MULTI-TARGET MULTI-CAMERA TRACKING OPTIMIZATION USING PROBABILISTIC TARGET SEARCH

K. S. Wijayasekara

199492L

Degree of Master of Science

Department of Computational Mathematics

University of Moratuwa, Sri Lanka

March 2022

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organizations.

Name of the Student

K. S. Wijayasekara

Signature of Student Date: 16/07/2022

Supervised by

Dr. Subha Fernando

Signature of the Supervisor

Date:

Prof. Chinthaka Premachandra

Signature of the Supervisor

Date:

Acknowledgment

Throughout the development of this dissertation, I received a great lot of assistance from a variety of people. Firstly, I would like to express my gratitude to my supervisors, Dr. Subha Fernando and Professor Chinthaka Premachandra, for their dedication, patience, and direction in ensuring the success of this study. Her input was key to developing the research topic and technique. Your unwavering support and insightful comments have always aided me in raising the bar on my work.

I'd also like to express my gratitude to Prof. Asoka Karunananda for his assistance in preparing the thesis materials and demonstrating proper research methodology. In addition, I want to express my gratitude to Dr.Sagara Sumathipala for his invaluable assistance in completing the project on time.

My heartfelt thanks to all of the other lecturers and non-academic staff members who assisted me in making this project a success. I also want to express my deepest gratitude to my coworkers for their assistance in completing this project.

Finally, I thank my beloved parents, wife, and other family members for their continuous support and encouragement. If not for you, this project would not have been as successful as it is.

Abstract

Smart surveillance in smart cities has become an important feature to be used in resource utilization and city-wide security areas. Multi-target multi-camera tracking has been one of the core areas in smart surveillance since the overlapped field of views within cameras cannot be expected in the real world scenarios. The inefficiency in MTMCT has caused this feature to not be used in real time applications. Hence how to make vehicle re-identification feature signature matching efficient in multi target multi camera tracking has become a research problem.

This research introduces a trajectory based probabilistic search algorithm to reduce target search space and increase the efficiency of the MTMCT. The solution consists of a YOLO v4 based object detection module, IOU based single camera tracking module, OSNet based feature extraction module and a cross camera identification module using probabilistic target search algorithm. The system takes video streams in and outputs the global trajectory of each target target. The evaluation is done using identification F1 score and the efficiency was measured using the number of frames processed in a second.

Table of Contents

Declaration	
Acknowledgment	
Abstract	
Table of Contents	
List of Figures	
List of Tables	
List of Abbreviations	10
INTRODUCTION	1
1.1 Prolegomena	1
1.2 Aim and Objectives	1
1.3 Background and Motivation	2
1.4 Problem Definition	2
1.5 Novel Approach to MTMCT	2
1.6 Resource Requirements	3
1.7 Structure of the Thesis	3
1.8 Summary	3
DEVELOPMENTS AND ISSUES IN MTMCT	
2.1 Introduction	4
2.2 Early Developments in MTMCT	4
2.3 Breakthrough in MTMCT	5
2.3.1 Re-Identification feature extraction	5
2.3.2 Single camera tracking	6
2.3.3 Inter camera tracking	7
2.4 Probability Based Target Search	9
2.5 Challenges in MTMCT	9
2.6 Problem definition	10
2.7 Summary	11
TECHNOLOGIES USED FOR MTMCT	12
3.1 Introduction	12
3.2 Technologies Used In Object Detection	12

	3.2.1 Transfer Learning	14
	3.3 Technologies used in Single Camera Tracking	15
	3.3.1 Intersection over Union (IOU)	15
	3.3.2 IOU for simple object tracking	15
	3.4 Technologies used in Re-identification Feature Extraction	17
	3.4.1 Feature distance calculation	17
	3.5 Technologies used in Probabilistic Target Search	17
	3.4 Summary	17
AF	PROACH	18
	4.1 Introduction	18
	4.2 Hypothesis	18
	4.3 Input	19
	4.4 Output	19
	4.5 Process	19
	4.6 Users	19
	4.7 Features	20
	4.8 Summary	20
DE	SIGN	21
	5.1 Introduction	21
	5.2 Vehicle Re-ID Feature Extraction	21
	5.2.1 Frame Reader	22
	5.2.2 Object Detector	22
	5.2.3 Object Tracker	22
	5.2.4 Feature Extractor	23
	5.2.5 Database Handler	23
	5.3 Target Search Algorithm	23
	5.3.1 Gallery Sorter	24
	5.3.2 Distance Calculator	24
	5.3.3 Distance Filter	24
	5.4 Summary	25
IMPLEMENTATION		26
	6.1 Introduction	26

6.2 Implementation of Feature Extractor Modules	27
6.2.1 Frame Reader	27
6.2.2 Object Detection	27
6.2.3 Object Tracker	27
6.2.4 Feature Extraction	29
6.2.5 Database handler	30
6.3 Implementation of Target Search Modules	31
6.3.1 Distance Calculator	31
6.3.2 Distance Filter	31
6.4 Datasets Used	31
6.5 Summary	32
EVALUATION	33
7.1 Introduction	33
7.2 Evaluation Strategy	33
7.2.1 Experiment Setup	33
7.2.2 Accuracy Testing Strategy	33
7.2.2 Performance Testing Strategy	36
7.3 Results	36
7.3.1 Accuracy Testing	36
7.3.2 Performance Testing	37
7.4 Summary	37
CONCLUSION AND FURTHER WORK	38
8.1 Introduction	38
8.2 Conclusion	38
8.2.1 Achievement of Project Objectives	38
8.2.2 Overall Conclusion	39
8.3 Limitations and Further Works	39
8.2 Summary	40
REFERENCES	41
APPENDIX	46

List of Figures

Figure 3.1 - The YOLO Detection System	13
Figure 3.2 - YOLO v4 performance illustration	14
Figure 3.3 - Ground truth and detection bounding boxes	16
Figure 3.4 - IOU metric calculation	16
Figure 4.1 - Approach	18
Figure 5.1 - Top level design of the solution	21
Figure 5.2 - Modules involved for feature extraction	22
Figure 5.3 - Pre-defined directions of possible object movements	23
Figure 5.4 - Modules involved for target search	24
Figure 6.1 - Implementation of modules of the proposed system	26
Figure 6.2 - IoU calculation between 2 bounding boxes	28
Figure 6.3 - IoU tracking mechanism	28
Figure 6.4 - Direction identification	29
Figure 6.5 - vehicle-reid-0001 model inputs and outputs	30
Figure 6.6 - Database structure implementation	30
Figure 6.7 - City-Scale Multi-Camera Vehicle Tracking Dataset	32
Figure 7.1 - Experimental Setup	34

List of Tables

Table 7.1 - System Output Examples	35
Table 7.2 - Accuracy test result summary	36
Table 7.3 - Performance test result summary	37

List of Abbreviations

Abbreviation

Description

MTMCT

Multi Target Multi Camera Tracking