Pre-training and Fine-tuning Multilingual Sequence-To-Sequence Models for Domain-Specific Low-Resource Neural Machine Translation

Sarubi Thillainathan

208037K

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

April 2022

DECLARATION

I, Sarubi Thillainathan, declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis/Dissertation under my supervision.

Name of Supervisor: Dr. Surangika Ranathunga

Signature of the Supervisor:

Date:

Name of Supervisor: Prof. Sanath Jayasena

Signature of the Supervisor:

Date:

ABSTRACT

Limited parallel data is a major bottleneck for morphologically rich Low-Resource Languages (LRLs), resulting in Neural Machine Translation (NMT) systems of poor quality. Language representation learning in a self-supervised sequence-to-sequence fashion has become a new paradigm that utilizes the largely available monolingual data and alleviates the parallel data scarcity issue in NMT. The language pairs supported by the Self-supervised Multilingual Sequence-to-sequence Pre-trained (SMSP) model can be fine-tuned using this pre-trained model with a small amount of parallel data.

This study shows the viability of fine-tuning such SMSP models for an extremely low-resource domain-specific NMT setting. We choose one such pre-trained model: mBART. We are the first to implement and demonstrate the viability of non-English centric complete fine-tuning on SMSP models. To demonstrate, we select Sinhala, Tamil and English languages in extremely low-resource settings in the domain of official government documents.

This research explores the ways to extend SMSP models to adapt to new domains and improve the fine-tuning process of SMSP models to obtain a high-quality translation in an extremely lowresource setting. We propose two novel approaches: (1) Continual Pre-training of the SMSP model in a self-supervised manner with domain-specific monolingual data to incorporate new domains and (2) multistage fine-tuning of the SMSP model with in- and out-domain parallel data.

Our experiments with Sinhala (Si), Tamil (Ta) and English (En) show that directly fine-tuning (single-step) the SMSP model mBART for LRLs significantly outperforms state-of-the-art Transformer based NMT models in all language pairs in all six bilingual directions. We gain a +7.17 BLEU score on Si \rightarrow En translation and a +6.74 BLEU score for the Ta \rightarrow En direction. Most importantly, for non-English centric Si-Ta fine-tuning, we surpassed the state-of-the-art Transformer based NMT model by gaining a +4.11 BLEU score on Ta \rightarrow Si and a +2.78 BLEU score on Si \rightarrow Ta.

Moreover, our proposed approaches improved performance strongly by around a +1 BLEU score compared to the strong single-step direct mBART fine-tuning for all six directions. At last, we propose a multi-model ensemble that improved the performance in all the cases where we obtained the overall best model with a +2 BLEU score improvement.

Keywords: Neural Machine Translation, Pre-trained Language Models, Pre-training, Fine-tuning, Low-Resource languages, mBART

DEDICATION

With deepest gratitude, I dedicate this research to my Grandpa, *Late M. Saravanamuttu*. And, of course, to my forever loving family for supporting my dreams, no matter what!

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisors Dr Surangika Ranathunga and Prof. Sanath Jayasena, for the continuous support and guidance given for the success of this research. Without your insights and tremendous mentorship, I could not have achieved this level. Thank you for always stepping in to help whenever I needed regardless of your busy schedules.

I wish to convey my sincere appreciation to Prof. Gihan Dias and National Language Processing Center (NLPC) members for their valuable insights and support given for this research. I would also like to thank the entire Department of Computer Science and Engineering staff, both academic and non-academic, for their help and for providing me with the resources necessary to conduct my research. This research was supported by the University of Moratuwa AHEAD project Research Grant.

Lastly, I want to thank my family and friends who supported me though this journey.

Thank you!

TABLE OF CONTENTS

D	eclarat	tion of the Candidate & Supervisor	i	
A۱	ostrac	t	ii	
De	Dedication			
Ackowledgement				
Table of Contents			v	
List of Figures			viii	
Li	st of 7	Tables	ix	
Li	st of Abbreviations		1	
1	Introduction			
	1.1	Background		
	1.2	Research Problem		
	1.3	Research Scope and Objectives		
	1.4	Contributions		
	1.5	5 Publications		
2	Literature Survey			
	2.1	Overview		
	2.2	Neural Machine Translation (NMT)		
	2.3	NMT for Sinhala, Tamil, and English Languages		
	2.4	Multilingual Neural Machine Translation (MNMT)		
		2.4.1 Universal Encoder and Decoder Architecture for MNMT	10	
		2.4.2 Strategies to improve MNMT	10	
	2.5	Transfer Learning (TL) in NMT	11	
		2.5.1 Fine-tuning techniques	12	
		2.5.2 Transfer Learning Protocols	13	
	2.6	Pre-trained Models for NMT		
	2.7	Self-supervised Multilingual Sequence-to-sequence Pre-training	15	
		2.7.1 BART	16	
		2.7.2 mBART	16	

	2.8	Fine-tuning Multilingual Self-Supervised Pre-trained Models for Low-resource				
		NMT		17		
	2.9	Continual learning on Self-Supervised Pre-trained Models (Extending the				
	pre-trained models)			19		
	2.10	Summa	ary	20		
3	Meth	nodology				
		3.0.1	Overview	22		
		3.0.2	Bilingual Fine-tuning using Self-Supervised Multilingual Sequence-			
			to-sequence Pre-trained Models	23		
		3.0.3	Multilingual Fine-Tuning using Self-Supervised Multilingual Sequen	ice-		
			to-sequence Pre-trained Models	24		
	3.1	Contin	ual Pre-training for Domain Adaptation	24		
	3.2	Multistage Fine-tuning				
		3.2.1	Two-stage FT	28		
		3.2.2	Multistage Fine-tuning Combine with Continual Pre-Training	28		
		3.2.3	Ensemble of Fine-tuned Self-Supervised Multilingual Sequence-			
			to-sequence Pre-trained Models	29		
4	Impl	ementat	ion	31		
	4.1	Experimental setup 31				
		4.1.1	Architecture	31		
		4.1.2	Dataset	31		
		4.1.3	Preprocessing	32		
	4.2	Addres	ssing the Zero Width Joiner (ZWJ) issue	33		
	4.3	Baselines				
	4.4	Fine-tuning SMSP Model				
	4.5	Continual Pre-training for Domain Adaptation				
	4.6	Multistage Fine-tuning				
	4.7	Evalua	tion setup	36		
5	Resu	Results and Discussion 37				
	5.1	Bilingual Fine-tuning using Multilingual Denoising Pre-trained Models 37				
	5.2	Multili	ngual Fine-tuning using Multilingual Denoising Pre-trained Models	39		

	5.3	Continual Pre-training for Domain Adaptation		
	5.4	Multistage Fine-tuning		40
		5.4.1	Two-stage FT	40
		5.4.2	Multistage fine-tuning Combined with Continual Pre-Training	41
	5.5	Ensemble of Fine-tuned Self-supervised Multilingual Sequence-to-sequence		
		Pre-trained Models		
	5.6	Manua	l Analysis of the Translated Output	43
6	Con	clusion and Future work		44
Re	References			45
Α	App	endix		56
		A.0.1	Addressing the Zero Width Joiner (ZWJ) issue	56
		A.0.2	Output Translated Sentences	56

LIST OF FIGURES

Figure 2.1	Overview of MNMT Categories [1]	8
Figure 2.2	Overview of MNMT Architectures [1]	9
Figure 2.3	Overview of Transfer Learning	12
Figure 2.4	Overview of Multilingual Denoising Autoencoder Pre-training (left) and	
	fine-tuning on NMT (right) [2]. A special token "language id" is added to	
	both the encoder and decoder.	17
Figure 2.5	Overview of Pre-training and fine-tuning.	18
Figure 3.1	Overview of Methodology	22
Figure 3.2	Overview of Continual Pre-training for Domain Adaptation.	25
Figure 3.3	Overview of Multistage Fine-tuning.	27
Figure 3.4	Different ways of Multistage Fine-tuning.	27
Figure A.1	Output Translated Sentences	57

LIST OF TABLES

Table 2.1	Sample input and its transformations output after applying different noising	
	functions [3]	16
Table 4.1	Statistics of the parallel dataset of official government documents	32
Table 4.2	Statistics of the out-domain parallel corpus	32
Table 4.3	Monolingual Data	33
Table 5.1	Comparison between full precision training and mixed precision Fine-Tuning.	
	Results are reported in BLEU score.	37
Table 5.2	Comparison with SMT, LSTM, Transformer Architectures against our Bilin-	
	gual Fine-tuning models for Sinhala (Si), Tamil (Ta) and English (En) -	
	Results are reported in BLEU score.	38
Table 5.3	Results of Bilingual Fine-tuning models and Multilingual Sinhala Centric	
	Fine-tuning models - Results are reported in BLEU score.	39
Table 5.4	Fine-tuning Results from Continual Pre-trained models against our strong	
	baseline Bilingual Fine-tuned models for Si↔En pairs - Results are re-	
	ported in BLEU score.	40
Table 5.5	Fine-tuning Results of Bilingual and Trilinugal Continual Pre-training on	
	in-domain monolingual data for all the six directions - Results are reported	
	in BLEU score.	40
Table 5.6	Fine-tuning Results from Continual Pre-trained models against the our strong	
	baseline Bilingual Fine-tuned models for Si↔En pairs - Results are re-	
	ported in BLEU score.	41
Table 5.7	Multistage fine-tuning against the our strong baseline Bilingual Fine-tuned	
	models - Results are reported in BLEU score.	42
Table 5.8	Top 4 improved models from baseline B-FT	42
Table 5.9	Ensemble Results for all the six directions. Results are reported in BLEU	
	score.	43

LIST OF ABBREVIATIONS

- NLP Natural Language Processing
- MT Machine Translation
- SMT Statistical Machine Translation
- NMT Neural Machine Translation
- MNMT Multilingual Neural Machine Translation
- RNN Recurrent Neural Networks
- LSTM Long Short Term Memory
- GRU Gated Recurrent Unit
- DAE Denoising Autoencoder
- MLE Maximum Likelihood Estimate
- TL Transfer Learning
- SMSP Self-supervised Multilingual Sequence-to-sequence Pre-trained
- FT Fine-Tuning
- LRL Low-Resource Language
- LM Language Model
- M-FT Multilingual Fine-Tuning
- B-FT Bilingual Fine-Tuning
- CPT Continual Pre-Training