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ABSTRACT

This research investigated the issues of vehicular-emitted pollution in Kandy City, a
valley-like environment experiencing severe air pollution problems due to a higher
traffic volume, topographical aspect, and prevailing weather conditions. The COPERT
emission model was used to calculate the total emission rates of 𝑁𝑂2, 𝐶𝑂, and 𝑃𝑀 in
major road segments of the city. An OpenFOAM-based CFD model was developed to
predict dispersion characteristics over the complex terrain, considering physical phe-
nomena such as surface roughness, wind shear, Coriolis’s effect, surface heat flux,
buoyancy effect, and turbulence. The developed model was validated against exper-
imental results to investigate its sensitivity and efficiency, and it was found to show
good agreement.

The developed CFD model was then applied to simulate the dispersion of vehicular-
generated air pollutants in Kandy City, considering the region’s two main wind patterns
NE and SW, topography, and emission rates of major road segments. The model’s
concentration and dispersion pattern of pollutants were found to vary with urban to-
pography and wind pattern, with higher concentrations of pollutants observed in areas
with high traffic volume and severe traffic congestion, such as the central business dis-
trict and areas close to bus stands. The model was also used to investigate pollution
dispersion patterns in 27 locations at the pedestrian level, with good agreement found
between the model’s predicted concentrations of 𝑁𝑂2 and experimental results.

Overall, this study highlights the significance of considering topography and me-
teorological conditions when evaluating pollution dispersion mechanisms in urban en-
vironments. The developed CFD model can be used as a promising tool for predict-
ing pollutant transport and wind flow in the built environment, aiding in proper ur-
ban planning to reduce pollution accumulation in significant locations. This research
can contribute towards effective policies and interventions to mitigate the impacts of
vehicular-generated air pollution in valley cities.

Keywords: Atmospheric dispersion, CFD, Open FOAM, Numerical modeling, Complex ter-

rain
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