DEVELOPING A CORRELATION BETWEEN INDOOR AIR QUALITY AND SICK BUILDING SYNDROME IN APARTMENT BUILDINGS

Pamodh Hasanka Alwis

188701 M

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Construction Project Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

March 2022

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Name of the supervisor : Prof. (Mrs.) C. Jayasinghe

:

Signature of the supervisor

Date:

ABSTRACT

Sick Building Syndrome (SBS) is currently a widely discussed topic all around the world since most of the population spend majority of their time indoors. However in Sri Lanka, there is less discussion on SBS. Among the contributory factors for SBS, polluted air plays a leading role while aggravating the situation with poor ventilation. In order to assess the magnitude of SBS prevail in Apartment buildings in Sri Lanka, a field study was carried out placing the focus on Total Volatile Organic Compounds (TVOC) and Carbon Dioxide (CO₂) concentrations. A series of measurements were taken on selected Indoor Air Quality (IAQ) parameters in a sample of apartment buildings located close to a main highway. The IAQ monitoring was coupled with a questionnaire survey on SBS symptoms, building operational practices and other related parameters. The results of the study revealed that IAQ parameters could correlate with SBS symptoms at different significant levels. Moreover, poor ventilation had been identified as a prominent contributory factor for substandard air quality which in turn would result several SBS symptoms. The results of this research will be benefited to Engineers, Architects, Developers, and general public.

Key words: SBS, IAQ, CO₂, TVOC, Symptoms

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my research supervisor Prof. (Mrs.) Chintha Jayasinghe, for the guidance and support provided throughout the research. The immense knowledge and determination that have given by her to make awareness on this research area has inspired me to perform at the best where without the continuous support offered, the completion of this research would not have been possible.

Secondly, my thank goes to Mr. Nipun Kumarage, an undergraduate of the Department of Civil Engineering, University of Moratuwa for the assistance he provided during data collection. Furthermore, I would like to extend my thanks to Mr. Kasun Zoysa, Analytical Chemist of the Department of Civil Engineering, University of Moratuwa for the support provided in finding a good and reliable measuring instrument.

My parents were always there for me in my ups and downs. Even though I could not spend much time with them due to my busy schedule during the programme, they never complained but gave all the support they could in every possible way.

Also, I am grateful to my Employer, NCD Consultants (Pvt) Ltd. for providing a positive and encouraging working environment to continue my studies where Eng. Nandana Abeysuriya, Eng. Kaveesh Abeysuriya and Eng. Vinod Asanka should be specially mentioned for the flexibility they have provided to manage my workload.

Finally, special thanks should go to all the building occupants who have given their feedback for the questionnaire for providing their honest responses and allowing us inside their apartments freely to take air quality measurements.

TABLE OF CONTENTS

DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF ABBREVIATIONS	ix
1. INTRODUCTION	1
1.1 Background	1
1.2 Objectives	2
1.3 Scope and Limitations	2
1.4 Research Methodology	2
1.5 Main Findings	3
1.6 Chapter Breakdown	3
2. LITERATURE REVIEW	5
2.1 General	5
2.2 Sick Building Syndrome	5
2.2.1 Symptoms	6
2.2.2 Causes	7
2.3 Indoor Air Quality	7
2.3.1 Indoor Air Pollutants	8
2.3.2 Standards and Certification Systems related to IAQ	9
2.4 The main indoor pollutants considered in the study	9
2.4.1 Indoor Carbon Dioxide	
2.4.2 Indoor Volatile Organic Compounds	
2.5 Summary	15
3. Field Study	16
3.1 General	16
3.2 Questionnaire Survey	16

3.3 Equipment Used and Specifications	18
3.4 Data Analysis Method	19
3.5 Summary	19
4. RESULTS AND ANALYSIS	20
4.1 General	20
4.2 Variation of indoor CO ₂ concentrations	20
4.2.1 Variation of indoor CO ₂ concentration with Air conditioner usa	ge 20
4.2.2 Variation of indoor CO ₂ concentration with operational practic of openings	es 21
4.2.3 Variation of indoor CO ₂ concentration with the maintenance of conditioner	Air 23
4.3 Variation of Indoor TVOC related factors	24
4.3.1 Variation of indoor TVOC concentration with the type of air fresheners used	24
4.3.2 Variation of TVOC concentration with the application of new paint	25
4.3.3 Variation of indoor TVOC concentration with the time since ne wooden and fabric furniture brought	w 26
4.4 SBS related Symptoms Analysis	26
4.4.1 Scores for each symptoms	27
4.4.2 Correlation of SBS with the indoor pollutants	28
4.5 Summary	29
5. CONCLUSIONS AND RECOMMENDATIONS	32
5.1 Conclusions	32
5.2 Recommendations	34
REFERENCES	35
APPENDICES	

LIST OF FIGURES

Figure 2.1: Schematic diagram of building mechanical ventilation system11
Figure 2.2: Summary of the Literature Review15
Figure 3.1: Taking the air quality measurements during the questionnaire survey 18
Figure 3.2: Summarized representation of the research methodology19
Figure 4.1: Air Conditioner Usage Vs Average Indoor CO ₂ level
Figure 4.2: Window opening frequency (air conditioned apartments) Vs Average
indoor CO ₂ level
Figure 4.3: Window opening frequency (non-air conditioned apartments) Vs
Average indoor CO ₂ level
Figure 4.4: Air conditioner service frequency Vs Average indoor CO ₂ level
Figure 4.5: Time since last repair to the air conditioner Vs Average indoor CO ₂
level
Figure 4.6: Type of air fresheners used Vs Average indoor TVOC level
Figure 4.7: Time since the last wall painted Vs Average indoor TVOC level25
Figure 4.8: Time since last new furniture Vs Average indoor TVOC level
Figure 4.9: Relationship between average indoor CO ₂ level and Symptom score 28
Figure 4.10: Relationship between average indoor TVOC level and Symptom
score

LIST OF TABLES

Table 2.1: Threshold values of CO2	11
Table 2.2: Sources of domestic indoor TVOC	13
Table 2.3: Maximum TVOC concentrations and measured periods	14
Table 2.4: VOC limitations provided by GBCSL	14
Table 4.1: Point system adopted for SBS symptom frequency	27
Table 4.2: Scores obtained for each symptom inquired	
Table 4.3: Results summary of indoor air quality related parameters	30
Table 4.4: Summery of regression analysis carried out between indoor air	
pollutants Vs SBS related symptoms	31

LIST OF ABBREVIATIONS

Abbreviation	Description
SBS	Sick Building Syndrome
VOC	Volatile Organic Compounds
TVOC	Total Volatile Organic Compounds
CO_2	Carbon Dioxide
IAQ	Indoor Air Quality
IEQ	Indoor Environmental Quality
WHO	World Health Organization
BRI	Building Related Illness
ASHRAE	American Society of Heating, Refrigerating and Air- Conditioning Engineers
GBCSL	Green Building Council of Sri Lanka
ppm	Parts per Million
ppb	Parts per Billion