STEEL PORTAL FRAME DESIGN FOR DECONSTRUCTION AND REUSE

K. Indika Surendra

199217 C

Degree of Master of Science in Structural Engineering

Department of Civil and Structural Engineering

University of Moratuwa Sri Lanka

July-2022

STEEL PORTAL FRAME DESIGN FOR DECONSTRUCTION AND REUSE

Kolamunnage Indika Surendra

199217 C

This Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science (Structural Engineering)

Department of Civil and Structural Engineering

University of Moratuwa Sri Lanka

July-2022

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of our knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

.....

Date:

K. Indika Surendra

"The above candidate has carried out research for the Masters Dissertation under my supervision"

.....

Date:

Dr. (Mrs) MTP Hettiarachchi

ACKNOWLEDGEMENT

This report and the research behind it would not have been possible without the exceptional support of my supervisor, Dr.(Mrs.) MTP Hettiarchchi. Her enthusiasm, knowledge and exacting attention to detail have been an inspiration and kept my work on track from my first discussion with her to the final draft of this thesis.

I would also like to thank the staff of the civil engineering department of University of Moratuwa, especially all the lecturers who taught me over the past few years.

My gratitude should goes to all the teachers who taught me from primary education to professional career.

I thank all the authors of reference documents and books used during this study.

I am grateful to information department of Sri Lanka Custom for providing me useful data.

I am also grateful to all of those with whom I have had the pleasure to work during this research and during my entire career.

Nobody has been more important to me in the pursuit of this project than the members of my family. I would like to thank my parents, my wife and two wonderful children, whose love and guidance are with me in whatever I pursue.

ABSTRACT

Steel Portal Frame Design for Deconstruction and Reuse

Today, the world over, much emphasis is focused on the use of sustainable materials in infrastructure. One of the main attributes that has led to the widespread use of steel in infrastructure is that is considered sustainable. Steel meets the 3R concept of Sustainability, Reduce, Reuse and Recycle. While steel components are 100% recyclable, the manufacture of stronger and better quality steel products has enabled the design and construction of structures using reduced quantities of steel. Due to scarcity of raw material, conservation of energy coupled with escalation of steel prices, it is prudent to design steel structures that can be re-used, thus extending the life cycle of steel. This is an aspect that has hitherto not received sufficient consideration by structural engineers.

The focus of this thesis is on extending the life cycle of steel components, with particular emphasis on the design of single span steel portal framed structures by considering the aspects of deconstruction and re-use. The scope of the study was limited to a span range of 20m to 40m and eaves heights of 4m and 6m and typical vertical action of 10kN/m.

The adoption of haunches hinders the re-use of the rafter. An innovation recently adopted facilitating the re-use of rafters is that of replacing the haunch at the eaves with a steel knee brace pinned at either end to the column and rafter. This concept was investigated and found to be viable within this range of span and eaves heights. Optimum locations for knee brace connections were found to be 10% of span length at the rafter end and 3% of the span length from the rafter axis at the column end.

These initial studies indicate that greater attention should be paid on the aspect of deconstruction and re-use of steel at the preliminary stages of design in order to extend the life cycle of steel components and thereby enhance the sustainability of steel structures.

Key words:

3R concept, deconstruction, re use, sustainability, knee brace

TABLE OF CONTENT

DECLARATION i			
ACKNOWLEDGEMENT ii			
ABS	STRAG	CT iii	
TABLE OF CONTENT iv			
LIST	ГOFF	FIGURES vii	
LIST	Г OF A	ABBREVIATIONx	
LIST	LIST OF APPENDICESx		
1.	. INTRODUCTION		
	1.1.	Background1	
	1.2.	Problem identification – The need to reuse steel	
	1.3.	Aim4	
	1.4.	Objectives4	
	1.5.	Scope4	
	1.6.	Methodology adopted5	
	1.7.	Outline of dissertation	
2.	LITE	RATURE REVIEW	
	2.1.	Re-use of steel portal frames	
	2.2.	Critical detail/practices hindering re-use of steel portal frames9	
	2.3.	Effect of corrosion with time on the reuse of steel members11	
	2.4.	Key concepts for steel portal frame re-use	
		2.4.1. Standardization (building geometry, detailing, etc.)	
		2.4.2. Reduce number of interfaces (number of building layers)13	
		2.4.3. Reduce number of components (members; connections)13	
		2.4.4. Design for adaptability and relocation	
		2.4.5 Design and detailing for construction, deconstruction and	
		transportation13	
	2.5.	Design and detailing steel portal frames for deconstruction and re-use14	

		2.5.1.	. Using standard (expandable) components	14
		2.5.2.	. Using bolted connection in preference to welded joints	15
		2.5.3.	Using knee brace in place of haunch	16
3.	MET	HODC	DLOGY	18
	3.1.	Gene	ral	18
		3.1.1.	Analyzing with haunch	22
		3.1.2.	Analyzing with knee bracing	23
4.	RESU	ULTS A	AND DISCUSSION	26
	4.1.	Comp	parison of Bending Moments	26
	4.2.	Comp	parison of in plane stability of portal frames	35
	4.3.	Desig	gn resistance of knee brace and cost effectiveness	39
	4.4.	Conn	ection design of knee brace	44
	4.5.	Feasi	bility of end moment connection at eave	46
	4.6.	Resis	tance of column for transverse force from knee brace	48
	4.7.	Feasi	bility of using lesser weight sections for 4m eave height	50
5.	APPI	LICAT	ION OF SRI LANKAN PRACTICE	51
	5.1.	Comp	parison of bending moment results	51
	5.2.	Deter	mination of in plane stability	53
6.	SUM	MARY	Y AND CONCLUSION	54
REI	FEREN	NCES.		56
App	oendix	– A	Analysis and design philosophy of portal frames	58
App	oendix	– B	Specimen calculation for design action of portal frame analy	ysis64
App	oendix	– C	Preliminary sizing tables – S355 steel with 6 ⁰ roof	65
App	oendix	– D	Calculation of buckling amplification factor, $\alpha_{cr,est}$	67
App	oendix	– E	Specimen calculation for design resistance of knee brace	116
App	oendix	-F	Specimen calculation for knee brace connection design	118
App	endix	– G	Specimen calculation of column resistance to transverse for	ce from
			knee brace	120
App	oendix	-H	Calculation of buckling amplification factor, $\alpha_{cr,est}$ for portal	l frames
			with reduced column section	122

Appendix – I	Calculation of buckling amplification factor, $\alpha_{cr,est}$ for portal fram	nes
	with roof slope of 10 degree1	25

LIST OF FIGURES

Figure 1.1	Components of a steel portal frame structure1	
Figure 2.1	Bespoke members shape restricts the reuse on different applications9	
Figure 2.2	Reclaim individual components with a considerable length9	
Figure 2.3	Large quantity of small elements10	
Figure 2.4	Cladding elements as the critical building layer for deconstruction10	
Figure 2.5	Fabricating each segments separately as reusable components14	
Figure 2.6	Bolted haunch component in a portal frame15	
Figure 2.7	Use of knee brace/ inclined knee brace arrangement16	
Figure 3.1	General portal frame arrangement with loading19	
Figure 3.2	Bending Moment diagram of portal frame with haunch19	
Figure 3.3	Bending Moment diagram of portal frame with knee brace20	
Figure 3.4	Haunch dimensions for 20m span portal frame22	
Figure 3.5	Segments of haunch	
Figure 3.6	Knee brace arrangement	
Figure 3.7	Knee brace arrangement for 20m span frame with Y= 2% of span24	
Figure 3.8	Knee brace arrangement for 20m span frame with Y= 3% of span24	
Figure 3.9	Knee brace arrangement for 30m span frame with Y= 2% of span24	
Figure 3.10	Knee brace arrangement for 30m span frame with $Y=3\%$ of span24	
Figure 3.11	Knee brace arrangement for 40m span frame with $Y=2\%$ of span25	
Figure 3.12	Knee brace arrangement for 40m span frame with $Y=3\%$ of span25	
Figure 3.13	Concept of knee brace connection25	
Figure 4.1	Bending Moment variation for knee braced portal frames of 4m eave 33	
Figure 4.2	Bending Moment variation for knee braced portal frames of 6m eave 34	
Figure 4.3	$\alpha_{cr,est}$ variation for portal frames with knee brace -4 m eave height37	
Figure 4.4	$\alpha_{cr,est}$ variation for portal frames with knee brace -6 m eave height38	
Figure 4.5	Knee brace configuration for 40m span portal frame44	
Figure 4.6	Connection detail for knee brace of 40m span portal frame44	
Figure 4.7	Standard connection details from (SCI P398, 2013)46	
Figure 4.8	Moment resistance of end plate connection from (SCI P398, 2013)47	
Figure 4.9	Web buckiling due to concentrated force	
Figure 4.10	Knee bracing with web stiffener at the connection	

Figure A.1	Asymmetric or sway mode deflection of portal frame	60
Figure A.2	Symmetric mode deflection of portal frame	60

LIST OF TABLES

U, I or H Sections of steel imports to Sri Lanka
Atmospheric corrosively categories and typical environments11
Bending Moment of frame with haunch27
Bending Moment of frame without haunch27
Bending Moment of frame with knee brace: $X = 5\%$, $Y = 2\%$ span28
Bending Moment of frame with knee brace: $X = 5\%$, $Y = 3\%$ span28
Bending Moment of frame with knee brace: $X=10\%$, $Y=2\%$ span29
Bending Moment of frame with knee brace: $X=10\%$, $Y=3\%$ span29
Bending Moment of frame with knee brace: $X=15\%$, $Y=2\%$ span30
Bending Moment of frame with knee brace: $X=15\%$, $Y=3\%$ span30
Buckling Amplification Factor for portal frames
Design resistance of knee brace (K.B.) for 20m span40
Design resistance of knee brace (K.B.) for 30m span41
Design resistance of knee brace (K.B.) for 40m span43
Connection design summary of knee brace45
M12 results for X=10% and Y=3% of span knee brace condition47
Stability and steel saving with reduced sections
Bending moment of portal frame with different roof slopes51
Bending resistance of selected steel sections
Bending moment of 20m span portal frame with 10^0 roof slope
Buckling amplification factor for portal frames with two roof slopes .53

LIST OF ABBREVIATION

Abbreviation	Description
DM	Danding Moment
BIM	Bending Moment
CHS	Circular Hollow Section
EHF	Equivalent Horizontal Force
GA	General Arrangement
KB	Knee Brace
NHF	Notional Horizontal Force
PEB	Pre Engineered Buildings
SLS	Serviceability Limit State

LIST OF APPENDICES

Appendix – A	Analysis and design philosophy of portal frames58
Appendix – B	Specimen calculation for design action of portal frame
	analysis64
Appendix – C	Preliminary sizing tables65
Appendix – D	Calculation of buckling amplification factor, $\alpha_{cr,est}$ 67
Appendix – E	Specimen calculation for design resistance of knee brace116
Appendix – F	Specimen calculation for knee brace connection design118
Appendix – G	Specimen calculation of column resistance to transverse force
	from knee brace120
Appendix – H	Calculation of buckling amplification factor $\alpha_{cr,est}$ for portal
	frames with reduced column section122
Appendix – I	Calculation of buckling amplification factor, $\alpha_{cr,est}$ for portal
	frames with roof slope of 10 degrees125