IMPLEMENTATION OF A PEDOBAROGRAPHIC SYSTEM THROUGH EFFECTIVE CROSSTALK SUPPRESSION WITH AN ALL PROGRAMMABLE SYSTEM ON CHIP

Ashan Surenu Warnakulasuriya

(188105N)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Philosophy in Biomedical Engineering

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

March 2022

Declaration

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: ... UOM Verified Signature

Date: 31/03/2022

The above candidate has carried out research for the MPhil Dissertation under my supervision.

Name of the supervisor: Dr. Anjula De Silva

Name of the supervisor: Prof. Saroj Jayasinghe

	UOM Verified Signature	31 March 2022
Signature of the Supervisor:		Date:

Dedication

There are a number of people without whom this thesis might not have been written, and to whom I am greatly indebted.

To my beloved parents who have been the source of encouragement and inspiration to me throughout my life. And also for the myriad of ways in which, throughout my life, they actively supported me in my determination to find and realise my potential.

To my dear wife, who provided a invaluable practical and emotional support during the challenges of postgraduate studies without which, completion of this dissertation was not possible. You always inspire me and I am truly thankful for having you in my life.

A special feeling of gratitude to my loving sister who never left my side and are very special and my grandmother who raised me, loved me, and taught me to speak.

Finally, I am dedicating this work to all my teachers throughout my life, especially to my mentors at University of Moratuwa, under whose constant guidance, support and inspiration I was able to complete this dissertation. They not only enlightened me with academic knowledge but also gave me valuable advice and opened my my eyes for novel prospects that I never knew existed.

Acknowledgements

I am utterly grateful to my principle supervisor, Dr. Anjula De Silva who invested an enormous amount of time evaluating my work while providing excellent guidance, candid support and encouragement throughout this work.

I owe my warmest thanks to my supervisor Prof. Saroj Jayasinghe for his valuable advice and encouragement throughout.

I express my special thanks to Dr. Jayathu Samarawickrama and Dr. Nuwan Dayananda for their invaluable advise, guidance and critical evaluations provided during progress evaluations.

I express warmest thanks to the National Science Foundation (NSF) of Sri Lanka who provided financial support to this project.

My warmest thanks are due to all the academic and non-academic staff of the University of Moratuwa who helped me throughout the four years undergraduate life. My special thanks to Mrs. Samanthika Narayana, Technical Officer, Biomedical Engineering Laboratory for her continuous support specially during the hardware implementation work.

Finally, I extend my sincere gratitude for Dinushka and Chathurani from the ENTC Batch '14 who provided continuous assistance towards completion of this work even after their graduation.

Abstract

Diabetes Mellitus which is characterized by longstanding hyperglycemia, promote diabetic peripheral neuropathy (DPN) and peripheral artery diseases (PAD) which invoke ulcerations especially on the foot plantar ultimately leads to amputations related morbidity and mortality. Recent clinical studies have identified distinct associations between DPN and foot plantar pressure, and PAD and foot plantar temperature. Hence, development of technology to analyze foot plantar pressure (pedobarography) and foot plantar temperature (pedothermography) to infer DPN and PAD associated diseases at the onset have recently stirred a significant interest among the scientific community.

In the present study, we have primarily investigated the possibility of implementing a highly accurate large piezoresistive platform sensor array (a pedobrographic system) with an improved readout mechanism. We devised a readout circuit to mitigate inherent crosstalk interference with an improved scanning architecture implemented using a decoder-transistor based row driving electrodes and related electronics compatible with high frequency sensing. Then, the developed readout circuit was extensively validated and the proposed implementation was able to make measurements of significant accuracy with errors < 1% while not compromising the shape accuracy of the measured object. Initiatives were also taken to improve the data acquisition rate despite massive sensor data influx from 30,000 sensels. A Xilinx Zynq APSoC based data acquisition system was implemented to scan the entire array with 30,000 sensels and the analysis showed that the system demonstrated expected behavior. Overall, the proposed implementation entertained both static and dynamic pressure measurements of a foot plantar. A subsequent static calibration of the piezoresisitive sensor array was conducted using weight plates and the calibrated sensor array was validated against an existing commercial plantar pressure measurement system to determine its performance.

In addition, possibility of implementing a screening tool for pedothermographic assessment using near infrared (NIR) technology was investigated to provide an overall assessment of both foot planters in a single frame and record both regional and point temperatures of the foot plantar. The proposed thermal imaging system is anticipated to be used in routine clinical assessment of diabetic foot complications at diabetic clinics to provide improved diagnostics, thereby contributing to prevention of diabetic foot ulcerations, amputations and related morbidity.

List of Abbreviations

Abbreviation

Description

AA	Anti-Aliasing
ABI	Ankle-Brachial Index
ADC	Analog to Digital Converter
AGC	Automatic Gain Control
APSoC	All Programmable System on Chip
ASIC	Application Specific Integrated Circuit
AXI	Advanced eXtensible Interface
BRAM	Block Random Access Memory
CAN	Controller Area Network
CMOS	Complementary Metal-Oxide-Semiconductor
СРТ	Current Perception Threshold
DAQ	Data Acquisition
DFU	Diabetic Foot Ulceration
DMA	Direct Memory Access
DPN	Diabetic Peripheral Neuropathy
DSP	Digital Signal Processing
EBT	Element Being Tested
EMG	Electromyography
ESR	Equivalent Series Resistance
FF	Flip-Flop
FPGA	Field Programmable Gate Array
Gbps	Giga-bits per second

GPIO	General Purpose Input Output
GRF	Ground Reaction Force
GUI	Graphical User Interface
HDL	Hardware Description Language
HDMI	High-Definition Multimedia Interface
IP	Intellectual Property
IWGDF	International Working Group on Diabetic Foot
LCT	Liquid Crystal Thermography
LDO	Linear Dropout Regulators
LOPS	Loss of Peripheral Sensation
LUT	Look Up Table
Mbps	Mega bits per second
Mux	Multiplexer
NCS	Nerve Conduction Studies
NCV	Nerve Conduction Velocity
NIR	Near Infrared
Op-amp	Operational Amplifier
Op-amp PAD	Operational Amplifier Peripheral Artery Disease
PAD	Peripheral Artery Disease
PAD PCB	Peripheral Artery Disease Printed Circuit Board
PAD PCB PL	Peripheral Artery Disease Printed Circuit Board Programmable Logic
PAD PCB PL PS	Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System
PAD PCB PL PS PSoC	Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System Programmable System on Chip
PAD PCB PL PS PSoC QST	Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System Programmable System on Chip Quantitative sensory threshold
PAD PCB PL PS PSoC QST RTL	Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System Programmable System on Chip Quantitative sensory threshold Register Transfer Level
PAD PCB PL PS PSoC QST RTL RSA	Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System Programmable System on Chip Quantitative sensory threshold Register Transfer Level Resistor Sensor Array
PAD PCB PL PS PSoC QST RTL RSA SBC	Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System Programmable System on Chip Quantitative sensory threshold Register Transfer Level Resistor Sensor Array Single Board Computer
PAD PCB PL PS PSoC QST RTL RSA SBC SDK	Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System Programmable System on Chip Quantitative sensory threshold Register Transfer Level Resistor Sensor Array Single Board Computer Software Development Kit
PAD PCB PL PS PSoC QST RTL RSA SBC SDK SMD	 Peripheral Artery Disease Printed Circuit Board Programmable Logic Processing System Programmable System on Chip Quantitative sensory threshold Register Transfer Level Resistor Sensor Array Single Board Computer Software Development Kit Surface Mount Devices

S-NSE-ZP	Setting Non-Scanned Electrode Zero Potential
S-NSDE-ZP	Setting Non-Scanned Driving Electrode Zero Potential
S-NSSE-ZP	Setting Non-Scanned Sampling Electrode Zero Potential
SPST	Single Pole Single Throw
SSH	Secure Shell
TBI	Toe-brachial Index
UART	Universal Asynchronous Receiver-Transmitter
USB	Universal Serial Bus
VFM	Voltage Feedback Method
VF-NSE	Voltage Feedback Non-Scanned Electrode
VF-NSDE	Voltage Feedback Non-Scanned Driving Electrode
VF-NSSE	Voltage Feedback Non-Scanned Sampling Electrode
VNC	Virtual Network Computing
WHO	World Health Organization
WHS	Worst Hold Slack
WNS	Worst Negative Slack
ZPM	Zero Potential Method

List of Appendices

Appendix	Description	Page
Appendix A	ZPM and VFM Readout Test Circuit Schematic	215
Appendix B	Python Program to Serially Acquire Data from APSoC	218
Appendix C	Publication made in the Q1 Journal IEEE Sensors	221