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ABSTRACT

Limited parallel data is a major bottleneck for morphologically rich Low-Resource Languages
(LRLs), resulting in Neural Machine Translation (NMT) systems of poor quality. Language repre-
sentation learning in a self-supervised sequence-to-sequence fashion has become a new paradigm
that utilizes the largely available monolingual data and alleviates the parallel data scarcity issue
in NMT. The language pairs supported by the Self-supervised Multilingual Sequence-to-sequence
Pre-trained (SMSP) model can be fine-tuned using this pre-trained model with a small amount of
parallel data.

This study shows the viability of fine-tuning such SMSPmodels for an extremely low-resource
domain-specific NMT setting. We choose one such pre-trained model: mBART. We are the
first to implement and demonstrate the viability of non-English centric complete fine-tuning on
SMSP models. To demonstrate, we select Sinhala, Tamil and English languages in extremely low-
resource settings in the domain of official government documents.

This research explores the ways to extend SMSPmodels to adapt to new domains and improve
the fine-tuning process of SMSP models to obtain a high-quality translation in an extremely low-
resource setting. We propose two novel approaches: (1) Continual Pre-training of the SMSPmodel
in a self-supervised manner with domain-specific monolingual data to incorporate new domains
and (2) multistage fine-tuning of the SMSP model with in- and out-domain parallel data.

Our experiments with Sinhala (Si), Tamil (Ta) and English (En) show that directly fine-tuning
(single-step) the SMSP model mBART for LRLs significantly outperforms state-of-the-art Trans-
former based NMT models in all language pairs in all six bilingual directions. We gain a +7.17
BLEU score on Si→En translation and a +6.74 BLEU score for the Ta→En direction. Most im-
portantly, for non-English centric Si-Ta fine-tuning, we surpassed the state-of-the-art Transformer
based NMTmodel by gaining a +4.11 BLEU score on Ta→Si and a +2.78 BLEU score on Si→Ta.

Moreover, our proposed approaches improved performance strongly by around a +1 BLEU
score compared to the strong single-step direct mBART fine-tuning for all six directions. At last,
we propose a multi-model ensemble that improved the performance in all the cases where we
obtained the overall best model with a +2 BLEU score improvement.

Keywords: Neural Machine Translation, Pre-trained Language Models, Pre-training, Fine-tuning,

Low-Resource languages, mBART
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Chapter 1

INTRODUCTION

1.1 Background

Machine Translation (MT) refers to the process of automatically translating one human

language to another using a machine. It is one of the most challenging Natural Language

Processing (NLP) tasks [1]. For decades, Statistical Machine Translation (SMT) has been

widely used, which is typically a phrase-based system that translates the sequence of words

or phrases from a source language to a target language [4]. In the recent past, Deep Learn-

ing techniques have been successfully used to translate one language to another. This

technique is known as Neural Machine Translation (NMT). This state-of-the-art NMT is

shown to outperform SMT [5]. However, NMT requires a large amount of parallel data for

training to produce high-quality translations. Finding large parallel corpora is challeng-

ing when it comes to morphologically rich LRLs. Consequently, NMT tends to perform

poorly in low-resource settings. Adapting the threshold proposed by Ranathunga et al. [1],

we define an NMT task as low-resource and extremely low-resource when the available

parallel corpus is below 0.5M and below 0.1M, respectively. However, this is not a hard

threshold.

Due to data scarcity issues, transferring knowledge from already trained (known as pre-

trained) Deep Learning models to low resource NMT has been widely studied [3, 6, 7].

One prominent state-of-the-art approach is extracting and sharing the learnt representa-

tions from Self-Supervised Multilingual Sequence-to-sequence Pre-trained (SMSP) mod-

els (mBART [6, 7], mT5 [8]) to a downstream NMT task which has shown significant per-

formance gains due to the knowledge transfer from the pre-trained models [6, 7, 9]. These

SMSP models are used to initialize the NMT model and then further train it with parallel

data (known as Fine-tuning). Also, researchers discovered that the NMT framework could

naturally incorporate multiple languages [10]. Hence, there has been a massive increase in

MT systems that involve more than one language, commonly known as multilingual NMT

systems (MNMT) [10].
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NMT research has been conducted among Sri Lankan languages, mainly focusing on

bilingual pairs such as Sinhala-Tamil [11, 12, 13, 14], Sinhala-English [15, 16] and Tamil-

English [17]. Initial NMT results were not superior compared to SMT. Themajor issue was

Long Short TermMemory (LSTM) based NMT [5] requires significant amounts of parallel

data not available in our low-resource NMT setting. However, recently introduced Trans-

former [18] models showed superior performance even in low resource settings. Studies

evidenced that the Transformer model beats LSTM based NMT and SMT in extremely

low resource settings for Tamil-Sinhala [14] and Sinhala-English [15].

1.2 Research Problem

Even though the state-of-the-art NMT based models showed promising results for LRL

pairs, still it was much lower than what high resource language pairs could obtain in

NMT [19]. Also, MT on domain-specific settings such as government documents with

extremely LRLs is still quite challenging. So far, only vanilla bilingual NMTmodels have

been implemented for the Sinhala, Tamil and English languages, with some proposed tech-

niques such as data augmentation [12], back-translation [20, 21], transliteration [13] and

Byte Pair Encoding (BPE) [15]. Some of these improved models have surpassed SMT by

a slight margin [12, 13, 15, 20, 21].

One promising approach is fine-tuning the SMSPmodel with parallel data has emerged

as a new paradigm in low-resource Neural Machine Translation. As most of the SMSP

models [6, 7, 8] support the languages considered in this study, there is an opportunity

for us to use them in the context of the considered language pairs. Some studies [6, 7]

considered Sinhala-English and Tamil-English pairs as part of their study along with other

languages to demonstrate the viability of fine-tuning the SMSP model: mBART for low-

resource bilingual and multilingualism NMT settings in the open domain. However, Si-En

and Ta-En results aremuch lower than high resource language pairs. Also, domain-specific

cases and non-English centric studies such as Si-Ta pairs have not been studied.

Even though pre-trained models have offered promising results for LRLs, simple one-

step fine-tuning with parallel data yields sub-optimal results in the context of languages

under-represented in the SMSPmodels (i.e. languages for which the SMSPmodel has been
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pre-trained with low amounts of monolingual data) [2, 6, 7]. This problem gets aggravated

when the considered translation is domain-specific. Therefore, improving the pre-training

and fine-tuning processes of the SMSP models for low-resource language NMT (LRL-

NMT) is vital to reap their full benefit on LRLs.

1.3 Research Scope and Objectives

This study focus to utilize SMSP model mBART for domain-specific LRLs. The objec-

tives of this research are as follows:

• Improve the fine-tuning process of mBART SMSPmodels using in- and out domain

data for an extremely low-resource NMT setting in Sinhala, Tamil and English lan-

guages.

• Propose non-English centric fine-tuning on mBART SMSP models.

• Utilize the monolingual data and implement Continual Pre-Training (CPT) on the

mBART SMSP model for domain adaptation

• Propose ensembling techniques on fine-tuned mBART SMSP models.

1.4 Contributions

We make the following contributions to this thesis:

• Demonstrated the viability of fine-tuning SMSPmodels for an extremely low-resource

NMT setting in Sinhala, Tamil and English languages.

• The first study demonstrated the viability of non-English centric fine-tuning on

SMSP models.

• Extended the self-supervised training from the SMSP model to incorporate new

domains - [Continual Pre-training for Domain Adaptation].

• Introduced Multistage Fine-tuning on SMSP models.

• Ensembled the models to get the best result for the considered languages.
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Chapter 2

LITERATURE SURVEY

2.1 Overview

Under this section, initially, we discuss NMT and NMT related studies on the languages

considered in this study languages used in Sri Lanka. We also provide an in-depth analysis

of previous research that has contributed to the domains of Multilingual NMT (MNMT),

Transfer Learning (TL) and techniques proposed to improve it. Finally, we critically ana-

lyze the available state-of-the-art pre-trained models for NMT and techniques tried out so

far to fine-tune the pre-trained models.

2.2 Neural Machine Translation (NMT)

An NMT [5, 22, 23] system is implemented as a single end-to-end system that directly

trains the source sentences as input and target sentences as the output. Initial NMT has used

two Recurrent Neural Networks (RNN); one RNN encodes (encoder) a variable-length

source sentence using a bidirectional RNN into a fixed-length vector representation, then

this vector is decoded using another RNN (decoder) into a variable-length target sentence.

It is typically called an RNN encoder-decoder approach [5]. However, RNN suffers from

the vanishing gradient problem where it fails to capture long dependencies. Due to this,

Long Short TermMemory (LSTM) [24] and then Gated Recurrent Units (GRU) [25] based

RNN have been proposed.

Despite these achievements, LSTM struggles with longer sequences of text, where the

fixed-length internal representation fails to decode all words in the output sequence. An

attention mechanism was added to the LSTM model [23] to alleviate this issue, but it was

not quite successful. Later, the Transformer model was proposed by Vaswani et al. [18] to

address this issue. It is a simple network solely based on the attention mechanisms, dis-

pensing recurrence and convolutions entirely. This model had achieved promising results

by surpassing LSTMs [5, 22, 23]. It can successfully handle the longer sentences more
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effectively because it is a multi-head self-attention mechanism. Since then, Transformer

based architecture has become the state-of-the-art paradigm for NMT.

2.3 NMT for Sinhala, Tamil, and English Languages

SomeNMT research exists for Sinhala-Tamil [11, 12, 13, 14], Sinhala-English [15, 16] and

Tamil-English [17]. Early LSTM-basedNMT research for the Sinhala-Tamil language pair

could not beat SMT [11]. The major issue was that LSTM-based NMT [5] requires signif-

icant parallel data. However, it is unavailable in the low-resource NMT setting. Various

strategies were proposed to improve NMT in the context of these three language pairs.

Tennage et al. [12] applied different data augmentation techniques and showed improve-

ment in NMT models. Back-translation was also successfully merged to above mentioned

LRLs [20, 21, 26]. Also, studies explore the transliteration [13] method by converting all

the language scripts to a common script format. Some of these improved models have

surpassed SMT by a slight margin. However, later introduced Transformer [18] models

showed superior performance even in low-resource settings. A comparative study [14]

showed that the Transformer model beats LSTM based NMT and SMT in extremely low-

resource settings.

Another line of research is applying different subword tokenization techniques such

as Byte Pair Encoding (BPE) [13] to improve NMT for these languages. Choudhary

et al. [27] used pre-trained word embeddings (BPEmb) on NMT to develop an efficient

translation system that overcomes the Out Of Vocabulary problem for Tamil-English lan-

guages. Subsequently introduced Transformer model with Byte Pair Encoding (BPE)

showed effectiveness in low-resource settings compared to the Transformer model without

BPE [15, 16].

In studies [19, 28, 29], Sinhala-English and Tamil-English pairs reported improved

results within a Multilingual NMT system. These languages benefited from knowledge

transfer from the high-resource languages that are trained together. Since almost all the

Multilingual NMT systems are English-centric, Sinhala-Tamil needed to explore respect

to Multilingual NMT systems. Even though these models showed better translation for the

languages considered in this study in a low-resource setting, still it was much lower than
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what NMT could obtain for high resource language pairs.

2.4 Multilingual Neural Machine Translation (MNMT)

Early NMT (both RNN and Transformer models) mainly was a bilingual system that typi-

cally handled one translation task. Researchers later discovered that the NMT framework

could naturally incorporate multiple languages; thus, there has been a massive increase in

work on NMT systems that involve more than two languages [10]. MNMT gets catego-

rized mainly into three types:

• One-to-Many (O2M): Translate from one source language to multiple target lan-

guages [30, 31, 32]; as shown in Figure 2.1-(i).

• Many-to-One (M2O): Translate multiple input source languages to one specific tar-

get language [32, 33]; as shown in Figure 2.1-(ii).

• Many-to-Many (M2M): Translate multiple input source languages to multiple target

languages, in other words, multi-way NMT [19, 29, 31, 32, 34, 35]; as shown in

Figure 2.1-(iii).

Figure 2.1: Overview of MNMT Categories [1]
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Initial studies [30, 31] mainly focused on One-to-Many (as shown in Figure 2.1-(i))

systems with one common basic encoder and dedicated decoders as described in Fig-

ure 2.2-(i). The first end-to-end trial of MNMT was carried out by Dong et al. [30],

which simultaneously translated sentences from one source language to multiple target

languages. Since the source language is the same in all these MT tasks, the NMT model

benefited by having one common encoder shared among all these MT tasks and dedicated

task-specific decoders. However, that was not a superior approach that failed to include

the attention mechanism. Later, the multi-way (M2M) MNMT system proposed by Fi-

rat et al. [34] extended the initial studies to have multiple sources and target languages.

They used a separate encoder for each source language, a separate decoder for each target

language and most importantly, only a single attention mechanism shared across all the

language pairs. (Here, one encoder per source language, meaning that a single encoder

is shared for translating that particular language to multiple target languages.) The only

difference between the bilingual models and the proposed MNMT ones is the N number

of encoders and M number of decoders as described in Figure 2.2-(iii).

Figure 2.2: Overview of MNMT Architectures [1]

In the aforementioned MNMT systems, the number of parameters grows linearly with

the number of languages, but it grows quadratically in the bilingual system [10]. However,

the challenge is that the shared attention mechanism needs to bear the burden of connecting

9



all different language pairs, which might fail to learn the necessary representation for the

best translation quality [10]. After Ha et al. [35] and Johnson et al. [32] showed that there

is no need to have multiple encoder/decoder models with a large number of parameters,

researchers started focusing on the universal/singleMNMTmodel, as shown in Figure 2.2-

(iv).

2.4.1 Universal Encoder and Decoder Architecture for MNMT

The universal/single encoder and decoder framework, as described in Figure 2.2-(iv) for

MNMT proposed by Ha et al. [35], is inspired by the multi-source NMT (M2O) [33]. Here

they enforced the language-specific coding for each input/source language (i.e. @de@Flussufer;

@en@bank) and the target forcing mechanismwhere the beginning and at the end of every

source sentence, a special symbol indicating the language they would translate into (<E>

@de@darum @de@geht <E>). However, Johnson et al. [32] introduced a much simpler

and more effective approach by introducing an artificial token at the beginning of the input

sentence to specify the required target language without changing the standard bilingual

NMT model architecture. Here they haven’t specified the source language; instead, the

model learnt this automatically. This approach has become a turning point for MNMT

and has became very popular.

Extensive experiments conducted onMNMT [19, 29, 30, 32, 33, 34, 35] evidenced the

performance improvement over the bilingual NMT system and observed strong knowledge

transfer from high resource languages to LRLs. Languages that have scarce parallel cor-

pora have benefited from data in other languages used to train together. Here, the model

can learn an interlingua by learning semantic information of shared tasks in a more gener-

alized way, resulting in a better translation quality than bilingual baseline NMT systems.

MNMT models also enable zero-resource MT [32, 34, 36, 37, 38] as well.

2.4.2 Strategies to improve MNMT

There have been various efforts to improve the MNMT systems, such as Task-specific at-

tention models [39] or an explicit neural interlingua into a multilingual encoder-decoder

NMT, an attentional encoder that converts language-specific embeddings to language-

10



independent ones [37]. Apart from that, strategies to improve one-to-many cases in the

MNMT system are typically performed low by designing two special labels and a new pa-

rameter sharing mechanism that divides each decoder layer’s hidden units into shared and

language-dependent ones [40]. Unified Transliteration and Subword Segmentation lever-

age the language similarity while exploiting parallel data from related language pairs [41].

Studies adapt trained models to work with new language pairs and continuously add new

language pairs to grow the MNMT systems with dynamic vocabulary [42]. Besides that,

comparison studies investigated the translation quality between dominant neural architec-

tures Recurrent and Transformer [43]. Their studies showed that the Transformer approach

delivered the best performing multilingual models, with a larger gain over correspond-

ing bilingual models than observed with RNNs. Also, Multilingual models consistently

outperformed bilingual models with respect to all considered error types such as lexical,

morphological, and reordering.

2.5 Transfer Learning (TL) in NMT

Transfer Learning (TL) is a Machine Learning technique where the knowledge of an al-

ready trained ML model is applied to a different but related problem. The first study to

apply TL toNMTwas conducted by Zoph et al. [44]. Here they first trained anNMTmodel

on a high-resource language pair and then used the resulting trained network (the parent

model) to initialize and continue to training for the LRL pair (the child model), as shown

in Figure 2.3. In other words, high-resource pair (X→Y) is used to help a low-resource

pair (A→Y) where Y is usually English. So low-resource NMT model will not start with

random weights instead of with the weights from the parent model. TL on NMT resulted

in better performance improvement over the baseline NMTmodels. Zoph et al. [44], Dabre

et al. [45], Nguyen and Chiang [46] showed that the parent language can make a difference

in performance improvement on child NMT. So selecting a parent language from the same

(or linguistically similar) language family as the child’s language has a larger impact on

TL [44, 46].

TL can be categorised mainly as a warm and cold start. If the parallel data was pre-

sented for the LR language while training, the parent model is called a warm start or a
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Figure 2.3: Overview of Transfer Learning

cold start [47]. Since the warm start was expected to be accurate; most of the previous

work [44, 45, 46] has focused on it. In contrast, training a strong high resource model

which is capable of quickly adapting to a new language that never has never been seen

before is also possible as a cold start [42]. Most of the initial studies used the bilingual

parent model where parent and child share the same target language [44, 45, 46] as a warm

start. Later research focused on training anMNMTmodel that can be either O2M,M2O or

M2M [47] and then fine-tuning for an LR language. Overall, these transfer learning tech-

niques typically reduce the data requirement of the child pair and significantly improve

the results on the child pair with the faster convergence over a model trained from scratch.

Several studies have been conducted to improve the TLwith many dimensions, mainly

on different fine-tuning techniques or TL protocols.

2.5.1 Fine-tuning techniques

Typically weights of the parent model are initialized to the low-resource NMT training,

thus avoiding the need to train the low-resource NMT model from scratch. Here train-

ing starts with the parent model weights instead of random initialization. The pre-trained

model parameters get fine-tuned for the selected translation task through this training.

Fine-tuning can be done in many ways, as listed below.

1. No fine-tuning at all.

Here parent model is copied entirely to the child model [46, 48, 49]. All the layers
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have been frozen without any change at all.

2. Fine-tuning the embedding layer only.

In some cases, we only want to fine-tune the embedding layers according to child

vocabulary [42, 44, 46]. When the parent and child have the same target language,

the parent decoder embedding can be directly used. Otherwise, the decoder embed-

ding has to be initialized before fine-tuning the child task randomly. It completely

depends on the similarity or relatedness between the parent and child language pairs.

Alternatively, we can have one common shared vocabulary for parent and child lan-

guages.

3. Fine-tuning the whole parent model.

Once the parent model is initialized, all the parameters are fine-tuned according to

the child language by adjusting weights [42, 49, 50, 51]. This is a common and

widely used approach where no layers are frozen from the parent model.

4. Partial fine-tuning.

Here only the selected layers of encoders and decoders are fine-tuned [44, 48, 50,

52].

2.5.2 Transfer Learning Protocols

The basic simple transfer learning approach is to fine-tune the child pair with a high re-

source parent model where target language was common on both child and parent. Several

studies have also explored many ways to conduct effective TL on NMT.

1. Hybrid Transfer Learning (HTL)

Sharing lexicon embedding between parent and child languages without leveraging

back translation or manually injecting noises [53].

• First, train the High-Resource Languages as the parent model with its vocab-

ularies.
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• Then, combine the parent and child language pairs using the oversampling

method to train the hybrid model initialized by the previous parent model.

• Finally, fine-tune the morphologically rich child model using a hybrid model.

2. First, train a multilingual NMT model on out-of-domain data, then fine-tune on in-

domain parallel and back-translated pseudo-parallel data [25, 54].

For example: First train a multilingual NMT model on out-of-domain Ja↔En and

Ru↔En data, then fine-tune it on in-domain Ja↔En and Ru↔En data, and further

fine-tune it on Ja↔Ru data. Studies show that this stage-wise fine-tuning is bene-

ficial for high-quality translation [54].

3. First, train an NMT model on an out-of-domain parallel corpus, and then fine-tune

it on a parallel corpus that mixes with in-domain and out-of-domain corpora [55]-

Mixed Fine Tuning.

4. First, train on unrelated high-resource language pair, then fine-tune it on a similar

intermediate language pair and then finally fine-tune it on the LRL pair [54, 56].

5. Training SMSP model using large scale monolingual data (known as pre-trained

models) and then fine-tuning with the parallel data.

This is a state-of-the-art strategy to extract and share learnt representations from pre-

trained models with other downstream tasks, such as NMT. Studies show this leads

to significant performance gains due to the knowledge transfer from pre-trained

models [6, 7].

2.6 Pre-trained Models for NMT

Building large NMT models is a great challenge for NMT due to the lack of parallel data

for LRLs. Instead of relying on inadequate parallel corpora, studies leverage the easily

found large scale unlabeled monolingual data. A good universal language representation

can be learned from the monolingual data by capturing linguistic characteristics, lexical

meanings, and syntactic and semantic structures. In the recent past, pre-trained models

such as BERT - Bidirectional Encoder Representation from Transformer [9], OpenAI GPT
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- Generative Pre-training [57], BERT based pre-trained models such as RoBERTa [58]

showed a powerful ability to learn universal language representations using monolingual

data. Notable studies [59, 60, 61] have explored how to incorporate BERT to inject prior

contextual word embedding knowledge on the encoder part andGPT for the decoder part of

NMT.However, thesemodels are not well-suited for NMT sinceNMT requires an encoder-

decoder architecture. Later work was introduced to train complete sequence-to-sequence

models with encoder-decoder architectures, which pontifically befitted for NMT [3].

TheBART [3]model is the first complete self-supervised sequence-to-sequence (encoder-

decoder) model trained on large scale (English) monolingual data. Later BART was ex-

tended to incorporate more than one language, resulting in mBART. mBART is a Self-

supervisedMultilingual Sequence-to-sequence Pre-trained (SMSP)model. It is pre-trained

on a large-scale unlabeledmonolingual corpus of 25 different languages, result mBART25 [6].

An extendedwork of themBARTmodel has incorporated up to 50 languages; mBART50 [7].

Anotherwell-known sequence-to-sequencemodel is T5 [62], a Text-to-Text Transfer Trans-

former trained over a large English monolingual corpus similar to BART [3]. mT5 [8] is

the multilingual version of T5, which includes 101 languages. Subsequently, introduced

mT6 [63] was additionally trained with parallel data on mT5.

2.7 Self-supervised Multilingual Sequence-to-sequence Pre-training

Most state-of-the-art sequence-to-sequence models [61] have been pre-trained as self-

supervised learning tasks using monolingual data. Self-supervised learning is the same

as supervised learning. Here training data labels are generated automatically instead of re-

lying on manually annotated data [61]. In training, monolingual data is noised and fed as

a source and original monolingual data as the target. At the end of the training, the model

can take a partially noised input and predict the denoised words to recover the original

sentence. Here we briefly describe the BART pre-trained model and discuss the mBART

model we used in this study.
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Input A B C . D E .
Token Masking A _ C . _ E .
Token Deletion A . C . E .
Text Infilling A _ . D _ E .
Sentence Permutation D E . A B C .
Document Rotation C . D E . A B

Table 2.1: Sample input and its transformations output after applying different noising
functions [3]

2.7.1 BART

BART [3] is the first method for pre-training a complete sequence-to-sequence denoising

auto-encoder. BART is trained on a large scale (English) monolingual data by,

1. First corrupting text with an arbitrary noising function.

2. Then, learn a model to reconstruct the original text.

BART mainly applies techniques such as Token Masking, Token Deletion, Text Infilling,

Sentence Permutation, and Document Rotation to noising the text [3]. The sample input

and corresponding arbitrary noising function outputs are shown in Table 2.1. As we can

see, these arbitrary noising transformations even allow changing the sentence length.

BART is implemented as a standard sequence-to-sequence Transformer architecture [18]

by having a bidirectional auto-encoder and a left-to-right autoregressive decoder. BART

comprises two pre-trained models, a bidirectional encoder as BERT [9] and a left-to-right

decoder as GPT [57]. The base BART model consists of 6 layers of encoder and decoder,

and the large model contains 12 layers of encoder and decoder. Pre-training optimizes the

negative log-likelihood of the original document.

2.7.2 mBART

ThemBARTmodel is amultilingual BART, extending the pre-training intomultiplemono-

lingual languages. Same as BART, the mBART model follows 12 layers of encoder and

12 layers of a decoder. Additionally, it includes a layer-normalization layer on top of both

the encoder and decoder.
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There are two mBARTmodels one is mBART25 [6], which supports 25 languages and

mBART50 [7], which supports 50 languages. The monolingual corpus has been extracted

from the Common Crawl (CC) for pre-training. Like BART, all the monolingual data is

corrupted with a noising function then trained on a single denoising autoencoder that maps

corrupted sentences to the original sentences, as shown on the left side of Fig. 2.4. This

model is pre-trained using two types of noise function: random span masking and order

permutation [6]. mBART is more memory efficient than mT5, which is comparatively

large and supports 101 languages. Also, mBART has shown relatively better results than

mT5 for translation [64]. Thus in this study, we choose the mBART50 [7] model, which

supports both Sinhala and Tamil, as mBART25 doesn’t support Tamil.

Figure 2.4: Overview of Multilingual Denoising Autoencoder Pre-training (left) and fine-
tuning on NMT (right) [2]. A special token ”language id” is added to both the encoder and
decoder.

2.8 Fine-tuning Multilingual Self-Supervised Pre-trained Models for Low-resource

NMT

As discussed in Sections 2.5 and 2.6, transferring and sharing the knowledge from high-

resource languages to LRLs has been widely studied. In MNMT models, LRLs obtain

knowledge by joint training with high-resource languages. On the other hand, different

transfer learning approaches are also widely known to share the knowledge from already

trained NMTmodels. Among these, one of the state-of-the-art transfer learning methods is

fine-tuning the multilingual self-supervised pre-trained models (trained monolingual data)

for low-resource MT. An overview of pre-training and fine-tuning is described in Fig. 2.5.

Even though the aforementioned pre-trainedmodels [3, 6, 7] were trained as an encoder-

decoder architecture, these models themselves cannot be directly used as an NMT model.

Instead, these pre-trained models can initialize NMT training, thus avoiding the need to
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Figure 2.5: Overview of Pre-training and fine-tuning.

train the low-resource NMTmodel from scratch. This process is referred to as fine-tuning-

try to fine-tune the pre-trained model parameters to incorporate a new language or domain.

Currently availablemultilingual sequence-to-sequence pre-trainedmodels aremBART,

mT5, and mT6. These models can fully initialize both the encoder and decoder of an NMT

model with the corresponding source and target languages. In particular, the mBART

model has shown promising results [6, 7] on supervised and unsupervised MT at both the

sentence and document levels. Significant gains have been observed in LRL pairs such as

English-Vietnamese/Turkish [6, 7].

mBART related previous studies [6, 7] have considered Sinhala-English and Tamil-

English pairs in demonstrating the viability of fine-tuning the mBART model for low-

resource bilingual and multilingual NMT settings [6, 7]. Their fine-tuning experiments

are categorized into three groups upon the size of the parallel data, low-resource (<1M),

medium resource (>1Mand<10M), and high resource (>10M). The English-Sinhala/Tamil

language pairs fall into the low-resource category. They used FLoRes [65] data with 565K

Open Subtitles and GNOME/KDE/Ubuntu sentences obtained from the OPUS repository1

for English-Sinhala, and WMT’202 data for English-Tamil pair with 609k sentences from

various sources such as Wiki Titles v2, WikiMatrix, Indian Prime Minister’s news updates
1http://opus.nlpl.eu/
2http://www.statmt.org/wmt20/translation-task.html
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and many more. Results show improvements in low-resource pairs compared to NMT

models trained from scratch in English→Sinhala/Tamil and Sinhala/Tamil→English di-

rections.

However, all the experiments conducted by the above research have been English cen-

tric, i.e. the tested language pair included English either on the source or target side. In

other words, they have only tested Bilingual Fine-Tuning (B-FT) with Sinhala-English and

Tamil-English, but not Sinhala-Tamil. Even though Tang et al. [7] experimented with fine-

tuning multiple language pairs simultaneously - which is called Multilingual Fine-Tuning

(M-FT), i.e. (M2O (Any→English), O2M (English→Any), and M2M (Any↔Any) with

English as a pivot language), they also did not test non-English centric fine-tuning. Some

studies [66, 67] considered non-English centric fine-tuning where only one language in the

pair is included in the mBART model. Madaan et al. [66] fine-tuned the mBART25 [6]

model for Hindi-Marathi and Spanish-Portuguese, where the mBART25 model supported

only Hindi and Spanish.

2.9 Continual learning on Self-Supervised Pre-trained Models (Extending the pre-

trained models)

Continual learning to incorporate new languages or domains has been successfully studied

inMNMTMTmodels. Lakew et al. [42] adapted trainedMNMTmodels to workwith new

language pairs and continuously added new language pairs to grow the MNMT systems

with dynamic vocabulary. Some studies pre-trained the NMT model on a large open-

domain corpus and freeze all the pre-trained model parameters [68]. Then they injected a

set of domain-specific adapter layers for every target domain, and these injected adapters

were fine-tuned to maximize performance on the corresponding domains.

Similarly, when training large self-supervised pre-trained models using a large corpus

of monolingual data, it is impossible to cover all the languages available in the world and

different domains. So far maximum of around 101 languages was considered in the large

pre-trained model [8]. Studies have addressed these limitations on pre-trained models by

extending the self-supervised pre-trained models to either support new language or new

domains [7, 69, 70, 71].
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Tang et al. [7], Liu et al. [69], Chen et al. [70], Susanto et al. [71] extended the pre-

trained models to incorporate new languages. Their main goal is to add new languages to

the selected pre-trained models. Tang et al. [7] have extended the initial mBART-25 model

to support more languages. They added randomly initialized vector space as embedding

layers for the newly added languages. They combined monolingual data of the original

and newly added languages and then continued pre-training in a self-supervised manner

to extend the mBART model.

Liu et al. [69] adapted mBART to unseen languages by mixing target language mono-

lingual data with similar source language text that is supported by mBART and then con-

tinued to pre-trained the mBART model. A very recent study submitted for WNMT20

shared news translation task by Chen et al. [70] focused on Tamil↔English and Inuk-

titut↔English low resource setting pairs. They continued to pre-train the mBART25 [6]

model across 13 languages on all monolingual data provided byWMT20 to support unseen

languages such as Tamil and Inuktitut. Along with this, they explored multilingual/bilin-

gual fine-tuning, data augmentation, and reranking [70].

2.10 Summary

Two solutions applicable in the context of LRL-NMT are Transfer learning (TL) (as dis-

cussed in Section: 2.5) and Multilingual Neural Machine Translation (MNMT) (as dis-

cussed in Section: 2.4). Several studies evidenced that MNMT has a strong positive im-

pact on LRLs [19, 29, 32], but still, MNMT struggles in the context of extremely LRL.

Also, building such large MNMTmodels is quite challenging and costly for those working

with limited computational resources. On the other hand, TL [44] is widely studied in the

context of LRL. Several studies have explored many ways to conduct effective transfer

learning on NMT [25, 53, 54, 55, 56].

One of the state-of-the-art transfer learning methods is fine-tuning an SMSP model

with parallel data for a downstream NMT task, as discussed in Section: 2.8. Studies show

this leads to significant performance gains over the Transformermodel trained from scratch

due to the knowledge transfer from pre-trained models [6, 7]. However, extremely LRL

domain-specific NMT cases are not carefully studied. Also, the viability of fine-tuning
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these SMSP models on non-English centric language pairs has not been studied, despite

there being a need. So there is an urge to empirically analyze the robustness of SMSP

models on extremely LRL NMT and non-English centric cases as this LRL NMT tends to

perform poorly compared to High-resource pairs.

Another major concern is that languages under-represented in the SMSP models (i.e.

languages for which the SMSP model has been pre-trained with a low amount of monolin-

gual data) [2, 6, 7] obtained sub-optimal results while fine-tuning. Even though pre-trained

models have offered promising results for LRLs, simple one-step fine-tuning with parallel

data is not always a better solution. All the studies we are aware of [7, 69, 70, 71] focused

on extending the SMSP models to adapt to new languages. To the best of our knowledge,

there is no direct work on continual pre-training to adapt SMSP models to new domains

in the context of NMT. Therefore, improving the pre-training and fine-tuning processes of

the SMSP models for LRL-NMT is left to explore.
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Chapter 3

METHODOLOGY

3.0.1 Overview

First, we explain the two direct fine-tuning strategies considered in this study. As shown

in Figure 3.1, we are directly fine-tuning (one-step fine-tuning) the SMSP model using in-

domain parallel data using Bilingual Fine-Tuning (B-FT) and Multilingual Fine-Tuning

(M-FT). In contrast to the previous research that focused only on English-centric fine-

tuning [6, 7], our study shows that non-English centric fine-tuning is also viable using

self-supervised multilingual sequence-to-sequence pre-trained models. Different to some

research that assumed only one language is in mBART while fine-tuning [66, 67], our

studies focus on fine-tuning both languages in a pair of languages. Thus we are the first

to conduct entire end-to-end fine-tuning with the latest mBART50 model [7].

Figure 3.1: Overview of Methodology

However, it has been already shown that these techniques yield sub-optimal results for

languages under-represented in the SMSPmodel [2, 6, 7]. Fine-tuning these SMSPmodels
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using a small amount of in-domain parallel data has not been sufficient to learn domain-

specific representation over the largely trained open-domain representation. Hence, in

this study, we explore different strategies to improve the pre-training and fine-tuning of

the SMSP models to achieve a better result on domain-specific LRL-NMT. We propose

• Continual Pre-Training (CPT) the SMSP model for domain adaptation: Here, we

pre-train the SMSP model with additional monolingual data in order to alleviate

the impact of the under-representation of LRLs in the SMSP model. We experi-

ment with Bilingual Continual Pre-training (Bi-CPT) or Trilingual Continual Pre-

training (Tri-CPT). We do not go beyond three languages, as our dataset has only

three languages.

• Multistage fine-tuning of the continuously pre-trained SMSP model with parallel

data for the NMT task. We fine-tune the SMSP model more than once by utiliz-

ing out-domain and in-domain parallel data. We mainly introduce two multistage

fine-tuning cases: Three-stage Bilingual fine-tuning and Bilingual fine-tuning on a

multilingually fine-tuned model. In both cases, the final fine-tuning occurs with an

in-domain parallel corpus.

• Ensembling different fine-tuned models. Since we have explored different fine-

tuning strategies on the selected base SMSP model, we had multiple similar fine-

tuned SMSP models. We propose an ensemble of some of these models.

Fig. 3.1 summarises how our techniques are implemented/related.

3.0.2 Bilingual Fine-tuning using Self-SupervisedMultilingual Sequence-to-sequence

Pre-trained Models

Our main goal is to fine-tune the SMSP mBART model in an extremely low-resource

domain-specific NMT setting, where the number of parallel sentences is less than 100k.

We select Sinhala-Tamil-English languages to demonstrate the extremely low-resource

scenario, where we train six bilingual models via pairwise combinations.

We call this one-step B-FT our strong B-FT for this study. The overview of this fine-

tuning process is described in Fig. 2.5. We take the SMSP model to initialize the weights
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of both the encoder and decoder of the downstream NMT task. Once the weights are ini-

tialized, we feed parallel data and further fine-tune the encoder and decoder of the down-

stream NMT task. Here training starts with the SMSP model weights instead of random

initialization.

3.0.3 Multilingual Fine-Tuning using Self-SupervisedMultilingual Sequence-to-sequence

Pre-trained Models

As our second baseline, we use multilingual fine-tuning (M-FT) of the SMSP model as

demonstrated in [7]. Up to now, almost all the studies have focused on English-centric

MNMT systems. As discussed in Section 2.4, MNMT systems are mainly categorized

into three groups where the English language is either on the target/source side or used as

a pivot language to connect in the M2M setting. Even the viability of M-FT demonstrated

by Tang et al. [7] only considered English-centric MNMT systems. In contrast, we fine-

tune multilingual NMT systems in a non-English centric manner in three ways:

1. Many-to-One (M2O): Many → LanguageX

2. One-to-Many (O2M): LanguageX → Many

3. Many-to-Many (M2M): Many ↔ Many, with Language X as a pivot language.

3.1 Continual Pre-training for Domain Adaptation

As mentioned above, SMSP models are trained on large-scale open-domain monolingual

data. Directly fine-tuning these SMSP models with small amounts of in-domain parallel

data is not the best choice for using these SMSP models in domain-specific NMT. This is

because small domain-specific parallel corpora are not enough to teach domain-specificity

to a model that already contains a much larger representation in the open domain. There-

fore, continual pre-training of these models with domain-specific monolingual data would

alleviate the low representations that LRLs have in the SMSP models for the considered

domain. Thus, we introduce continual denoising pre-training to incorporate a new domain

on the SMSP model.
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Some studies carried out continual pre-training of encoder-only pre-trained models

(BERT [9] and RoBERTa [58]) with a large amount of in-domain data and later fine-tuned

them for tasks such as text classification [72, 73, 74, 75, 76]. To the best of our knowledge,

there is no direct work on continual pre-training to adapt SMSP models to new domains in

the context of NMT. All the studies we are aware of [7, 69, 70, 71] focused on extending

the SMSP models to adapt to new languages.

Figure 3.2: Overview of Continual Pre-training for Domain Adaptation.

In the SMSP model pre-training, monolingual data is noised and fed as the source,

and original monolingual data as the target, which refers to self-supervised learning as

mentioned in Section: 2.7. We follow the same denoising objectives as the selected SMSP

model.

Our continual pre-training data covers K languages: D = D1, ...,DK , where each Di

is monolingual data in a language i. Equation: 3.1 is the noising function g that corrupts

the text. We train the model to predict the original text X given g(X). More formally, we

aim to maximize Lθ :
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Lθ = ∑
Di∈D

∑
X∈Di

logP(X |g(X);θ) (3.1)

• where X is an instance in language i

• the distribution P is defined by the Seq2Seq model.

We conduct CPT using different types of monolingual data as below:

Case A: CPT with in-domain monolingual data.

Case B: CPT with out-domain monolingual data, which is larger in quantity.

Case C: CPT with mixed domain (in-domain + out-domain) monolingual data.

Case D: Multistage CPT on large out-domain data and then with in-domain data. Here we

first pre-train with large out-domain monolingual data (case B) and then pre-train

with in-domain monolingual data (case A).

First, we take monolingual data from all the languages we considered in the translation

system. E.g. when we want to translate between the X → En language pair, we take

monolingual data of language X and English (bilingual cases). If we want to consider

more than one language pair, e.g., translating between X → En and Y → En, we take

monolingual data from X,Y and English (trilingual cases). Then we conduct CPT using

the selected denoising objective of the SMSP model.

3.2 Multistage Fine-tuning

Different transfer learning protocols have been studied to adapt trained NMTmodels (both

RNNs and simple Transformers) to new domains [25, 53, 54, 55, 56]. However, the effec-

tiveness of these transfer learning protocols has not been studied in the context of SMSPs.

Only single-step fine-tuning has been conducted so far. This single step of fine-tuning

may not be the best way to adapt to a new domain. Thus, we introduce multistage fine-

tuning on SMSP models in this research, as shown in Figure 3.1. Here we are introducing

multistage fine-tuning where we try to fine-tune the mBART model consecutively two or

more times as shown in Figure 3.3.

We categorize multistage fine-tuning as follows:
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Figure 3.3: Overview of Multistage Fine-tuning.

Figure 3.4: Different ways of Multistage Fine-tuning.
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3.2.1 Two-stage FT

Here we conducted fine-tuning two consecutive times.

Case i: First fine-tune with Out-domain parallel data and then fine-tune with in-domain

parallel data.

Case ii: Fine-tune with mixed domain parallel data, then fine-tune with in-domain parallel

data. Here we up-sampled the in-domain data size to match the large out domain

data and created the mixed-domain parallel data.

3.2.2 Multistage Fine-tuning Combine with Continual Pre-Training

We use the further denoised in-domain CPT SMSP model (as described in Section 3.1) as

a base model to initialize the multistage fine-tuning process. We implement two different

multistage fine-tuning strategies as follows:

1. Three-stage Fine-tuning [CPT+3-B-FT]: We borrowed the idea of mix-fine-tuning

from Chu et al. [55], where they first train a Transformer-based NMT model on

an out-of-domain parallel corpus and then fine-tune it on a parallel corpus that is

a mix of the in-domain and out-of-domain corpora. In our study, we propose the

following:

(a) Initialize multistage training with the CPT model.

(b) B-FT with out-domain parallel data.

(c) B-FT with mixed domain parallel data where we up-sampled the in-domain

data size to match with the larger out-domain corpus and created the mixed

domain parallel data.

(d) Finally, B-FT with in-domain parallel data.

2. Fine-tuning from Multilingual Fine-tuned MNMT models [CPT+M-FT+B-FT]:

(a) Initialize training with the CPT model.

(b) Conduct non-English-centric M-FT such as O2M M-FT or M2O M-FT as

described in Section 3.0.3.
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(c) Finally, B-FT with in-domain parallel data.

3.2.3 Ensemble of Fine-tuned Self-SupervisedMultilingual Sequence-to-sequence Pre-

trained Models

The ensemble is a Machine Learning technique that combines several base models to pro-

duce one optimized predictive model [77]. In NMT ensembling, the input sentence is

translated using multiple models, and then the output from each model is averaged. As

we propose multiple techniques to improve the fine-tuning process of SPSM models, we

have multiple similar models that use identical target vocabularies and the same decoding

(in other words, all have the same base SMSP models). Hence we carry out mainly two

ensembling techniques:

1. Checkpoint Ensemble

This is the bare minimum way to conduct the ensemble from a single training pro-

cess [78]. Precious studies applied checkpoint ensembling on RNN based NMT

system by combining the last N checkpoints of a single training [79, 80, 81]. In

this study, we apply this checkpoints ensembling on SMSP models. We combine 3

different saved checkpoints from a particular single training. In other words, when

we are fine-tuning the SMSP model, we save the last ten checkpoints. We select 3

checkpoints that yield the best results in the validation test set among all the saved

checkpoints. Then we apply the checkpoints ensembling using these selected 3

checkpoints. Likewise, we experiment with combining 2 checkpoints too. Finally,

we report the best ensemble result among both of the above scenarios. Note that we

can combine any number of models we want.

2. Multi-model Ensemble

Besides our baselines one-step B-FT andM-FT, we explored different techniques to

improve the fine-tuning process of the SMSP model. Due to that, we have multiple

similar SMSP models that have been fine-tuned with in-domain parallel data at the

final stage. We combine a maximum of 3 such SMSP fine-tuned models (due to

our computational resource limitations) for the ensemble. As shown in Fig. 3.1, we
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explore different fine-tuning approaches to improve from baseline B-FT such as Bi-

CPT continued with B-FT, Bi-CPT continued with Three-stage B-FT. Among these

different approaches, we pick the top 3 best models.
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Chapter 4

IMPLEMENTATION

4.1 Experimental setup

4.1.1 Architecture

For our experiments, we select themBART50which is referred to as themBART [7] SMSP

model. It supports all the considered languages while the mBART25 [6] model does not

support Tamil. In particular, mBART has shown promising results for supervised and

unsupervised NMT [6, 7]. mBART is memory efficient and has shown relatively better

results than mT5 [64]. We follow the same mBART model architecture - the standard

sequence-to-sequence Transformer [18], with 12 layers of encoder-decoder with the model

dimension of 1024 on 16 heads. For training, we use the FairSeq1 tool.

4.1.2 Dataset

For our experiments, we pick two languages that are underrepresented in the mBART

model: Sinhala (Si) and Tamil (Ta), along with English (En). Our domain-specific par-

allel datasets are from Sri Lankan official government documents [15, 82], consisting of

annual reports, crawled contents from government institutional websites, committee re-

ports, procurement documents and Acts. According to the statistics of our dataset given in

Table 4.1, our dataset is smaller than 100k. Thus this creates an extremely low-resource

domain-specific translation task.

We also gather publicly available out-domain parallel datasets from OPUS2 andWMT

MT tasks3. For Sinhala-English, we use the FLoRes V14 [65] training dataset, obtained

from OPUS5. For Tamil-English, we use WMT206 MT news tasks’ parallel datasets. Un-
1https://github.com/pytorch/fairseq
2https://opus.nlpl.eu/
3https://www.statmt.org/wmt20/translation-task.html
4https://github.com/facebookresearch/flores/tree/main/floresv1
5https://opus.nlpl.eu/
6https://www.statmt.org/wmt20/translation-task.html
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fortunately, we do not have out-domain parallel sentences for the Sinhala-Tamil pair. The

statistics of these out-domain datasets are given in Table 4.2.

We use domain-specific monolingual data obtained from Epaliyana et al. [26] for

monolingual data. We have adequately enough out-domain monolingual data. We pick

out-domainmonolingual data from the online news site NewsFirst7 [83] and FLoRes8 [65].

The statics are given in Table 4.3.

4.1.3 Preprocessing

The government corpus has been cleaned and verified manually with the help of profes-

sional translators, as mentioned by Fonseka et al. [15]. Sentences containing only dates,

special characters and numbers have been removed. Cleaning scripts of the Moses9 [4]

tool were used to remove misaligned sentences. English sentences were tokenized us-

ing Moses toolkit10 [4], while Sinhala and Tamil used an internal tokenizer [84]. We use

the SentencePiece11 model learned over monolingual Common Crawl (CC) data in the

mBART [7] model, containing 250,000 sub-word tokens.

Dataset No. of Sentence
Sinhala-Tamil 66,348
Tamil-English 66,348
Sinhala-English 74,468
Validation Set (for all pairs) 1,623
Test Set (for all pairs) 1,603

Table 4.1: Statistics of the parallel dataset of official government documents

Language pair Dataset No. of Sentence
Sinhala-Tamil FLoRes 646,781
Tamil-English WMT20 News 305,671

Table 4.2: Statistics of the out-domain parallel corpus

7https://www.newsfirst.lk/
8https://github.com/facebookresearch/flores/tree/main/floresv1
9http://www.statmt.org/moses/
10http://www.statmt.org/moses/
11https://github.com/google/sentencepiece
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4.2 Addressing the Zero Width Joiner (ZWJ) issue

As mentioned earlier in Section 4.1.3, we use the SentencePiece12 tokenizer. However,

empty tokens where Unicode appears as space in output vocabulary have been removed

while training the SentencePiece model. Due to that, the Zero Width Joiner character

(200d) has been replaced by whitespace. Hence language scripts that require Zero Width

Joiner get altered and result in a wrong output. This issue is there for languages like

Sinhala, Kannada and Malayalam13. Ideally, we should not replace the Zero Width Joiner

(200D) with whitespace since it indicates joining two chars without zero width (no whites-

pace). Also, the zero-width joiner must be present to decode the segmentation of decoder

outputs to raw text successfully. These special characters should be kept as they are while

learning the SentencePiece model. We resolved this issue and the fix was successfully

merged with SentencePiece14 to eliminate this ZWJ issue.

However, we cannot eliminate this issue when using the already trained (pre-trained)

models as the models were trained without ZWJ over the large scale monolingual data.

Hence we propose a post-processing solution to add the ZWJ character in the possible

occurring places for Sinhala languages15. Here we mainly cover frequently occurring

”yansaya” and ”rakāransaya” of the Sinhala script. Further details of the post-processing

logic are provided in Appendix. A.0.1.

Language Dataset Domain No. of Sentences
Sinhala Government data in-domain 44,115
English Government data in-domain 42,773
Tamil Government data in-domain 24,220
Sinhala News-first out-domain 650,000
English News-first out-domain 627,301
Sinhala FLoRes out-domain 646,781
English FLoRes out-domain 646,781

Table 4.3: Monolingual Data

12https://github.com/google/sentencepiece
13https://en.wikipedia.org/wiki/Zero-width_joiner
14https://github.com/google/sentencepiece/pull/630
15https://en.wikipedia.org/wiki/Sinhala_script#Consonant_conjuncts
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4.3 Baselines

We considered the following baselines.

1. Phrase-based Statistical Machine Translation (SMT):

We used the SMT model proposed by Fernando et al. [82], which has been trained

using the Moses toolkit16 [4] with the default features and parameters of a 5-gram

language model.

2. LSTM based NMT:

We used a 2-layer bidirectional LSTM as the encoder and a 2-layer LSTM as the

decoder described by Sennrich and Zhang [85] for low-resource NMT. We trained

this LSTM based NMT 4 consecutive times with early stopping criteria (with the

patience of 5 valid steps) and saved all the checkpoints. The model gave the highest

BLEU score upon validation dataset identified as the best model among these saved

checkpoints. During the inference phase, we used a beam search of 5.

3. LSTM based NMT Ensemble:

From all the saved checkpoints in the aforementioned LSTM based NMT, we se-

lected the top 4 models based on the results of the validation set for the ensemble.

4. Transformer Baseline:

We consider this as our main state-of-the-art baseline. Here, we adapted the Trans-

former model with BPE proposed by [15]. We tuned the hyperparameters with 5

layers of encoder-decoder with 2 attention heads. We continued our training up to

300 epochs and saved checkpoints. The model with the highest BLEU score on the

validation dataset was identified as the best model among these checkpoints.

4.4 Fine-tuning SMSP Model

For all directions, we train with 0.3 dropout, 0.2 label smoothing, 2500 warm-up steps,

and 3e-5 maximum learning rate as described by Liu et al. [6]. We use a maximum of up
16http://www.statmt.org/moses/
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to 100k training updates for B-FT cases.

We extend the fine-tuning by adding multiple language pairs together, resulting in M-

FT. We applied the same setting as Section 4.4 and used a maximum of 300k training

updates. Additionally, we applied a temperature sampling rate of 1.5. Since our main goal

is to conduct M-FT in a non-English centric manner, we chose Sinhala centric M-FT. It

is the most requested use case in Sri Lanka since the government documents are mostly

produced in Sinhala and should be translated to Tamil and English. This, of course, has

been identified as a common requirement in general for MT [86].

4.5 Continual Pre-training for Domain Adaptation

Data selection for the different continual pre-training strategies proposed in Section:3.1 is

described below:

Case A: Multilingual Pre-training on in-domain monolingual data.

We use available in-domain government monolingual data (see Table 4.3). How-

ever, the monolingual data is not large.

In the second attempt, we utilize parallel data (as shown in Table 4.1) as mono-

lingual data for each selected language pair and the available small monolingual

government data to create a combined dataset. First, we use only the selected two

languages for pre-training (Bi-CPT). Then we move to CPT with three languages

for M-FT, which we refer to as Tri-CPT.

Case B: Multilingual Pre-training on large out-domain monolingual data.

We use the large available out-domain monolingual data mainly obtained from news

data crawled from Sri Lankan news websites [83] (see Table 4.3).

Case C: Multilingual Pre-training on mixed domain monolingual data.

For this case, we took the Flores [65] out-domain monolingual data and mixed it

with our in-domain government monolingual dataset mentioned in Case A.

Case D: multistage Multilingual Pre-training on large out-domain data and then with in-

domain data.
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Here we first pre-train with large out-domain monolingual data (case B) and then

pre-train with in-domain government monolingual data (case A).

Noise function

We use the nosing techniques used by the mBART model [6]: Random Span masking

and Order Permutation [6]. First, we remove spans of text and replace them with a mask

token. We mask 0.3% of words in each instance (with random masking 0.1) by randomly

sampling a span length according to a Poisson distribution (λ = 3.5). We also permute the

order of sentences within each instance. The decoder input is the original text with one

position offset. A language id symbol <LID> is used as the initial token to predict the

sentence.

4.6 Multistage Fine-tuning

We use the in-domain CPT model as a base model to initialize the multistage fine-tuning.

We have two different multistage fine-tuning techniques: Three-stage Fine-tuning and

Multilingual Fine-tuning followed by Bilingual Fine-tuning as described in Section 3.2.

For En−Ta and En−Si pairs, we tested with Three-stage Fine-tuning techniques. Since

we do not have an out-domain dataset for Si− Ta, we do not conduct the Three-stage

fine-tuning experiment for that pair.

4.7 Evaluation setup

The final model is selected based on the validation likelihood. For decoding, we use beam

search with beam size 5 as used by [6]. The final results are calculated against the true-

target tokenized data and reported in BLEU [87].

For ensembling cases described in Section: 3.2.3, we combine a max of 3 models and

evaluate under the same decoding and BLEU scores calculation as mentioned above.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Bilingual Fine-tuning using Multilingual Denoising Pre-trained Models

Comparison Between Full Precision Fine-Tuning and Mixed-Precision Fine-Tuning

When training a neural network, usually we use Full Precision, a 32-bit floating-point

(FP32) arithmetic calculation by default. Else, we can useMixed-Precision training, which

combines single-precision (FP32) with half-precision (FP16) format. Mixed-Precision

training has additional performance benefits on NVIDIA GPUs. It requires shorter train-

ing time, lower memory requirements, enabling larger batch sizes, larger models, or larger

inputs1.

Hence we fine-tune each pair of directions two times under the same hyper-parameters,

one with the default setting Full Precision and the second one with Mixed-precision train-

ing. Latter one typically tends to reduce the training time. As shown in Table 5.1, there

is not much BLEU score difference between Full Precision and Mixed-precision. How-

ever, Mixed-precision training has reduced the training time. Considering our resource

limitation for training, we choose Mixed-precision training going forward.

Models Si→Ta Ta→Si Si→En En→Si Ta→En En→Ta
Bilingual full precision FT 29.82 37.87 37.84 35.89 33.63 25.96
Bilingual mixed precision FT 29.75 37.57 37.72 36.11 33.36 25.8

Table 5.1: Comparison between full precision training and mixed precision Fine-Tuning.
Results are reported in BLEU score.

Baseline Results and Discussion

The performance results of our bilingual fine-tuned models against the baselines de-

scribed in Section 4.3 are given in Table 5.2 and a few examples of translated sentences

are provided in Appendix. A.0.2. We observe quantifiable performance gains for the B-FT

in all 6 cases. We significantly improved the BLEU score while translating Sinhala/Tamil

sentences to English, gaining a +7.17 BLEU score on Si→En translation and +6.74 BLEU
1https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/
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for the Ta→En direction over the state-of-the-art Transformer Baseline. Liu et al. [6] ob-

served that when English is on the target, the NMT model obtained greater improvement

than when English is on the source. In these extremely low-resource settings, we also ob-

serve the same behaviour as we found in the study [6] for low and medium resources. We

strongly believe it is due to the English language is benefiting from its large-scale mono-

lingual data used during pre-training, compared to other languages. To train the mBART

model, 55,608MEnglish tokens have been used, while only 243M, 595M tokens have been

used for Sinhala and Tamil, respectively [6, 7]. However, we argue that, in order to ex-

amine the full potential of these pre-trained models, their performance in the non-English

centric translation should also be considered since many languages are under-represented

in these pre-trained models.

Models Si→Ta Ta→Si Si→En En→Si Ta→En En→Ta
SMT 22.27 26.91 22.62 20.27 17.96 14.16
LSTM 17.39 22.3 21.66 20.05 15.62 13.35
LSTM Ensemble 19.95 24.5 25.39 22.63 19.93 15.98
Transformer Baseline 26.97 33.46 30.55 29.47 26.62 21.75
Bilingual FT (B-FT) 29.75 37.57 37.72 36.11 33.36 25.8
Improvement (+2.78) (+4.11) (+7.17) (+6.64) (+6.74) (+4.05)

Table 5.2: Comparisonwith SMT, LSTM, Transformer Architectures against our Bilingual
Fine-tuning models for Sinhala (Si), Tamil (Ta) and English (En) - Results are reported in
BLEU score.

Most importantly, for the first time, we experimented with non-English centric B-FT

where both languages in a pair of languages are included in the mBARTmodel for Sinhala-

Tamil. We managed to obtain a +2.78 improvement on Si→Ta and +4.11 on Ta→Si di-

rections over Transformer Baseline. We get the lowest improvement when Tamil is on the

target side, such as Si→Ta +2.78 and En→Ta +4.05. Even though the pre-trained model

used 595M Tamil tokens, which is higher than 243M tokens for Sinhala, Sinhala tends to

perform well when being the target compared to Tamil.

We can see that LSTMmodels are less effective in extremely low-resource settings. By

ensembling the top 4 models, the LSTM model surpassed SMT by a slight margin except

for Si→Ta and Ta→Si. We can evidence that LSTMmodels require a large corpus to obtain

a reasonable amount of accuracy. The transformer model is much stronger compared to
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SMT and LSTM models. However, our proposed B-FT using a multilingual denoising

pre-trained model outperforms the Transformer model in all the cases. This demonstrates

the usefulness of pre-trained models for low-resource NMT, where it is difficult to find

large scale parallel data to train NMT from scratch.

5.2 Multilingual Fine-tuning using Multilingual Denoising Pre-trained Models

Our Sinhala centric multilingual FT results against the baseline B-FT results are provided

in Table 5.3. As we can see, we could not obtain a reasonable improvement over the

multilingual FT. We strongly believe it is because of inadequate parallel data. We used

extremely LRL pairs only; unrelated languages like Tamil and English are on the target/-

source side. Nevertheless, we observe a slight improvement in O2M M-FT and M2O

M-FT compared to the M2M M-FT case like on English centric MNMT [7, 19, 29, 32].

We also evidence that up-sampling plays a major role in these MNMT systems as stated

by Arivazhagan et al. [19], Aharoni et al. [29], Johnson et al. [32]. In our experiments,

Si-Ta acts as a low-resource pair compared to the Si-En data set as we have around 66k,

and 74k sentences, respectively. When we up-sample Si-Ta to match the size of Si-En,

we were able to maximize the performance and beat the bilingual baseline such as Si→Ta

(+0.55), while observing performance reduction on the Si-En side such as Si→En (-0.13).

Models Si→Ta Ta→Si Si→En En→Si
B-FT 29.75 37.57 37.72 36.11

O2M M-FT (Si→Ta,Si→En) 30.3 (+0.55) N/A 37.59 (-0.13) N/A
M2O M-FT (Ta→Si,En→Si) N/A 37.62 (+0.05) N/A 36.03 (-0.08)
M2M M-FT (Si↔Ta,En↔Si) 28.44 (-1.31) 36.38 (-1.19) 36.05 (-1.67) 34.93 (-1.18)

Table 5.3: Results of Bilingual Fine-tuning models and Multilingual Sinhala Centric Fine-
tuning models - Results are reported in BLEU score.

5.3 Continual Pre-training for Domain Adaptation

Extensive evaluation of Si↔En pair results is reported in Table 5.4. Our experiments

show the effectiveness of continual pre-training to adapt to new domains. Even though we

don’t have adequate in-domain data, our experiments validate that having little in-domain

data would have more impact than out-domain or mixed domain data. We pick Bilingual
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Continual Pre-training on in-domain monolingual data for going forward. When we look

at Table 5.5, we can evidence that continual pre-training helps extremely LRLs to improve

further.

Models Si→En En→Si
B-FT 37.72 36.11

Case A Bi-CPT in-domain mono data + B-FT 38.21 (+0.49) 36.38 (+0.27)
Bi-CPT combined parallel and in-domain data + B-FT 38.51 (+0.79) 36.64 (+0.53)

Case B Bi-CPT out-domain mono data + B-FT 38.09 (+0.37) 36.21 (+0.1)
Case C Mixed in-domain and out-domain Bi-CPT + B-FT 38.3 (+0.58) 36.33(+0.22)
Case D Multistage Bi-CPT + B-FT 38.38 (+0.66) 36 (-0.11)

Table 5.4: Fine-tuning Results from Continual Pre-trained models against our strong base-
line Bilingual Fine-tuned models for Si↔En pairs - Results are reported in BLEU score.

We even conducted the Trilingual Continual Pre-training on in-domain monolingual

data. We utilize the parallel data (as in Table 4.1) available for Si-En (74k sentences) as

monolingual data for Sinhala and English and along with the Tamil side sentences from

the parallel Si-Ta (66k sentences) data set. After denoising, we conducted B-FT for each

pair of directions. Results are given in Table 5.5, which is lower than Bilingual Continual

Pre-training on in-domain monolingual data. We believe it is because of the language

relatedness. However, for En→Ta, trilingual denoising gives better results; we believe it

is because Tamil benefited from the upsampling in the Trilingual denoising.

Models Si→Ta Ta→Si Si→En En→Si Ta→En En→Ta
B-FT 29.75 37.57 37.72 36.11 33.36 25.8
Bi-CPT+B-FT 30.72 (+0.97) 38.08 (+0.51) 38.51 (+0.79) 36.64 (+0.53) 34.29 (+0.93) 26.3 (+0.5)
Tri-CPT+B-FT 30.34 (+0.59) 37.93 (+0.36) 37.52 (-0.2) 36.56 (0.45) 33.61 (+0.25) 26.62 (+0.82)

Table 5.5: Fine-tuning Results of Bilingual and Trilinugal Continual Pre-training on in-
domain monolingual data for all the six directions - Results are reported in BLEU score.

5.4 Multistage Fine-tuning

5.4.1 Two-stage FT

We analyzed the Si-En pairs, and the results are given in Table 5.6. Even though we did

not get a reasonable improvement on two-stage FT, we observed the positive impact on

these different two-stage multi-stage FT. Compared to out-domain fine-tuning, we found
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that mixed fine-tuning plays a major role. As we need to analyze carefully, we are moving

to three-stage fine-tuning where we combine the case mentioned above (case (i) and case

(ii) ). Also, we combine Continual Pre-Training and Multistage Fine-tuning, which we

discuss in the next section.

Models Si→En En→Si
B-FT 37.72 36.11

Case i O/D, I/D FT 38.03 (+0.31) 36.65 (+0.54)
Case ii Mix/D, I/D FT 38.41 (+0.69) 36.76 (+0.65)

Table 5.6: Fine-tuning Results from Continual Pre-trained models against the our strong
baseline Bilingual Fine-tuned models for Si↔En pairs - Results are reported in BLEU
score.

5.4.2 Multistage fine-tuning Combined with Continual Pre-Training

As shown in Table 5.7, combining our proposed Continual Pre-Training and Multistage

Fine-tuning approaches improves the performance over baseline B-FT. Our results prove

that utilizing the available in-domain monolingual and out-domain parallel data enhances

fine-tuning performance in the extremely low-resource domain-specific settings. We ob-

tained quantifiable improvements over the Three-stage fine-tuning, where we obtained

+1.46 improvement in the Ta→En direction and +1.17 in the Si→En direction. However,

when Sinhala/Tamil are on the target side, our improvements are low, up to +0.8 improve-

ment. As observed in our initial bilingual FT experiments results (Section: 5.1), here also

we can witness that, even though we fine-tune with large out-domain data, we still re-

quire a reasonable amount of in-domain data to learn good language representation on a

particular domain for morphologically rich languages than English.

Multilingual FT helps Si↔Ta directions positively over Si↔En directions. O2M M-

FT andM2OM-FT show a positive side and slightly improved with Tri-CPT - O2MM-FT

and M2O M-FT. As we can see, we obtained the highest of +0.75 BLEU improvement on

Si→Ta and +0.47 BLEU improvement on the Ta→Si side on multilingual FT. In contrast,

in the Si↔En direction, we lagged by -0.24 BLEU score on En→Si and less improvement

on Si→En by +0.24 BLEU score. Hence we choose to fine-tune further fromMultilingual

Fine-tunedMNMTmodels for Si↔Ta directions. We observe that fine-tuning further from
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Models Si→Ta Ta→Si Si→En En→Si Ta→En En→Ta
B-FT (Baseline) 29.75 37.57 37.72 36.11 33.36 25.8

Bi-CPT+B-FT 30.72 (+0.97) 38.08 (+0.51) 38.51 (+0.79) 36.64 (+0.53) 34.29 (+0.93) 26.3 (+0.5)
Bi-CPT+3-B-FT - - 38.89 (+1.17) 36.91 (+0.8) 34.82 (+1.46) 26.45 (+0.65)

O2M-M-FT 30.3 (+0.55) - 37.59 (-0.13) - - -
M2O-M-FT - 37.62 (+0.05) - 36.03 (-0.08) - -
M2M-M-FT 28.44 (-1.31) 36.38 (-1.19) 36.05 (-1.67) 34.93 (-1.18) - -

Tri-CPT+B-FT 30.34 (+0.59) 37.93 (+0.36) 37.52 (-0.2) 36.56 (0.45) 33.61 (+0.25) 26.62 (+0.82)
Tri-CPT+O2M-M-FT 30.5 (+0.75) - 37.93 (+0.21) - - -
Tri-CPT+M2O-M-FT - 38.04 (+0.47) - 35.87 (-0.24) - -
Tri-CPT+M-FT+B-FT 31.16 (+1.41) 38.9 (+1.33) - - - -

Table 5.7: Multistage fine-tuning against the our strong baseline Bilingual Fine-tuned
models - Results are reported in BLEU score.

Multilingual Fine-tuned MNMT models have performed better and improved by +1.41

BLEU score on Si→Ta and +1.33 on Ta→Si.

5.5 Ensemble of Fine-tuned Self-supervised Multilingual Sequence-to-sequence Pre-

trained Models

All the possible combinations of ensembling results are given in Table 5.9. As we can

see, the multi-model ensemble overall improved the performance in all the cases whereas

checkpoints ensemble methods performed comparatively less. However, the result dis-

tribution of the multi-model ensemble case is almost similar for each pair of directions.

Among them, we picked the highest score combination for each pair of directions. We

observe that even the baseline B-FT stands as a strong model. Out of the six translation

directions, baseline B-FT was not identified as one of the best models only for the Ta-En

direction. Finally, we obtained a maximum +2.56 BLEU point improvement on Ta→En

and a minimum of +1.84 BLEU score improvement in En→Si directions.

Rank Si→Ta Ta→Si Si→En En→Si Ta→En En→Ta
1 Tri-CPT+M-FT+B-FT Tri-CPT+M-FT+B-FT Bi-CPT+3-B-FT Bi-CPT+3-B-FT Bi-CPT+3-B-FT Tri-CPT+B-FT
2 Bi-CPT+B-FT Bi-CPT+B-FT Bi-CPT+B-FT Bi-CPT+B-FT Bi-CPT+B-FT Bi-CPT+3-B-FT
3 Tri-CPT+O2M-M-FT Tri-CPT+M2O-M-FT Tri-CPT+O2M-M-FT Tri-CPT+B-FT Tri-CPT+B-FT Bi-CPT+B-FT

Table 5.8: Top 4 improved models from baseline B-FT
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Ensemble Models Si→Ta Ta→Si Si→En En→Si Ta→En En→Ta
No B-FT (Baseline) 29.75 37.57 37.72 36.11 33.36 25.8

Ensemble Rank-1 31.16 (+1.41) 38.9 (+1.33) 38.89 (+1.17) 36.91 (+0.8) 34.82 (+1.46) 26.62 (+0.82)
Checkpoint B-FT (Baseline) 30.07 37.86 37.77 36.21 33.4 25.82
Ensemble Rank-1 31.26 38.8 39.58 36.85 35.4 26.55

B-FT & Rank-1 31.43 39.45 39.39 37.6 34.98 26.69
B-FT & Rank-2 31.1 38.57 38.76 37.1 34.58 27.31
B-FT & Rank-3 31.3 38.84 38.4 37.52 34.53 26.81
B-FT & Rank-1,2 31.85 (+2.1) 39.29 39.92 (+2.2) 37.71 35.62 27.77 (+1.97)

Multi- B-FT & Rank-1,3 31.64 39.73 (+2.16) 39.61 37.95 (+1.84) 35.53 27.16
Model B-FT & Rank-2,3 31.52 39.08 39.27 37.58 34.93 27.33

Ensemble Rank-1,2 31.83 39.49 39.61 37.73 35.83 27.54
Rank-1,3 31.41 38.58 39.79 37.61 35.92 (+2.56) 26.86
Rank-1,2,3 31.73 39.47 39.72 37.76 35.86 27.41

Table 5.9: Ensemble Results for all the six directions. Results are reported in BLEU score.

5.6 Manual Analysis of the Translated Output

Wemanually analyze the translated sentences for each direction. A few examples of trans-

lated sentences are provided in Appendix. A.0.2. One common observation is that our

models fail to handle the name of the places and roads. Those named entities are com-

pletely domain-specific, and with limited data, we could not cover those names. We can

apply data augmentation techniques to include those specific named entities in future work.

Another major observation is that our models perform less when Tamil is on the target

side. It is mainly because the Tamil language has free word ordering [88] and is more

inflectional than Sinhala [89]. We observed free word order, joint words and similar syn-

tactic constructions while analyzing the Tamil outputs. Output sentences used similar or

synonyms compared to the reference (Ref) sentences. When the complexity of a language

increases, the amount of training data required to learn language-specific information also

increases. We can conclude that when both languages have similar amounts of mono-

lingual data for pre-training, fine-tuning results depend on the complexity of the target

language.
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Chapter 6

CONCLUSION AND FUTUREWORK

For LRLs, transferring the knowledge from the already trained (pre-trained models) SMSP

by fine-tuning remains one promising approach. One such SMSP model is mBART. Ac-

cording to previous studies [6, 7], fine-tuning the mBART models has shown promis-

ing results for English centric fine-tuning; we took this line of research even further and

showed the viability of fine-tuning SMSP models non-English centric extremely low-

resource domain-specific settings. Even though some languages are under-represented

in the pre-trained model, we showed that the pre-trained model is robust enough to obtain

significant improvements for non-English centric MT.

Apart from that, we extended the SMSP model further by pre-training it with differ-

ent combinations of monolingual data. We introduced multistage fine-tuning to adapt an

SMSPmodel to new domains in an extremely low-resource setting involving non-English-

centric language pairs. We explored different fine-tuning strategies by utilizing out- and in-

domain parallel data. These techniques showed quantifiable improvements in the context

of Sinhala and Tamil, which are under-represented in the selected SMSPModel (mBART).

From our experiments, we can conclude that the translation accuracy heavily depends

on the amount of monolingual data and the domain of the data used to pre-train the SPSM

model. We also need to note that when monolingual data is roughly equal, the fine-

tuned result depends on the target language complexity. Apart from that, our proposed

approaches proved that even though the pre-trained model has been trained over large-

scale monolingual data, extending these models by adding little in-domain monolingual

data helps SMSPmodels improve even further. Also, using out-domain data for multistage

fine-tuning tends to improve the English side rather than Sinhala/Tamil on target.

In future work, we plan to experiment more with extremely LRL non-English-centric

MNMT cases. We found that M-FT cases struggle to provide an improvement over B-FT

cases. In the next phase, we will be focusing on improving the pre-training and fine-tuning

process of M-FT cases, which would result in a single MNMT model that can handle all
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the translation directions at once.
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Appendix A

Appendix

A.0.1 Addressing the Zero Width Joiner (ZWJ) issue

ZWJ post-processing fix is mainly required for En→ Si and Ta→ Si directions. i.e. when

Sinhala is on the target side. While translating from xx to Sinhala, to avoid Zero-Width-

joiner issue (ZWJ), we added the following codes in the file of Fairseq1.

We added two lines of code just before the return statement of the method:

de f p o s t _ p r o c e s s ( s e n t e n c e : s t r , symbol : s t r ) :

code block to be added:

s e n t e n c e = s e n t e n c e . r e p l a c e ( ” \ u0DCA  \ u0dbb ” , ” \ u0DCA\ u200D \ u0dbb ” )

s e n t e n c e = s e n t e n c e . r e p l a c e ( ” \ u0DCA  \ u0dba ” , ” \ u0DCA\ u200D \ u0dba ” )

A.0.2 Output Translated Sentences

1fairseq/fairseq/data/data_utils.py
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Figure A.1: Output Translated Sentences
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