UTILISATION OF INDUSTRIAL WASTE; FLY ASH/BOTTOM ASH TO HASTEN THE INTRINSIC BIOFOULING PROPERTIES IN CEMENT MORTAR: STRENGTH PROPERTIES

M.P.P.C.D. Wijesinghe¹, R.U. Halwatura^{1,*}

¹ Department of Civil Engineering, University of Moratuwa, Moratuwa

In recent years, the incorporation of industrial waste materials into sustainable construction practices has emerged as a significant area of interest. This research aims to explore the application of fly ash and bottom ash, both commonly found industrial waste products, in enhancing the biofouling properties of cement mortar. Biofouling, which refers to the accumulation of marine organisms on submerged surfaces, poses a considerable challenge to marine structures, necessitating the development of effective mitigation strategies. This study employs a comprehensive research methodology that involves the preparation of cement mortar samples, wherein varying proportions of fly ash and bottom ash are used as partial replacements for the fine aggregate. To evaluate the physical properties of the mortar mixtures, various replacement percentages in 20% intervals are tested, ranging from 0% to 100%. The assessment is conducted following established standards (IS:4031-1998) and involves the performance of standard tests such as consistency, initial setting time, and final setting time. These tests allow for a comprehensive evaluation and comparison of the different mortar mixtures, providing important insights into their overall quality and characteristics.:4031-1998). In order to comprehensively assess the modified cement mortar, the mechanical properties were evaluated. The compressive strength was tested using the ASTM C109/C109M standard, while the tensile strength was measured through splitting tensile tests following ASTM C496/C496M guidelines. To further understand the impact of biofouling on the modified mortar mixtures, 16 samples were exposed to the intertidal zone at Dikkowita fisheries harbour for three months. Monthly visual observations and photographic documentation were methodically carried out to monitor and document the growth and extent of biofouling on the mortar surfaces. The findings presented in this study offer significant insights into the utilisation of fly ash and bottom ash as additives in cement mortar to enhance its resistance against biofouling. Through a comprehensive analysis of the physical, mechanical, and biofouling evaluations, the study thoroughly evaluates and discusses the most effective replacement percentages for achieving optimal biofouling resistance. This research holds valuable potential for advancing the use of fly ash and bottom ash in cement mortar and further enhancing its performance against biofouling. Using industrial waste materials in cement mortar is an essential practice to promote sustainability in the construction industry while simultaneously minimising the environmental consequences of waste disposal. The implications of our research extend further, as it holds the potential to advance the development of biofouling-resistant cement mortar for marine applications, thereby benefiting both the construction industry and coastal infrastructure development. Additionally, this research offers the possibility of reducing dependence on chemical anti-fouling treatments, thereby paving the way for even more environmentally friendly solutions.

Keywords: Industrial waste, Cement mortar, Biofouling, Mechanical properties, Bioreceptivity

* Correspondence: rangika@uom.lk

Biomass growth over 3 months											Tes	t Res	sults				
Sample No .Control sample ement-sand, 1:6 ratio	March	April	May	June													
2. Fly ash- sand ratio,20%-80% as fine aggregate	2	2				ratio	Cement (g)	Sand(g)	Fly	dustrial W Materia CTWP		Water (ml)	Consistenc y(mm)	Initial Setting Time	Final Setting Time		
		and the second				1:6		100%	h		Silica			25min	> 8hours		
3. Fly ash- sand ratio.40%-60% as fine				1000	1	1:6 1:6	58 58	171	171 342			80 115	20 8	>30min	>30min		
ggregate	-					1:6	58	68	274	171		100	8	- 20			
						1:6 1:6	58 58	171		171 342		95 150	6	>30min >30min			
4. Fly ash- sand atio,60%-40% as fine	4	Alexand		T. Astron		1:6	58	68		274		100	1	>30min			
aggregate	A State	Calles 1				1:6 1:6	58 58	171			171 342	135 235	3	27min 22.5min	30min 36min		
5. Fly ash- sand					_	1:6	58	68			274	170	3	>30min	John		
 Fly ash- sand ratio,100% as fine aggregate CTWP- sand 	6	6				Rest											
7. CTWP- sand ratio,20%-80% as fine aggregate	7						Compressive strength test										
8. CTWP- sand ratio,40%-60% as fine aggregate	æ	8	A ser			12 01 (Wba) 8 (Wba)	12 10 10 10 10 10 10 10 10 10 10										
9. CTWP- sand ratio,60%-40% as fine aggregate	9					ressive stren											
10. CTWP- sand ratio,80%-20% as fine aggregate	10					2 0 0 0) 2	D 4	10	60	80	10	0 120		51100		
11. CTWP- sand ratio,100% as fine aggregate	12	-					sand precentage% Figure 1: Compressive Strength Test Results										
12. Fume silica- sand ratio,20%-80% as fine aggregate	13.																
13. Fume silica- sand ratio,40%-60% as fine aggregate	13	E	· All			a ⁴	Splitting Tensile test results										
14. Fume silica- sand ratio,60%-40% as fine aggregate	14	167				strength(MPa											
15. Fume silica- sand ratio,80%-20% as fine aggregate	15	75	S-S-	An.		0	20		10 San	60 d precenta	80 ge%		100 12		ime silica		
		1	1	1													