA	7
	2.1.4 Commercially Available SMA Material	0

	2.1.5 Fatigue Nature of SMAs	11
	2.1.6 General Applications of SMA Materials	15
2.2	SMA Based Actuators	16
	2.2.1 Types of Actuators and Operation	16
	2.2.2 Manufacturing of SMA Actuators	19
	2.2.3 Investigation of Transformation Temperatures of Manufacture Actuators	ed 19
	2.2.4 Actuation Methods of SMA Actuators	53
	2.2.5 Controlling of SMA Actuators	54
2.3	Minimally Invasive Surgeries	58
	2.3.1 Types of Minimally Invasive Surgeries	50
	2.3.2 Tools used in MIS and Actuation Methods	50
	2.3.3 Limitations of MIS Tool Development	53
	2.3.4 Required Material Properties in MIS Tool Development	54
	2.3.5 Force Requirements of the MIS Tools and Force Sensing	54
2.4	SMA Based Actuators in MIS	58
2.5	Chapter Summary	71
CHAPTER 3		73
Study on SM	A Material	73
3.1	Introduction	73
3.2	Analysis of Transformation Temperature of SMA Material Samples	73
	3.2.1 Heat Treatment of SMA Material	74

	3.2.2 Evaluation of Transformation Temperatures of Heat-Treated
	Material Samples75
	3.2.3 Transformation Temperature Setting Criteria for SMA
	Materials79
3.3	Microstructural Analysis of SMA Material Samples
	3.3.1 Elemental Analysis by Energy Dispersive X-Ray Spectroscopy84
	3.3.2 Morphological Analysis of SMA Samples
3.4	Chapter Summary
CHAPTER 4	491
Design and l	Development of a Shape Memory Alloy Based Actuator Element91
4.1	Introduction
4.2	Selection of the Actuator Type and Actuator Material91
4.3	Design and Fabrication of SMA Based Actuator Element
	4.3.1 Parameter Selection for the Actuator Element
	4.3.2 Development of a Fixture for SMA Material
	4.3.3 Shape Setting of the Actuator
4.4	Chapter Summary
CHAPTER	5
Characteriza	ation of the SMA Based Actuator Element101
5.1	Introduction 101
5.2	Activation Methods for SMA Materials101
	5.2.1 Joule Heating Method101

	5.2.2 External Heating Method102
5.3	Force Characterization of SMA Actuator Element 104
	5.3.1 Development of the Force Characterization Apparatus 104
	5.3.2 Planning of Supporting Electronics for the Experiments 114
	5.3.3 LabVIEW Based Interface for Force Monitoring 115
	5.3.4 Experimental Results of Force Monitoring 122
5.4	Force Controlling of SMA Actuator Element 125
	5.4.1 Development of PID Based Closed Loop Controller
	5.4.2 Visual Studio Based Graphical User Interface for Force
	Controlling
	5.4.3 Experimental Results of Force Controlling
5.5	Chapter Summary
CHAPTER (<u>5</u> 136
CHAPTER (Design and I	5 136 Development of SMA Spring Element Based Linear Actuators 136
CHAPTER (Design and I 6.1	5 136 Development of SMA Spring Element Based Linear Actuators 136 Introduction 136
CHAPTER 6 Design and I 6.1 6.2	5 136 Development of SMA Spring Element Based Linear Actuators 136 Introduction 136 Development of the Linear Actuator Activated by External Heating and Cooling 136
CHAPTER 6 Design and I 6.1 6.2	5 136 Development of SMA Spring Element Based Linear Actuators 136 Introduction 136 Development of the Linear Actuator Activated by External Heating and Cooling 136 6.2.1 Design of the Linear Actuator 136
CHAPTER 6 Design and I 6.1 6.2	5 136 Development of SMA Spring Element Based Linear Actuators 136 Introduction 136 Development of the Linear Actuator Activated by External Heating and Cooling 136 6.2.1 Design of the Linear Actuator 136 6.2.2 Fabrication of the Linear Actuator 137
CHAPTER 6 Design and I 6.1 6.2	5 136 Development of SMA Spring Element Based Linear Actuators 136 Introduction 136 Development of the Linear Actuator Activated by External Heating and Cooling 136 6.2.1 Design of the Linear Actuator 136 6.2.2 Fabrication of the Linear Actuator 137 6.2.3 Integration of the Linear Actuator with a Gripper Application 139
CHAPTER 6 Design and I 6.1 6.2	5 136 Development of SMA Spring Element Based Linear Actuators

		6.2.6	Gripper Force Sensing, Monitoring and Controlling156
	6.3	Develo Air (opment of the Linear Actuator Activated by Joule Heating and Cooling
		6.3.1	Mathematical Modelling of the Linear Actuator
		6.3.2	Design of the Linear Actuator
		6.3.3	Fabrication of the Linear Actuator168
		6.3.4	Characterization of the Linear Actuator
		6.3.5 Lapare	Integration of the Linear Actuator with a Retractor Tool for oscopic Surgeries
		6.3.6	Development of a Testing Apparatus for Retractor Application 180
		6.3.7	Characterization of the Laparoscopic Retractor Tool
	6.4	Chapte	er Summary 187
Conc	lusion	•••••	
List o	f Publi	cations	
	Journa	al Publi	cation(s)
	Book	Section	(s)192
	Confe	rence P	ublication(s)
Refer	ences	•••••	
Appe	ndices.	•••••	xviii
	Apper	ndix A:	Specifications of DSC Q200 Instrument xviii
	Apper	ndix B:	Thermal Program used for Preliminary Testingxix
	Apper	ndix C:	TA Instruments Universal 2000 Softwarexviii

Appendix D1: DSC Q200 Thermogram of Sample 1 xix
Appendix D2: DSC Q200 Thermogram of Sample 2 xx
Appendix D3: DSC Q200 Thermogram of Sample 3 xxi
Appendix D4: DSC Q200 Thermogram of Sample 4xxii
Appendix E: Specifications of the DSC 25 Instrumentxviii
Appendix F1: DSC 25 Thermogram of Sample 1xviii
Appendix F2: DSC 25 Thermogram of Sample 2 xix
Appendix F3: DSC 25 Thermogram of Sample 3xx
Appendix F4: DSC 25 Thermogram of Sample 4xxi
Appendix F5: DSC 25 Thermogram of Sample 5xxii
Appendix G: SEM EDX Resultsxxiii
Appendix H: Hardware Specification of 8-bit Microcontroller
(Device – PIC18F452)xviii
Appendix I: Hardware Specification of 8-bit Microcontroller
(Device – ATmega2560) xix
Appendix J: Hardware Specification of 8-bit Microcontroller
(Device – ATmega328p)xx
Appendix K: Hardware Specification of 24-bit ADC (Device – HX711) xxi
Appendix L: Hardware Specifications of Cold-Junction-Compensated K-
Thermocouple to-Digital Converter (0°C to +1024°C) (Device -
MAX6675) xxii
Appendix M1: Schematic Diagram of the Multi-Function Controller -
Microcontroller Input / Output Signal Interfacexxiii

Appendix M2: Schematic Diagram of the Multi-Function Controller - 230V
Heater Driver with Optical Isolatorxxiv
Appendix M3: Schematic Diagram of the Multi-Function Controller - Sensor
Interface Modules xxv
Appendix M4: Schematic Diagram of the Multi-Function Controller - Main
Supply Distribution
Appendix M5: Schematic Diagram of the Multi-Function Controller - USB
Powered USB to TTL Converter xxvii
Appendix M6, DCD Levent of the Multi Expection Controller
Appendix Mo: PCB Layout of the Multi-Function Controller
Appendix M7: Microcontroller Firmware Implementation for Multifunctional
Controllerxxix
Appendix M8: Software Code of the Human Machine Interfacexxxiii
Appendix M9: Schematic Diagram of the Multi-Function Controller – Pump
Motor Driver xxxviii
Appendix N1: Schematic Diagram of the Current Controller – MOSFET Based
SMA Heating Element Driving Circuitxxxix
Annandiy N2: Schematic Diagram of the Current Controllar Detentionator
Appendix N2. Schematic Diagram of the Current Controller – Potentionieter
Based Linear Position Sensing System
Appendix N3: PCB Layout of the Current Controllerxli
Appendix O1: Hardware Specifications of Intelligent Digital Multimeter
(Device – TENMA 72 - 7730A)xlii
Appendix O2: Software Specifications of Intelligent Digital Multimeter
(Device – TENMA 72 - 7730A) xliji
Appendix P1: Fixture 1.0xliv
Appendix P2: Screw 1.0

Appendix P3: Sleeve 1.0xlvi
Appendix P4: Fixture 2.0xlvii
Appendix P5: Screw 2.0xlviii
Appendix P6: Sleeve 2.0xlix
Appendix P7: Positioner 2.01
Appendix Q1: Load Cell Structure li
Appendix R1: Actuator 1.0lii
Appendix R2: Cylinderliii
Appendix R3: End Nutliv
Appendix R4: Pistonlv
Appendix R5: Mount 1lvi
Appendix R6: Mount 2lvii
Appendix S1: Gripperlviii
Appendix S2: Top Cover lix
Appendix S3: Bottom Coverlx
Appendix S4: Driver Jawlxi
Appendix S5: Driven Jawlxii
Appendix S6: Linklxiii
Appendix T1: Apparatuslxiv
Appendix T2: Base Platelxv
Appendix T3: Gripper Supportlxvi

Appendix T4: Actuator Support	lxvii
Appendix T5: Driver Jaw_Modified	lxviii
Appendix U1: Actuator 2.0	lxix
Appendix U2: Base Plate	lxx
Appendix U3: Actuator Support	lxxi
Appendix U4: Outer Washer	lxxii
Appendix U5: Inner Washer	lxxiii
Appendix U6: Actuator Rod	lxxiv
Appendix V1: Retractor	lxxv

LIST OF FIGURES

- Figure 1.1 Thesis Outline
- Figure 2.1 History of SMA
- Figure 2.2 Types of SMM
- Figure 2.3 Micro-structure of SMA (a) Presence of Austenite and Martensite Phases; (b) Detwinned Martensite; (c) 2-D Representation of Austenite; (d) 2-D Representation of Twinned Martensite; (e) Presence of Twin Boundary
- Figure 2.4 Phase Percentage Variation with Applied Temperature
- Figure 2.5 Stress-Strain Relationship of SMA Below Martensite Finish Temperature
- Figure 2.6 Usable Properties of SMA (a) SME; (b) Constrained Recovery; (c) Pseudo-elasticity (PE)
- Figure 2.7 SME (0 5); PE (5 10)
- Figure 2.8 Commercial Types of SMA (a) Wires; (b) Plates; (c) Billets; (d) Superelastic Wires; (e) Rods; (f) Tubes; (g) Sheets
- Figure 2.9 Classification of Fatigue Behaviour of SMA
- Figure 2.10 Fatigue Tests (a) Constant-stress; (b) Constant-strain; (c) Constantstress with Limited Strain; (d) Variable Stress-strain
- Figure 2.11 Wohler's diagram with the fatigue results for the constant-stress tests and the tests at constant stress with limited maximum strain (3% and 4%)
- Figure 2.12 Change of spring geometry during thermal cycling with an end load of 3 N. (a) Displacement–temperature hysteresis in the first, second, and thousandth cycle; (b) Positions x_A and x_M as a function of the numbers of cycles; (c) Schematic Representation of Spring Actuator Testing under Constant Stress
- Figure 2.13 Applications of SMA (a) Eye Glass Frames; (b) Hydraulic Couplings;
 (c) SMA Fasteners; (d) Robotic Hand; (e) Automatic Transmission Valves; (f) Orthodontics

- Figure 2.14 Robotic Application (a) Bat-like Morphing-wing Robot; (b) Morphingwing Control Architecture
- Figure 2.15 Biomedical Applications (a) Endoscopic Instruments; (b) GrasperTool; (c) Tissue Ablation Device; (d) Simon Vena Cava Filter
- Figure 2.16 Possible Measurable Parameters through the DSC
- Figure 2.17 Second Generation DSC Equipment (a) Q200; (b) Q200; (c) Auto Q20
- Figure 2.18 Schematic of a DSC Fusion Cell and the Tzero Heat Flow Equation
- Figure 2.19 Typical Thermogram Obtained Through a DSC
- Figure 2.20 Transformation Temperature Evaluation Methods (a) Resistance
 Variation of an SMA Sample; (b) The displacement versus temperature
 curve for a pre-deformed wire (heat-treated at 450 °C, 20 min, watercooled) in a thermal cycle under a load of 10 g
- Figure 2.21 Block diagram of the Electrical Resistance Feedback Control System in Ma et al.'s Work
- Figure 2.22 Block diagram of the Control System in Song et al.'s Work
- Figure 2.23 Antagonistic Type Resistance Feedback Control System of Servo Actuator System in Ikuta et al.'s Work
- Figure 2.24 Closed-loop Position Control System in Yan et al.'s Work
- Figure 2.25 MIS Procedure (a) A Surgeon Performs an MIS; (b) A Schematic of Camera View of an MIS
- Figure 2.26 Types of MIS (a) Endoscopic Sinus Surgery; (b) Laparoscopic Surgery(c) Robotic Surgery
- Figure 2.27 Tools Used in MIS (a) Cannula and Trocar; (b) Needle Grasper; (c) Retractor
- Figure 2.28 Sophisticated Tools Used in MIS
- Figure 2.29 Articulation Technologies (a) Design of Shi et al.; (b) Moers et al.'sWork; (c) Berkelman et al.'s Work
- Figure 2.30 Actuation Mechanism Used in the Work Carried out by Gerboni et al.
- Figure 2.31 Different Port Sizes Used in MIS
- Figure 2.32 Forces on Different Types of Tissues

- Figure 2.33 Friction Forces Between the Trocar and a Dry Shaft (a) Kinetic FrictionFound for Each Trocar for the Different Velocities; (b) Peak-to-peakFriction Relative to the Movement Velocity
- Figure 2.34 Possible Locations for Placing Sensing Elements on a Typical Laparoscopic Instrument (a) Near or at the Actuation Mechanism Driving a Joint; (b) On the Instrument Shaft Outside the Patient's Body;
 (c) On the Instrument Shaft Inside the Patient's Body; (d) At the Instrument Tip
- Figure 3.1 Muffle Furnace used in Sample Heat Treatment (a) Furnace; (b) Chamber; (c) Temperature Adjuster
- Figure 3.2 DSC Q200 Instrument Developed by TA Instruments
- Figure 3.3 Sample and Preparation of Sample Containers for DSC tests (a)
 Crimper Tool; (b) NiTiNOL Sample (~10 mg); (c) TZero Pan and Lid;
 (d) Sealed Sample Pan
- Figure 3.4 Heat flow vs Temperature Curve for Heating Cycle
- Figure 3.5 Heat Flow vs Temperature Curve for Cooling Cycle
- Figure 3.6 Software Analyzed Thermogram Indicating Transformation Temperatures
- Figure 3.7 DSC 25 Instrument (a) Pan Preparation Tools; (b) Sample and Reference Pans Placed on the Respective Platforms Before Testing
- Figure 3.8 Thermogram Overlay of the Heat-Treated Material Samples
- Figure 3.9 Transformation Temperature Variation with Heat Treatment Temperature
- Figure 3.10 Effect of Material Compositions (a) Ni-Ti Phase Diagram; (b) Transformation Temperature Variation with Ni Percentage
- Figure 3.11 SEM (a) ZEISS EVO|18 Research SEM; (b) Sample Mounted on the Sample Holder
- Figure 3.12 SEM EDAX (a) An EDX Spectrum; (b) Schematic of an Atom Elaborating the Phenomenon
- Figure 3.13 EDX Spectrum of NiTiNOL Sample and the Analyzed Area at 1000X
- Figure 3.14 Sample Preparation Process Prior to the Morphological Analysis
- Figure 3.15 Optical Microscopic Images of Sample Surfaces at 200X Magnification

- Figure 3.16 Scanning Electron Microscopic Images of Sample Surfaces
- Figure 3.17 Micro Structural Observations (a) OM; (b) SEM Secondary Electron Images of Untreated Sample having Zigzag Shaped Martensite Morphology
- Figure 3.18 Precipitation Phenomenon (a) Microstructural Observation of NiTiNOL; (b) Precipitation Stages During Aging
- Figure 4.1 SMA Spring Parameters
- Figure 4.2 Shape Setting by Direct Heating (a) Simple Spring Forming Fixture;(b) Deformed Spring; (c) Shape Recovered Spring
- Figure 4.3 Spring Forming Fixtures for Furnace Heat Treatment
- Figure 4.4 Customized Fixture Design for SMA Spring Formation
- Figure 4.5 Spring Forming Fixture (a) Fabricated Fixture and Sleeve; (b) Assembled Fixture
- Figure 4.6 Modified Fixture Design for Attachment Length Correction
- Figure 4.7 Modified Fixture (a) Fabricated Sleeve, Positioner and the Fixture; (b) Positioner Assembled with the Fixture; (c) Assembled with the Sleeve
- Figure 4.8 Fixing the Material (a) Positioning the VAL; (b) Tightening VAL by the Positioner; (c) Winding the Wire; (d) Constraining by the Sleeve;
 (e) Tightening the Sleeve; (f) Wire and the Fixture before Shape Setting
- Figure 4.9 Spring Fabricated by Fixture 1.0 (a) Fixture after Heat Treatment; (b)Shape Set Spring Attached to the Fixture; (c) Fabricated SMA Spring
- Figure 4.10 Spring Fabricated by Fixture 2.0 (a) Fixture after Heat Treatment; (b)Shape Set Spring Attached to the Fixture; (c) Fabricated SMA Spring
- Figure 5.1 Activation Methods of SMA (a) Joule Heating; (b) External Heating;(c) Layout of Heating Arrangement
- Figure 5.2 Joule Heating (a) Variable Power Supply (VPS); (b) 5A Electrical Connector and Wires
- Figure 5.3 Shape Recovery of SMA (a) Deformed Shape; (b) Parent Shape
- Figure 5.4 Structure of a Strain Gauge
- Figure 5.5 Wheatstone Bridge
- Figure 5.6 Conceptual Design of the Load Cell Structure and Simulation Details

- Figure 5.7 Simulation of Strain Gauge Structure (a) Boundary Conditions; (b)Meshing; (c) Stress Variation; (d) Strain Variation
- Figure 5.8 Results Interpretation (a) Strain Gauge Placing Locations; (b)Theoretical Bridge Output Voltage; (c) Wheatstone BridgeArrangement of Strain Gauges
- Figure 5.9 Conceptual Design of the Heating Medium and Simulation Details
- Figure 5.10 Simulation Results (a) Boundary Conditions; (b) Temperature Distribution Around Water Bath; (c) Average Temperature Variation near SMA Element with Heater Power
- Figure 5.11 Conceptual Design of the Force Measuring Apparatus (a) Front View;(b) Plan View; (c) Isometric View
- Figure 5.12 Fabricated Apparatus (a) Apparatus with Full Bridge Load Cell; (b)Known Weights for Load Cell Calibration; (c) Placing Loads at theSpring Attaching Location
- Figure 5.13 Layout of the Proposed Force Measuring
- Figure 5.14 Load Cell Amplifier and Connections with the Microcontroller
- Figure 5.15 Front Panel
- Figure 5.16 Block Diagrams (a) Block Diagram 1; (b) Block Diagram 2
- Figure 5.17 Experimental Setup (a) SMA Spring Attachment with Force Measuring Apparatus; (b) Measuring Temperature through the Thermocouple Probe
- Figure 5.18 Force Results (a) For 1.0 mm SMA Wire; (b) For 0.5 mm SMA Wire
- Figure 5.19 Controlling Modes
- Figure 5.20 Block Diagram of Temperature Feedback Controlling
- Figure 5.21 Block Diagram of Force Feedback Controlling
- Figure 5.22 Layout of Developed Controller
- Figure 5.23 Developed Controller Specifications
- Figure 5.24 Graphical User Interface
- Figure 5.25 TFCM Results for Single Set Point
- Figure 5.26 TFCM Results for Multiple Set Points
- Figure 5.27 FFCM Results for Multiple Set Points
- Figure 6.1 Conceptual Design of the Linear Actuator

- Figure 6.2 Fabricated Linear Actuator (a) Exploded Configuration; (b) Halfassembled Configuration
- Figure 6.3 Studied Gripper Mechanisms
- Figure 6.4 Conceptual Design of the Finalized Gripper Mechanism Combined with the Linear Actuator
- Figure 6.5 Free Body Diagram of the Gripper Mechanism
- Figure 6.6 Link Angular Displacement Vs Gripper Jaw Opening
- Figure 6.7 Actuator Pin Displacement along with the Slot Vs Gripper Jaw Opening
- Figure 6.8 Piston Displacement Vs Gripper Jaw Opening
- Figure 6.9 Reaction Force Variation w.r.t the Gripper Jaw Opening
- Figure 6.10 Simulation Results (a) Simplified Gripper Model; (b) Displacement 3D Plots
- Figure 6.11 Gripper Components (a) Bottom Cover; (b) Top Cover; (c) Driven Jaw;(d) Driver Jaw; (e) Link; (f) Torsion Spring; (g) Pin
- Figure 6.12 Fabricated Gripper Components in Assembly
- Figure 6.13 Layout of the Proposed Testing Apparatus
- Figure 6.14 Gripper Testing Apparatus (a) Conceptual Design of the Proposed Testing Apparatus; (b) Component Description and Fabricated Testing Apparatus
- Figure 6.15 State Diagram of the Testing Apparatus
- Figure 6.16 Controller Hardware Architecture
- Figure 6.17 Multifunctional Controller (a) Modified Controller I/O s; (b) Controller Circuity Arrangement
- Figure 6.18 Gripper Testing Apparatus
- Figure 6.19 Modified Graphical User Interface (GUI)
- Figure 6.20 Resistive Type Sensor Element (a) A Strain Gauge Bonded to a Surface; (b) Wheatstone Bridge Arrangement (Quarter Bridge)
- Figure 6.21 Simulation Results (a) Boundary Conditions; (b) Mesh; (c) Strain Variation; (d) Stress Variation
- Figure 6.22 Enhancing Strain Variation through Thickness Variation

- Figure 6.23 Strain Gauge Calibration Process (a) Strain Gauge Placement; (b)Wired Strain Gauge; (c) Calibration Weights
- Figure 6.24 SMA Spring Actuated Gripper Integrated with the Force Sensing Method
- Figure 6.25 Layout of the Proposed Force Sensing and Controlling Method
- Figure 6.26 Modified Controller Hardware Architecture
- Figure 6.27 Force Controlling Results
- Figure 6.28 Interested Linear Actuator Types
- Figure 6.29 Stages of the Binary Actuator
- Figure 6.30 Force Vs Deflection
- Figure 6.31 Conceptual Designs (a) Design 1; (b) Design 2; (c) Design 3
- Figure 6.32 Design 3 Component Descriptions
- Figure 6.33 Fabricated Design 3
- Figure 6.34 Linear Actuator Controlling (a) Wire Connections to the Spring Elements; (b) Interfacing Block Diagram
- Figure 6.35 Block Diagram and the Front Panel of the LabVIEW Program
- Figure 6.36 Spring Elements Energizing Sequence and the Expected Linear Actuator Stroke
- Figure 6.37 Experimental Results (a) Single Cycle Actuation; (b) Multi-Cycle Actuation
- Figure 6.38 Repeatability for Ambient Cooling
- Figure 6.39 Schematic of Laparoscopic Procedure
- Figure 6.40 Construction of a Laparoscopic Retractor and Introduced Modifications
- Figure 6.41 Configurations and Components of a Laparoscopic Retractor Tool
- Figure 6.42 Conceptual Design of the Retractor Mechanism and the Linear Actuator
- Figure 6.43 Interested Parameters in Defining the Motion of the Retractor
- Figure 6.44 Interested Parameters in Modelling the Flexion Extension
- Figure 6.45 Comparison of Mathematical and Software Model (a) Flexion Angle w.r.t. the Stroke; (b) Error between Mathematical and Software Model
- Figure 6.46 MATLAB SIMMechanics Block Diagram
- Figure 6.47 Retractor Testing Apparatus System Block Diagram

- Figure 6.48 Binary Spring Actuator Controller Circuitry
- Figure 6.49 Assembled Configuration of the Testing Apparatus
- Figure 6.50 Retractor Testing Apparatus
- Figure 6.51 Visual Studio Based GUI
- Figure 6.52 Single Cycle Actuation of Retractor Tool
- Figure 6.53 Multiple Cycle Actuation of Retractor Tool

LIST OF TABLES

- Table 2.1SMA Applications, Underlying SMEs, and Expected Fatigue Lives Nf
- Table 2.2
 Applications Areas for SMA Actuation and Examples
- Table 2.3Different types of Possible Actuation Methods
- Table 3.1
 Acquired Transformation Temperatures
- Table 3.2Heat Treatment Conditions of the Samples
- Table 3.3
 Transformation Temperatures Acquired from the Thermograms
- Table 4.1Possible Actuator Types
- Table 5.1NiTiNOL Wire Shape Setting Details
- Table 6.1Parameter Description
- Table 6.2Possible Force Sensing Methods in MIS

LIST OF ABBREVIATIONS

Abbreviation	Description
ADC	Analogue to Digital Converter
ALM	Applied Loading Method
CAD	Computer Aided Design
CCD	Charged Couple Discharge
DAQ	Data Acquisition
DOF	Degree of Freedom
DSC	Differential Scanning Calorimetry
EDX	Energy-Dispersive X-ray
ERM	Electrical Resistance Method
FEA	Finite Element Analysis
FET	Field Effect Transistor
GUI	Graphical User Interface
HTSMA	High Temperature Shape Memory Alloys
LabVIEW	Laboratory Virtual Instrument Engineering Workbench
LED	Light Emitting Diode
LIFA	LabVIEW Interface For Arduino
MBD	Multi Body Dynamics
MEMS	Micro Electromechanical Systems
MIS	Minimally Invasive Surgeries
MSMA	Magnetic Shape Memory Alloys
NiTiNOL	Nickel Titanium Naval Ordnance Laboratory

OM	Optical Microscopy
OWSME	One Way Shape Memory Effect
PD	Proportional Derivative
PE	Pseudo Elasticity
PID	Proportional Integral Derivative
PMMA	Poly Methyl Methacrylate
PWM	Pulse Width Modulation
SEM	Scanning Electron Microscope
SMA	Shape Memory Alloy
SME	Shape Memory Effect
SMM	Shape Memory Material
SMP	Shape Memory Polymers
SPS	Samples Per Second
TWSME	Two Way Shape Memory Effect
USB	Universal Serial Bus
VAR	Vacuum consumable Arc
VB	Visual Basic
VGC	Variable Geometry Chevron
VIM	Vacuum Induction Melting
VISA	Virtual Instrument Software Architecture

LIST OF APPENDICES

Appendices	Description
Appendix A	DSC Q200 Instrument Specifications
Appendix B	Thermal Program used for Preliminary Testing
Appendix C	TA Instruments Universal 2000 Software
Appendix D1	DSC Q200 Thermogram of Sample 1
Appendix D2	DSC Q200 Thermogram of Sample 2
Appendix D3	DSC Q200 Thermogram of Sample 3
Appendix D4	DSC Q200 Thermogram of Sample 4
Appendix E	DSC 25 Instrument Specifications
Appendix F1	DSC 25 Thermogram of Sample 1
Appendix F2	DSC 25 Thermogram of Sample 2
Appendix F3	DSC 25 Thermogram of Sample 3
Appendix F4	DSC 25 Thermogram of Sample 4
Appendix F5	DSC 25 Thermogram of Sample 5
Appendix G	SEM EDX Results
Appendix H	Hardware Specification of 8-bit Microcontroller (Device – PIC18F452)
Appendix I	Hardware Specification of 8-bit Microcontroller (Device – ATmega2560)
Appendix J	Hardware Specification of 8-bit Microcontroller (Device – ATmega328p)
Appendix K	Hardware Specification of 24-bit ADC (Device – HX711)

Appendix L	Hardware Specifications of Cold-Junction-Compensated K-
	Thermocouple to-Digital Converter ($0^{\circ}C$ to $+1024^{\circ}C$) (Device
	– MAX6675)
Appendix M1	Schematic Diagram of the Multi-Function Controller -
	Microcontroller Input / Output Signal Interface
Appendix M2	Schematic Diagram of the Multi-Function Controller - 230V
	Heater Driver with Optical Isolator
Appendix M3	Schematic Diagram of the Multi-Function Controller - Sensor
	Interface Modules
Appendix M4	Schematic Diagram of the Multi-Function Controller - Main
	Supply Distribution
Appendix M5	Schematic Diagram of the Multi-Function Controller – USB
	Powered USB to TTL Converter
Appendix M6	PCB Layout of the Multi-Function Controller
Appendix M7	Microcontroller Firmware Implementation for Multifunctional
	Controller
Appendix M8	Software Code of the Human Machine Interface
Appendix M9	Schematic Diagram of the Multi-Function Controller – Pump
	Motor Driver
Appendix N1	Schematic Diagram of the Current Controller – MOSFET
	Based SMA Heating Element Driving Circuit
Appendix O1	Hardware Specifications of Intelligent Digital Multimeter
	(Device – TENMA 72 - 7730A)
Appendix O2	Software Specifications of Intelligent Digital Multimeter
	(Device – TENMA 72 - 7730A)
Appendix P1 to	Component Drawings
Appendix V1	