HIGH-PERFORMANCE MULTIMODAL APPROACH FOR DEFECT IDENTIFICATION IN KNITTED AND WOVEN FABRIC

Pallemullage Sajith Harshana Pallemulla

(188119K)

Degree of Master of Philosophy

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

August 2022

HIGH-PERFORMANCE MULTIMODAL APPROACH FOR DEFECT IDENTIFICATION IN KNITTED AND WOVEN FABRIC

Pallemullage Sajith Harshana Pallemulla

(188119K)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

August 2022

Declaration

I declare that this is my own thesis and this thesis does not incorporate, without acknowledgement, any material previously submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:	Date:
PSH Pallemulla	
The above candidate has carried out resear pervision.	ch for the MPhil thesis under my su
Signature of the Supervisor(s):	Date:
Dr. Chathura de Silva	
Dr. (Mrs.) Sulochana Sooriyarachchi	

Acknowledgements

This research was supported by the Accelerating Higher Education Expansion and Development (AHEAD) Operation of the Ministry of Higher Education funded by the World Bank.

I am extremely grateful to my supervisors, Dr. Chathura R. de Silva and Dr. Sulochana J. Sooriyaarachchi along with the deputy project coordinator of the FabVis project, Prof. Chandana D. Gamage, for their invaluable input and guidance throughout the research.

Abstract

Fabric inspection is a key quality assurance process in the garment industry as it involves the detection of defects in a fabric roll prior to being sent for production. Many studies have been conducted on defect identification in either knitted or woven fabrics, but only a few have considered both types. In this paper, a method for detecting defects in both knitted and woven fabrics is proposed. The method involves extracting co-occurrence, wavelet and local entropy features from a fabric image and classifying the image as defective or defect-free using a classifier with these features given as input. Five commonly-used classifiers were tested. This method was applied to a dataset with seventeen different types of defects and an overall classification accuracy of 93.31% was achieved by the k-nearest neighbours classifier.

Keywords:

fabric inspection, defect detection, co-occurrence, wavelet, local entropy

Table of Contents

\mathbf{D}	eclar	ation		i
\mathbf{A}	ckno	wledge	ements	ii
\mathbf{A}	bstra	ıct		iii
Ta	able	of Con	tents	iv
1	Inti	roducti	ion	2
	1.1	Backg	round	2
		1.1.1	Research Problem	3
		1.1.2	Research Objectives	4
		1.1.3	Research Contributions	5
	1.2	Outlin	ne of Thesis	5
2	Lite	erature	e Review	6
	2.1	Fabric	e Defects	6
	2.2	Fabric	Inspection	7
		2.2.1	Visual Fabric Inspection	7
		2.2.2	Automated Fabric Inspection	8
	2.3	Image	Processing in Fabric Inspection	10
		2.3.1	Challenges	10
		2.3.2	Defect Detection Methods	11
			2.3.2.1. Spatial Methods	12
			2.3.2.2. Spectral Methods	17
			2.3.2.3. Model-based Methods	22

		2.3.3	Defect Classification Methods	25
			2.3.3.1. Statistical Inference	25
			2.3.3.2. Support Vector Machines	26
			2.3.3.3. Neural Networks	27
	2.4	Summ	nary	30
3	Met	thodol	ogy	31
	3.1	Select	ion of feature extraction algorithms	31
	3.2	Datas	et Used	34
	3.3	The C	Gray-level Co-occurrence Matrix	38
	3.4	The D	Discrete Wavelet Transform	40
	3.5	Local	Entropy	42
	3.6	Classi	fication Algorithms	43
	3.7	Summ	nary	44
4	Fea	ture E	extraction and Defect Identification	45
	4.1	Textu	re Feature Extraction	45
		4.1.1	Selection of offset, orientation and features	46
		4.1.2	Optimization of window size and gray level bit depths	50
		4.1.3	Summary of Findings	52
	4.2	Specti	ral Feature Extraction	52
		4.2.1	Selection of wavelet function and mode of decomposition	52
		4.2.2	Optimization of vanishing moments and levels of decompo-	
			sition	55
		4.2.3	Summary of Findings	56
	4.3	Entro	py Feature Extraction	57
	4.4	Featur	re Ranking	58
	4.5	Defect	t Identification	59
		4.5.1	Defect detection	59
		4.5.2	Summary of Findings	60
		4.5.3	Summary	60

5	Res	ults and Discussion	61
	5.1	Performance Metrics	61
	5.2	Experimental Results	63
		5.2.1 Results of texture feature optimization	63
		5.2.2 Results of spectral feature optimization	70
		5.2.3 Results of feature ranking	73
		5.2.4 Results of defect detection	74
	5.3	Performance Comparison	77
	5.4	Summary	78
6	Cor	nclusions and Future Work	80
	6.1	Conclusions	80
	6.2	Contributions	80
	6.3	Future Work	81
\mathbf{R}_{0}	efere	nces	97

List of Figures

2.1	Categorization of fabric detect detection algorithms	11
2.2	Fabric defect detection using bilevel thresholding [1]. All defects	
	appear as dark patches/lines on the light-coloured fabric. Notice	
	how most of the defect in (b) is not detected due to its tapering	
	ends not being adequately dark	12
2.3	Defects from left to right: Colour Fly, Dirty Yarn, Hole, Oil Spot	13
2.4	Adaptive Local Binary Pattern (ALBP) on a square neighbour-	
	hood [2]	15
2.5	ALBP used on defective images. (a) original images, (b) im-	
	ages with 3x3 ALBP operator on 8x8 non-overlapping windows	
	of the image, (c) images with 5x5 ALBP operator on 16x16 non-	
	overlapping windows of the image [2]	16
2.6	A line-structural texture with dot-spot defect: (a) the original im-	
	age: (b) the Fourier domain image: (c) the slope-angle histogram	
	in the Hough space:(d) the notch that contains high-energy fre-	
	quency components with frequencies manually set to zero: (e) the	
	restored image: (f) the detected dot spots displayed as a binary	
	image. [3]	19
2.7	Wavelet-based scheme for the detection and segmentation of fabric	
	defects [4]	22
2.8	A typical backpropagation neural network used in defect detection [5]	28
3.1	General architecture of an image processing pipeline for image clas-	
9.1	sification	31
3.2	Number of defects classified by each technique in past studies	32
ა.∠	Number of defects classified by each technique in past studies	3 ∠

3.3	Number of defects classified with the highest accuracy by each	
	technique in past studies	3
3.4	Construction of the GLCM with D = 1 and $\theta = 0^{\circ}$	39
3.5	4 possible directions (θ) , for $D = 4 \dots \dots \dots \dots \dots$	40
3.6	Filterbank representation of the wavelet transform (left) and the	
	subband pattern (right) for one pass of the filterbank $\ldots \ldots$	4
3.7	Mallat (left) and packet (right) decomposition to four levels $$. $$.	4:
4.1	Overview of the approach	4!
4.2	Energy computed from the normalized GLCM	4
4.3	Contrast computed from the normalized GLCM $\ \ldots \ \ldots \ \ldots$	48
4.4	Correlation computed from the normalized GLCM	48
4.5	Energy and entropy computed from the normalized GLCM $. $	49
4.6	Wavy knit fabric (left), satin fabric of uniform colour (middle) and	
	wool fabric (right)	50
4.7	Experiment to select the optimal window size and gray level bit	
	depth for the GLCM	5
4.8	Daubechies (db) wavelets with different numbers of vanishing mo-	
	ments	5^{2}
4.9	Experiment to select the number of vanishing moments and level	
	of decomposition for the discrete wavelet transform	56
4.10	Local entropy feature extraction	5
5.1	F1 scores for the unsupervised detection with GLCM textural fea-	
	tures	64
5.2	F1 scores per defect for the unsupervised detection with GLCM	
	textural features	6
5.3	F1 scores for the supervised detection with GLCM textural features	60
5.4	F1 scores per defect for detection with GLCM textural features	
	(unsupervised and supervised)	69
5.5	F1 scores for the supervised detection with wavelet features)	70

5.6	F1 scores per defect for detection with the db2 wavelet)	71
5.7	F1 scores per defect for detection with the db3 wavelet)	71
5.8	F1 scores per defect for detection with the db4 wavelet)	72
5.9	Average F1 score and average accuracy vs. number of neighbours	
	(k) for the k-NN 5-fold cross-validation with the Manhattan dis-	
	tance as the distance metric. The shading around the validation	
	line plots show \pm 1 standard deviation of the accuracy (in orange)	
	and the F1 score (in blue)	76

List of Tables

2.1	Advantages and disadvantages of spatial methods	17
2.2	Advantages and disadvantages of spectral methods	23
3.1	Types of defects in the dataset	35
4.1	Mother wavelets used in research articles	53
4.2	Number of decomposition levels used in research articles	55
5.1	Selected parameters for the GLCM	70
5.2	Selected parameters for the discrete wavelet transform	73
5.3	Results of the feature ranking using Joint Mutual Information (JMI)	74
5.4	k-NN classification performance when features are removed from	
	the bottom of the stack and when only the top features are used	
	in the classification	75
5.5	Performance of different classifiers on the dataset	75
5.6	Performance of the k-NN classifier per defect	78