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Abstract 
 

EEG is a non-invasive neuroimaging modality that operates by measuring changes in 
electrical voltage on the scalp that are induced by cortical activity. In this research, we 
propose a method for self-supervised learning of EEG raw data to learn the hidden 
patterns of human brain activities. This work was performed through a pipeline 
consisting of five phases. Each of the phase’s output will be the input for the next 
phase. Phase 1 is for pre-processing raw EEG sequences into EEG representations that 
catch the spacial and temporal properties in the original raw EEG sequences. We have 
followed a relatively less complex method to pre-process raw EEG sequences. In phase 
2, pre-processed raw EEG sequences will be learnt by self-supervised representation 
learning. For that self-supervised vision transformers with DINO will be used. These 
vision transformers models are computationally more demanding and require more 
training data therefore more computational resources and training data will be needed. 
So that at the presence of more training data and computational processing power, self-
supervised vision transformer architectures will be expected to produce the best results 
while outperforming supervised learning architectures. Then at the phase 3, sequences 
of prototypes for each raw EEG data sequence of the dataset will be generated. To 
evaluate the prototypes that are generated from raw EEG data, phase 4 and 5 have been 
used as the downstream task for the self-supervised learning task. For phase 4 and 5, 
we again used a transformer architecture, that is a BERT based model called RoBERTa 
to learn the synthetic language generated by phase 3 or to learn the context and the 
language of generated prototype sequences and by performing a multi class prototype 
sequence classification, prototype generation for each representation at specific time 
stamp of raw EEG data sequence can be evaluated. We believe that since the models 
are computationally demanding and require more training data, the latter explained 
pipeline of five phases should be improved with more training and performing 
hyperparameter tuning at a high computational resources and data rich environment. 
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