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Abstract

With the rapidly developing technology world, recommender systems also improving
day by day since customer expectations also vary from new angles making new
business trends. As a result of this kind of situation, enterprise-level recommender
systems require more modifications with new improvements to achieve a high user
satisfaction level. in that case it seems currently most commercial recommender
systems are struggling with low recommender quality by decreasing user trust and
expectations. On the other hand, it senses only the recommender accuracy is not
sufficient to measure recommender quality. Under the major domain recommender
system, the cross-domain recommender system is one of the not much-explored areas
and it needs more research works focused on diversity like subjective metrics rather
than accuracy. With the purpose of improving accuracy by focusing diversity on
CDRS here, I have built a matrix factorization-based collaborative filtering cross-
domain recommender system using explicit user feedback with movilens100k research
data set. When it comes to cross-domain recommender systems, the most frequent
approach is to measure and evaluate their relevancy using standard predicted accuracy
metrics such as root mean squared error (RMSE), mean absolute error (MAE), and so
on. Since the more need than accuracy to maintain high-quality recommendations, we
need to pay attention to a few specific areas beyond accuracy like diversity and
novelty. We have measured our CDRS model’s performance via RMSE, MSE, MAE,
FCP, hit ratio, and Precision@k and in all cases, CDRS has achieved good
performance than the general CF model. Moreover, we measured the CDRS model’s
diversity and novelty and could see both are increasing when top-N increasing. These
findings would be pretty much worthy when we are implementing enterprise-level
cross-domain recommender systems in the future to achieve success in each modern
business use case with enhancing user satisfaction.
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