INTELLIGENT DECEPTION DETECTION FOR ONLINE INTERVIEWS

M.L.M. Fernando 209323R

Master of Science (MSc) in Computer Science Specialized in Data Science

Department of Computer Science & Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > October 2022

INTELLIGENT DECEPTION DETECTION FOR ONLINE INTERVIEWS

M.L.M. Fernando 209323R

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science (MSc) in Computer Science

Dept. of Computer Science & Engineering

Faculty of Engineering

University of Moratuwa Sri Lanka

October 2022

DECLARATION

Unless otherwise noted, I hereby declare that the content of this dissertation is entirely original work by myself, and that no part of it has been previously submitted for a master's degree, a degree, or a diploma at another university or institution of higher learning without acknowledgement. The University of Moratuwa has the nonexclusive right to reproduce and distribute my dissertation in print, electronic, or any other medium without my permission. All or part of this content may be incorporated into future works of mine.

Student Name	Registration Number	Signature
M.L.M. Fernando	209323R	Lochana Fernando

Under my supervision, the aforementioned candidate is conducting research for his master's dissertation.

Signature of the supervisor (Dr. Chathura De Silva)

Date

ABSTRACT

When it comes to human communication, lying is a common practice. Recently, the detection of lies has become an important focus of judiciary, law enforcement, and security, interviews, etc.[1] Due COVID-19 the pandemic of interviews being conducted online; this is a main problem where a person may give false information specially in the visa applying process. Nonverbal behavior is constantly being transmitted by humans in opposition to spoken language. where visual and auditory cues like facial expressions, postures, gestures, and nonverbal vocal sounds can be used to detect deception intelligently. These human signals are known as deception indicators, and they are primarily associated with deceptive communication. The hiring of unskilled workers can eventually lead to a company's demise if an online interviewer exaggerates or fabricates his or her abilities.

ACKNOWLEDGMENT

This project Many people contributed to the success of this endeavor. Prior to anything else, my heartfelt gratitude goes to my project supervisor, Dr. Chathura De Silva for his support in helping me to drive the project towards the path of success by providing valuable feedback about my work and providing with the necessary guidance for the success of the project with his constant support and also, I gratefully acknowledge our Lecture in- charge, Head of the Research Groups Dr. Charith Chitraranjan and Head - Dept. of Computer Science & Engineering, Faculty of Engineering Prof. Indika Perera for his guidance through the course.

Thanks to all of my colleagues and friends for their assistance, support, interest, as well as valuable advice. Last but not least, I would like to thank everyone else who has helped in some way and encouraged me to make this a great success.

LIST OF FIGURES

FIGURE. 1: LIE DETECTION USING IMAGE PROCESSING	6
FIGURE. 2: FACIAL EMOTION RECOGNITION IN CONTINUOUS	
FIGURE. 3: FEATURE IDENTIFICATION	
FIGURE. 4: METHODOLOGY	
FIGURE. 5: NEURAL NETWORK	
FIGURE. 6: SURPRISE EMOTION	19
FIGURE. 7: HAPPY EMOTION	
FIGURE. 8: NEUTRAL EMOTION	
FIGURE. 9: EMOTIONS TRAINED	20
FIGURE. 10: SYSTEM FLOW OF THE FACIAL EXPRESSION RECOGNITION SYSTEM	
FIGURE. 11: RESULT ANALYSIS VISUALIZATION	
Figure. 12: Facial Landmarks	
FIGURE. 13: FACIAL LANDMARKS 2	
FIGURE. 14: FORWARD DIRECTION	
FIGURE. 15: RIGHT DIRECTION	
FIGURE. 16: LEFT DIRECTION	
FIGURE. 17 : UP DIRECTION	
FIGURE. 18: DOWN DIRECTION	
Figure. 19: Facial Landmarks 3	
Figure. 20: Facial Landmarks 4	
FIGURE. 21: EYE BLINK	
Figure. 22: Results	

LIST OF TABLES

TABLE 1 - LIST OF ABBREVIATIONS	V
TABLE 3: RESEARCH GAP	14
TABLE 4: ACCURACY FOR EMOTIONS	21
TABLE 5: TEST CASES	27
TABLE 6: RESULTS FOR HEAD POSITION IDENTIFICATION	29
TABLE 7: RESULT FOR EMOTION IDENTIFICATION	29

LIST OF ABBREVIATIONS

Term	Definition
EEG	Long-term electroencephalographic
IOT	Internet of Things
WHO	World Health Organization
ANN	Artificial Neural Networks
SVM	Support Vector Machines
СМС	Computer Mediated Communication

Table 1 - List of abbreviations

TABLE OF CONTENTS

Ι
II
III
IV
IV
V
VI
1
1
2
12
14
15
15
16
16
16
27
28
29
29
29
31
32
32
33

vi