3D RECONSTRUCTION OF OBJECTS FROM RGB IMAGES AND DEPTH INFORMATION USING DEEP LEARNING

Tharindu Dananjaya Karunanayaka

189327E

This dissertation submitted in partial fulfillment of the requirements for the Degree of MSc in Computer Science specializing in Data Science and Analytics

Department of Computer Science and Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > October 2022

DECLARATION

I, K.N.T.D.Karunanayaka, hereby declare that this is my own work and this report does not incorporate without acknowledgement any material previously submitted for the degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Master's thesis under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of the supervisor: Dr. Charith Chithraranjan

Signature:

Date:

ACKNOWLEDGMENTS

I owe my deepest gratitude to my supervisor, Dr. Charith Chithraranjan of Department of Computer Science and Engineering, Faculty of Engineering, University of Moratuwa for the supervision and advice given throughout to make this research a success.

Further, my sincere appreciation goes to my family for the continuous support and motivation given to make this thesis a success. I am also thankful to the management and the staff of LiveRoom (Pvt.) Ltd for supporting me in balancing my workload which allowed me to spend time on this research.

Moreover, I would like to thank all my colleagues for their help in finding relevant research material, sharing knowledge and experience and for their encouragement. Last but not least, I also thank my friends who supported me in this whole effort.

ABSTRACT

Object reconstruction is the manner of producing a computer model of the 3D appearance of an object from two-dimensional photos. It's the opposite procedure of obtaining 2D photos from 3D scenes. 3D reconstruction of objects from their digital pictures is a time-efficient and convenient manner of analysing the structural features of the item being modelled. Currently there may be an essential need for 3D content for computer graphics, virtual reality and communication, triggering an alternate emphasis for the requirements. Many present methods for constructing 3D objects are built round specialized hardware resulting in a high fee, information scanning barriers due to environment conditions which can't satisfy the requirement of its new programs. The art of three-dimensional reconstruction of objects and scenes has been a broadly researched topic.

In this Master's thesis, I proposed to address the above problems by developing a Deep Learning approach to reconstruct the object. This type of approach does not depend too much on the environment condition and the cost is low. However, the proposed method mostly targets the reconstruction of objects other than reconstruction of scenes. This research attempts to develop a Deep Learning based 3D reconstruction method for objects to avoid the limitations of the current 3D reconstruction approaches.

TABLE OF CONTENTS

DECLARATION	i
ACKNOWLEDGMENTS	ii
ABSTRACT	iii
LIST OF FIGURES	vi
LIST TABLES	vii
LIST OF ABBREVIATIONS	viii
1. INTRODUCTION	1
1.1 Motivation	1
1.2 Problem Statement	3
1.3 Objectives and Output	3
1.4 Outline	3
2. LITERATURE REVIEW	4
2.1 3D Scanning Technology	4
2.1.1 Laser Triangulation 3D Scanning Technology	4
2.1.2 Structured Light 3D Scanning Technology	5
2.1.3 Photogrammetry	6
2.1.4 Contact Based 3D Scanning Technology	6
2.1.5 Laser Pulse Based and Phase Shift 3D Scanners	7
2.1.6 Laser Pulse Based 3D Scanners	7
2.1.6.1 Laser Phase Shift 3D Scanners	7
2.2 Deep Learning Approaches	8
2.2.1 Perspective Transformer Nets	9
2.2.2 3D-R2N2	10
2.2.3 DeepSDF	12
2.2.4 A Point Set Generation Network	14
2.2.5 Pix3D	16
2.2.6 Differentiable Volumetric Rendering	18
2.2.7 NeRF	20
2.2.8 Soft Rasterizer	22
2.2.9 Generating 3D Models from Single 2D Image without Rendering	24
3. METHODOLOGY	26

3.1 High-Level Architecture		26
3.2 Data Collection		27
3.2.1 Collect data from syn	thetic data set	27
3.2.2 Collect data for real v	world data set	29
3.2.2.1 Calculate extrins	sic matrices	29
3.2.2.2 Generate Masks		31
3.3 Euclidean Clustering for p	point cloud	32
3.4 Reconstruction		33
3.5 Texture Generation		37
4. RESULTS AND ANALYSIS		38
4.1 Results		38
4.2 Result Analysis		39
4.2.1 Synthetic Dataset		39
4.2.2 Real-World Dataset		43
4.2.3 Result Comparison		45
4.3 Discussion		47
5. CONCLUSION AND FUTUR	RE WORKS	48

LIST OF FIGURES

Figure 2.1: Transformer Nets network architecture [11]	10
Figure 2.2: 3D-R2N2 high-level architecture [10]	11
Figure 2.3: DeepSDF network architecture [13]	13
Figure 2.4: Result Comparison - DeepSDF vs AtlasNet [13]	14
Figure 2.5: Pix3D high-level architecture [17]	17
Figure 2.6: DVR network architecture [20]	19
Figure 2.7: NeRF scene representation [22]	21
Figure 2.8: Network architecture for soft rasterizer	23
Figure 2.9: Generate Mesh from point clouds [26]	25
Figure 3.1: Blender generate data set	27
Figure 3.2: Object image	28
Figure 3.3: Object depth map	28
Figure 3.4: Object mask	28
Figure 3.5: ORM-SLAM2 - Keyframes	29
Figure 3.6: ORM-SLAM2 - Feature Points	30
Figure 3.7: Panda point cloud - front view	30
Figure 3.8: Panda point cloud - side view	30
Figure 3.9: Alpha shape	31
Figure 3.10: Shape with shrinking	31
Figure 3.11: Object trimap	32
Figure 3.12: Object mask	32
Figure 3.13: Clustering of the point cloud	33
Figure 3.14: DVR network architecture	34
Figure 3.15: Modified network architecture	35
Figure 3.16: Intersection over Union	36
Figure 4.1: Training loss	38
Figure 4.2: Validation loss	38
Figure 4.3: Results of synthetic dataset	42
Figure 4.4: Results of real world dataset	44
Figure 4.5: Results Comparison	45
Figure 4.6: Result Comparison: SPSR vs This Method (scan 11)	46

LIST TABLES

Table 2.1: 3D-R2N2 Performance	12
Table 2.2: Result Comparison - Point Set Generation Network vs 3D-R2N2 [15]	16
Table 4.1: Result Comparison: chamfer distance wrt. to original mesh	45

LIST OF EQUATION

Equation 3.1: Distance between search point and current node point in ED	32
Equation 4.1: Chamfer Distance	39
Equation 4.2: Hausdorff Distance	39

LIST OF ABBREVIATIONS

SFM	Structure from Motion
MVS	Multi View Stereo
SLAM	Simultaneous Localization and Mapping
DIP	Dots per Inch
CNN	Convolutional Neural Network
DVR	Differentiable Volumetric Rendering
3D-R2N2	3D recurrent Reconstruction Neural Network
DRC	Differentiable Ray Consistency
PSR	Poisson Surface Reconstruction
MLP	Multilayer Perceptron
NV	Neural Volumes
SRN	Scene Representation Networks
LLFF	Local Light Field Fusion
2D-CNN	2D Convolutional Neural Network
LSTM	Long Short Term Memory
3D-LSTM	3D Convolutional Long Short Term Memory
3D-DCNN	3D De-Convolutional Neural Network
FID	Frechet Inception Distance
AR	Augmented Reality
GAN	Generative Adversarial Network
3D-R2N2	3D Recurrent Reconstruction Neural Network
IoU	Intersection over Union
SDF	Signed Distance Function
FC	Fully Connected
DVR	Differentiable Volumetric Rendering
ED	Euclidean Distance
SPSR	Screened Poisson surface reconstruction