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ABSTRACT

Limited parallel data is a major bottleneck for morphologically rich Low-Resource Languages
(LRLs), resulting in Neural Machine Translation (NMT) systems of poor quality. Language repre-
sentation learning in a self-supervised sequence-to-sequence fashion has become a new paradigm
that utilizes the largely available monolingual data and alleviates the parallel data scarcity issue
in NMT. The language pairs supported by the Self-supervised Multilingual Sequence-to-sequence
Pre-trained (SMSP) model can be fine-tuned using this pre-trained model with a small amount of
parallel data.

This study shows the viability of fine-tuning such SMSPmodels for an extremely low-resource
domain-specific NMT setting. We choose one such pre-trained model: mBART. We are the
first to implement and demonstrate the viability of non-English centric complete fine-tuning on
SMSP models. To demonstrate, we select Sinhala, Tamil and English languages in extremely low-
resource settings in the domain of official government documents.

This research explores the ways to extend SMSPmodels to adapt to new domains and improve
the fine-tuning process of SMSP models to obtain a high-quality translation in an extremely low-
resource setting. We propose two novel approaches: (1) Continual Pre-training of the SMSPmodel
in a self-supervised manner with domain-specific monolingual data to incorporate new domains
and (2) multistage fine-tuning of the SMSP model with in- and out-domain parallel data.

Our experiments with Sinhala (Si), Tamil (Ta) and English (En) show that directly fine-tuning
(single-step) the SMSP model mBART for LRLs significantly outperforms state-of-the-art Trans-
former based NMT models in all language pairs in all six bilingual directions. We gain a +7.17
BLEU score on Si→En translation and a +6.74 BLEU score for the Ta→En direction. Most im-
portantly, for non-English centric Si-Ta fine-tuning, we surpassed the state-of-the-art Transformer
based NMTmodel by gaining a +4.11 BLEU score on Ta→Si and a +2.78 BLEU score on Si→Ta.

Moreover, our proposed approaches improved performance strongly by around a +1 BLEU
score compared to the strong single-step direct mBART fine-tuning for all six directions. At last,
we propose a multi-model ensemble that improved the performance in all the cases where we
obtained the overall best model with a +2 BLEU score improvement.

Keywords: Neural Machine Translation, Pre-trained Language Models, Pre-training, Fine-tuning,

Low-Resource languages, mBART
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