FABRIC DEFECT DETECTION USING ONE-CLASS CLASSIFIER

V.K.N.Madhusanka

199476R

Degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics, Faculty of Information Technology

University of Moratuwa

Sri Lanka

March 2022

FABRIC DEFECT DETECTION USING ONE-CLASS CLASSIFIER

V.K.N.Madhusanka

199476R

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics, Faculty of Information Technology

University of Moratuwa

Sri Lanka

March 2022

DECLARATION

I declare that this dissertation doesn't include, without acknowledgment, any content submitted for a Diploma or a Degree at any institute, and that it does not contain, to the best of knowledge and believing, any material previously released or written by another person or myself, except where suitable citations are made in the text.

I also offer my consent for my dissertation to be photocopied and interlibrary loaned if it is accepted, and for the title and description to be made available to outside organizations.

Name if the student

V. K. N. Madhusanka

Signature of Student

Date:

Supervised by

Dr. Subha Fernando

Signature of the supervisor Date:

Abstract

Textile is wide, very important in critical industry, because it provide lot product to the human day to day life. As example cloths, wipes, transportation materials, wipes, hosuning materials etc. Then quality of the products are very important for their demand. Therefore defect identification during the production is very importat and then they can maintain better price for their production. Therefore fabric defect detection and identification is a very impotant part of the textile industry's quality control process. Currently, there are many manualinspection method to identify defects and, to enhance the efficiency, it is needed to repace manual inspectionmethod bby a automatic inspection method.

Machine vision is diversifying and expanding in defect detection using deep learning. Traditional systems like detecting and classifying defects using image segmentation, defect detection and image classification have some limitations like requiring a lot of defective data to the training process and needing pre-identification of defects in the datasets. However, it is very difficult to get a large amount of actual data with defects and real-time processes.

The one-class classifier is a classical machine learning problem that has received considerable attention recently for fabric defect detection. Tin this scenario, only non-defective class data are available in the training process and avoid the requirement of defective to train process. However, State of art models in deep neural networks with one-class classifiers is still unable to record higher accuracy.

This research proposes our approach, for identifying defective fabric using features of the non-defective fabric with higher accuracy. The implications of this research can be an initiative to such applications. That approach consists of a VGG-16 pre-trained framework and trainable network with a new Loss function for increase accuracy of defect detection.

DEDICATION

To my parents for their dedicated partnership in the success of my life

ACKNOWLEDGEMENTS

I'd want to express my thankfulness to Dr K.S.D. Fernando, who sparked my interest in research and provided guidance and advice during this research. Her advice was invaluable to my thesis, and I owe her a significant portion of its success to her. I would like to thank and appreciate the staff members of the Department of Computation Mathematics for their consideration and interest on my research work.

Finally, I'd like to thank all of my family members and friends for their unconditional support during this long endeavour and through all my life. Though they may not realize it, they have had a huge impact on me and I would not have grown to where I am now without them.

TABLE OF CONTENTS

DECLARATION	
DEDICATION	5
ACKNOWLEDGEMENTS	6
Chapter 1 INTRODUCTION	13
1.1 Prolegomena	13
1.2 Background and Motivation	13
1.3 Aim and Objectives	15
Aim	15
Objectives	15
1.4 Problem in Brief	15
1.5 Proposed Solution	15
1.6 Resource Requirements	16
1.7 Outline	16
1.8 Summary	16
2.1 Introduction	17
2.2 Artificial Neural network	17
2.2.1 Batch normalization	19
2.2.2 Dropout	19
2.3 Convolutional Neural Network	19
2.3.1 VGGNet	21
2.3.1.1 VGG 16 architecture	22
2.3.1.2 Transfer Learning	23
2.3.1.3 Complexity and challenges	23
2.4 Wavelet transformation	23
2.4.1 Discrete Wavelet Transform	24
2.5 Support Vector Machine	24
2.6 One-class Support Vector Machine (OCSVM)	26
2.6.1 Hinge loss with SVM	28
2.5.2 OCSVM with Hinge loss	29
Chapter 3 LITERATURE REVIEW	30
3.1 Introduction	30
3.5 Image-based defect detection with one-class classifier	30
3.4 One-class classifier based anomaly detection using	33
3.6 Challenges in OCSVM based defect detection	38

3.7 Summ	3.7 Summary	
Chapter 4	APPROACH FOR FABRIC DEFECT DETECTION	40
4.1 Introd	uction	40
4.2 Input		40
4.3 Outpu	t	40
4.4 Proces	38	41
4.5 Users		41
4.6 Featur	·es	41
4.7 Summ	lary	41
Chapter 5 I	DESIGN OF FABRIC DEFECT DETECTION	42
5.1 Introd	uction	42
5.2 Input	Images	42
5.3 Featur	e extraction network	42
5.4 Fully	connected network	43
5.5 Gradie	ent ramp loss function	43
Hinge	Hinge loss function with one class classifier loss function.	
Ramp	loss function	44
Gradie	nt ramp loss function with one-class classifier.	44
5.5 Summ	lary	45
Chapter 6	IMPLEMENTATION	47
6.1 Introd	uction	47
6.2 Datase	ets	47
6.3 Featur	e Extraction	47
6.4 Fully	connected network	48
6.5 Gradie	ent ramp loss function	49
6.6 Traini	ng	50
6.7 Summ	lary	50
Chapter 7	EVALUATION	51
7.1 Introd	uction	51
7.2 Evalua	ations	51
7.2.1 0	CSVM	51
7.2.2	Ramp-OSVM	52
7.2.3	Robust-OCSVM	53
7.2.4 (Grad-ramp OCSVM	54
7.2.5	Method comparison	55
7.3 Summ	lary	56
Chapter 8	CONCLUSION & FURTHER WORK	57

8.1 Introduction	57
8.2 Conclusion	57
8.2.1 Achievement of Project Objectives	57
8.2.2 Overall Conclusion	58
8.3 Limitations and Further Works	58
8.4 Summary	59
Reference	60

List of figures

Figure 2.1: Leyers in Artificial Neural Network	18
Figure 2.2: Structure of Artificial Neural Network	18
Figure 2.3: CNN Architecture	20
Figure 2.4: Process of Convolutional layer	20
Figure 2.5: VGG 16 Network Architecture	23
Figure 2.6: Optimal Hyperplane of OCSVM	24
Figure 2.7: Support vectors	25
Figure 2.8: One-class Support Vector Machine	27
Figure 2.9: Hinge Loss Function	29
Figure 4.1: Basic Architecture of Novel Approach	40
Figure 5.1: Hinge Loss Function	43
Figure 5.2: Ramp loss Function	44
Figure 5.3: New gradient-Ramp loss function	45
Figure 6.1: Feature Extractor and Classifier in VGG 16 Network	48
Figure 6.2: Operations of Loss Function.	50

List of Tables

Table 7.1: OCSVM results	52
Table 7.2 Ramp-OCSVM results	52
Table 7.3 Robust-OCSVM results	53
Table 7.4 Grad-Ramp-OCSVM results with 0.5 ramp limit	54
Table 7.5 Grad-Ramp-OCSVM results with 0.1 ramp limit	55
Table 7.6 Grad-Ramp-OCSVM results with 0.05 ramp limit	55

Abbreviations

ANN	Artificial neural network
CNN	Convolutional neural network
SVM	Support Vector Machine
OCSVM	One-clas Support Vector Machine
VGG	Visual Geometry Group
DCNN	Deep Convolutional neural network
GPU	Graphics Processing Unit
VGGNet	Visual Geometry Group network
PB-OCSVM	Pinball - One-class Support Vector Machine
RLOCSVM	Ramp Loss One-clas Support Vector Machine
ROCSVM-RHHQ	Robust One-clas Support Vector Machine based on rescaled
	hinge loss function
ССР	concave -Convex Procedure
SVDD	Support Vector Data Description
SAD	semi-supervised anomaly detection
UCL	Upper control limit
LCL	Lower control limit
AUC	Area Under the Curve
OCSTM	One-class Support Tensor Machine