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Abstract

Fabric inspection is a key quality assurance process in the garment industry as it
involves the detection of defects in a fabric roll prior to being sent for production.
Many studies have been conducted on defect identification in either knitted or
woven fabrics, but only a few have considered both types. In this paper, a method
for detecting defects in both knitted and woven fabrics is proposed. The method
involves extracting co-occurrence, wavelet and local entropy features from a fab-
ric image and classifying the image as defective or defect-free using a classifier
with these features given as input. Five commonly-used classifiers were tested.
This method was applied to a dataset with seventeen different types of defects
and an overall classification accuracy of 93.31% was achieved by the k-nearest

neighbours classifier.
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