DEVELOPMENT OF A COMPUTATIONAL FLUID DYNAMICS MODEL FOR POLLUTANT DISPERSION IN COMPLEX TERRAIN

Inparaja Sivakunalan

208102G

Master of Science (Major Component of Research)

Department of Chemical and Process Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > April 2023

DEVELOPMENT OF A COMPUTATIONAL FLUID DYNAMICS MODEL FOR POLLUTANT DISPERSION IN COMPLEX TERRAIN

Inparaja Sivakunalan

208102G

Dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science (Major Component of Research)

Department of Chemical and Process Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > April 2023

DECLARATION

I declare that this is my own work and this Dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature

Date: 21-April-2023

The supervisor should certify the Dissertation with the following declaration.

The above candidate has carried out research for the Master of Science (Major Component of Research) Dissertation under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Prof. Mahinsasa NarayanaSignature of the Supervisor:UOM Verified SignatureDate:24-April-2023

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my supervisor, Prof. Mahinsasa Narayana, a professor in the Department of Chemical and Process Engineering at the University of Moratuwa, for encouraging me to register for this Master's degree, providing support, and offering continuous guidance throughout my research work and publication. I am also grateful to Prof. (Mrs) S.M. Egodage, the Head of the Department of Chemical and Process Engineering, and Prof. A.A.P. de Alwis, the Dean of the Faculty of Graduate Studies at the University of Moratuwa, for enrolling me in this Master's degree program. Additionally, I am also thankful for the High-Performance Computing (HPC) facility at The University of Moratuwa, without which the numerical simulations for this research work would not have been possible. Finally, I would like to thank my parents, my wife, my colleagues, the staff at the University of Moratuwa, and many others for their support.

ABSTRACT

This research investigated the issues of vehicular-emitted pollution in Kandy City, a valley-like environment experiencing severe air pollution problems due to a higher traffic volume, topographical aspect, and prevailing weather conditions. The COPERT emission model was used to calculate the total emission rates of NO_2 , CO, and PM in major road segments of the city. An OpenFOAM-based CFD model was developed to predict dispersion characteristics over the complex terrain, considering physical phenomena such as surface roughness, wind shear, Coriolis's effect, surface heat flux, buoyancy effect, and turbulence. The developed model was validated against experimental results to investigate its sensitivity and efficiency, and it was found to show good agreement.

The developed CFD model was then applied to simulate the dispersion of vehiculargenerated air pollutants in Kandy City, considering the region's two main wind patterns NE and SW, topography, and emission rates of major road segments. The model's concentration and dispersion pattern of pollutants were found to vary with urban topography and wind pattern, with higher concentrations of pollutants observed in areas with high traffic volume and severe traffic congestion, such as the central business district and areas close to bus stands. The model was also used to investigate pollution dispersion patterns in 27 locations at the pedestrian level, with good agreement found between the model's predicted concentrations of NO_2 and experimental results.

Overall, this study highlights the significance of considering topography and meteorological conditions when evaluating pollution dispersion mechanisms in urban environments. The developed CFD model can be used as a promising tool for predicting pollutant transport and wind flow in the built environment, aiding in proper urban planning to reduce pollution accumulation in significant locations. This research can contribute towards effective policies and interventions to mitigate the impacts of vehicular-generated air pollution in valley cities.

Keywords: Atmospheric dispersion, CFD, Open FOAM, Numerical modeling, Complex terrain

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor			i		
Ac	know	ledgme	nt	ii	
At	ostract	t		iii	
Ta	ble of	Conten	ts	iv	
Lis	st of F	Figures		vii	
Lis	st of T	Tables		xii	
Li	st of A	Abbrevia	ations	xii	
Li	st of A	Appendi	ces	XV	
1	Intro	oduction		1	
	1.1	Resear	rch Objectives	3	
	1.2	Metho	dology	3	
		1.2.1	Estimation of Emission rates in Kandy urban Area	3	
		1.2.2	Development of a new CFD solver and its validation	4	
		1.2.3	Application of developed CFD model in Kandy City	5	
	1.3	Thesis	Organization	8	
2	Lite	rature R	eview	9	
	2.1	Air po	llution in Kandy urban area	9	
	2.2	Existin	ng vehicular-emission models	9 10	
	2.3	Funda	mental of Computational Fluid Dynamics dispersion model	11	
	2.4	Theory	y of atmospheric physics	12	
		2.4.1	Wind flow and pollution transport over large valley	15	
		2.4.2	Implementation of surface roughness in the CFD model	16	
		2.4.3	The Coriolis effect in atmospheric boundary layer	17	
	2.5	The O	penFOAM frameworks	18	
	2.6	Solver	implementation	19	
	2.7	Turbu	lence in ABL boundary layer	20	

3	Asse	essing th	ne generation of pollutants by vehicles in the city of Kandy	22
	3.1	Applic	cation of COPERT-11 traffic emission model	22
	3.2	Deterr	nining the volume of traffic in the study area	23
	3.3	Deterr	nining the average speed of the vehicles and the travel time	26
	3.4	Total t	traffic flow in the study domain	26
	3.5	Deterr	nining the emission rates of the domain	27
4	Dev	elopmer	nt of new CFD solver	31
	4.1	Model	limplementation	31
	4.2	Selec	tion of suitable Solution Algorithm	31
	4.3	Imple	menting the ABL flow in the governing equation	32
		4.3.1	Adding the temperature equation to the model	33
		4.3.2	Adding the passive scalar transport equation to the model	33
		4.3.3	Selection of Realizable $k - \epsilon$ closure model	34
	4.4	The in	nplementation of boundary conditions into the developed model	36
		4.4.1	Inlet boundary	36
		4.4.2	Surface/Terrain boundary	37
		4.4.3	Outlet boundary	38
		4.4.4	Upper boundary	38
	4.5	Imple	mentation of Coriolis acceleration in momentum equation	39
	4.6	Comp	ilation of new solver	39
	4.7	The m	odel validation matrix	39
	4.8	The M	lock Urban Setting Test experiment	40
		4.8.1	Geometry and meshing	42
		4.8.2	Case set-up	43
		4.8.3	Application of Boundary conditions	43
		4.8.4	Simulation results for neutral atmospheric condition	44
		4.8.5	Simulation results for stable atmospheric Condition	48
	4.9	Valida	tion of the developed model over the Askervein complex hill	54
		4.9.1	Description of the study area	54
		4.9.2	Mesh creation	55
		4.9.3	Case set-up and simulation	57

		4.9.4 Application of boundary conditions	58
		4.9.5 Mesh independence analysis	59
		4.9.6 Validation of simulated results	60
5	App	lication of developed model Over the Kandy City	63
	5.1	Description of the study area	63
	5.2	Generating the DEM and 3-D Stl model of the study area	63
	5.3	Meteorological data of the study area	65
	5.4	Mesh generation	67
	5.5	Implementing the emission model	70
	5.6	Model Simulation	72
	5.7	Model validation with the experimental results	75
6	Con	clusions, suggestions and future works	93
	6.1	Conclusion	93
		6.1.1 Emission generation in the Kandy city area	93
		6.1.2 Development of new CFD model and its validation	93
		6.1.3 Application of model in the Kandy city	94
	6.2	Suggestions	94
	6.3	Future works	95
Re	feren	ces	97
Aŗ	pend	ix A Mesh generation of the computational domain	106
Aŗ	pend	ix B Development of the OpenFOAM solver	110
Aŗ	pend	ix C Solving the dispersion model	119

LIST OF FIGURES

Figure Description Page Figure 1.1 Framework for emission calculation based on the COPERT-II emission 4 inventory model and the real-time traffic data Figure 1.2 6 Framework for OpenFOAM-based model development 7 Figure 1.3 Framework for model application in Kandy city Figure 2.1 The Atmospheric Boundary Layer and free atmosphere, which is adapted 13 from (Stull 1988) Figure 2.2 Explanation of physical phenomena of flow properties over the valleylike complex terrain during the day (a) and night (b) (Oke et al, 1987) 15 Figure 2.3 The mechanism of earth rotation and generation Coriolis force 18 The solution frame works for the PimpleFOAM algorithm 21 Figure 2.4 25 Figure 3.1 The major road network in this study area KMC & CBD the total number of vehicle flows in the inflow & outflow directions at Figure 3.2 27 KMC and CBD with respect to the time from 0700 hrs to 0900 hrs Figure 3.3 The average daily flow (13 Hours) of vehicles in the CBD region 29 Figure 4.1 The experimental array setup, which includes the installation of concentration measuring instruments (PIDs), is implemented in red Lines 1, 2, 3, and 4, measurement masts A, B, C, D, and tower T. The emission source (S) is also indicated in red. The purple stars indicate the locations where the PIDs are installed to measure the pollutant concentrations. The details of this setup have been adapted from the study by 41 Biltoft [1]. Figure 4.2 Implementation of the MUST array with mesh generation, (a): Top view of the Mesh geometry, (b) Mesh generation inside the computa-42 tional domain Figure 4.3 (a) and (b) are the velocity streamline over the building arrays and gas 45 dispersion pattern after 200sec respectively Figure 4.4 Vertical velocity and turbulent kinetic energy profiles for mast A, B, D and Tower T 46 Figure 4.5 Horizontal concentration profile for Lines 1, 2, 3 4 and vertical concentration profile for Masts B, C, D, Tower T 47 Figure 4.6 (a) and (b) are the scatter plots of CFD and the experimental results for the velocity profile and the concentration profiles for the neutral 48 condition, respectively

Figure 4.7	The experimental array setup included concentration measuring instru-	
	ments (PIDs) installed in red lines 1, 2, 3, and 4, measurement masts	
	A, B, C, D, and tower T (all in red). The gas source (S) was indicated	
	in red. These details were adapted from the study by Biltoft [1].	49
Figure 4.8	(a) and (b) are the velocity streamline over the building arrays and gas	
	dispersion pattern after 200sec, respectively	50
Figure 4.9	Vertical velocity and turbulent kinetic energy profiles for mast A, B, C	
	and Tower T	51
Figure 4.10	Horizontal concentration profile for Lines 1, 2, 3 4 and vertical con-	
	centration profile for Masts A, B, C, Tower T	52
Figure 4.11	(a) and (b) are the scatter plots of CFD and the experimental results for	
	the velocity profile and the concentration profiles for the stable condi-	
	tion, respectively	53
Figure 4.12	(a) and (b) are the topographical details with counter-plots and experi-	
	mental set-up of this hill [2] and the actual photograph of the hill [3],	
	respectively	55
Figure 4.13	The elevation and the horizontal distance from the hilltop HT of <code>Askerv</code>	vein 56
Figure 4.14	The figure depicts the mesh generated for the Askervein hill: (a)	
	represents the computational domain, (b & c) show the mesh inside	
	the computational domain at different zoom levels, and (d) displays the	
	generated mesh over the surface. The mesh has finer cells in the vicinity	
	of the surface and coarser cells in the upper domain.	57
Figure 4.15	The vertical velocity profile at the reference point RS and the horizon-	
	tal velocity profile at the central point (CP) along the (AA-AA) for the	
	fine, medium, and coarse grid sizes, respectively	59
Figure 4.16	(a) and (b) are the mean velocity speedup ratio at the hilltop along the	
	A-A line and the non-dimensional turbulent kinetic energy profile at the	
	hilltop along the A-A line, respectively	60
Figure 4.17	Wind profile around the terrain in the Z directions at 30m, 50m, 70m,	
	and 100m, respectively	62
Figure 5.1	Computational domain of the study area: obtained from Google Earth	64
Figure 5.2	(a) is the Google map of the computational domain in which the major	
	road network and heart of the city are included, (b) is the terrain map	
	with the elevation profile	64
Figure 5.3	(a) is the DEM raster image, (b) is the point cloud vectors in which the	
	shortest distance between the neighboring cells is approximately 30m	65
Figure 5.4	(a) is the generated 3D Stl geometry, and (b) is the 3D geometry with	
	the boundary patches	66
Figure 5.5	Wind rose of annual wind direction frequencies (%) for maximum wind	
	speeds for Kandy city, Sri Lanka.	67

Figure 5.6	Generated mesh geometry at the boundary patches	68
Figure 5.7	Generated mesh inside the computational domain	69
Figure 5.8	The three-dimensional model of the road network	70
Figure 5.9	Three-dimensional building elements	70
Figure 5.10	Three-dimensional mesh with the building/surface roughness elements	71
Figure 5.11	Three-dimensional mesh is with the building/surface and road elements	71
E 5.10	together Discution during a fither an initial and a fither a fit	71 72
Figure 5.12	Discretized grid point of the emission source	72
Figure 5.13	The simulated pollutant concentration of NO_2 after 60 minutes for the NE -wind direction	74
Figure 5.14	Locations of the experimental study in the map	78
Figure 5.15	Comparison of the results between the experimental study [4] and the CFD simulation	78
Figure 5.16	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM	
C	and the velocity profile at the location reference K_1 in the (z) direction,	79
Figure 5.17	respectively $(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM	19
Figure 5.17		
	and the velocity profile at the location reference K_2 in the (z) direction, respectively	79
Figure 5.18	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM	
	and the velocity profile at the location reference K_3 in the (z) direction, respectively	80
Figure 5.19	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM	
-	and the velocity profile at the location reference K_4 in the (z) direction,	
	respectively	80
Figure 5.20	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM	
-	and the velocity profile at the location reference K_5 in the (z) direction,	
	respectively	81
Figure 5.21	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM	
	and the velocity profile at the location reference K_6 in the (z) direction,	
	respectively	81
Figure 5.22	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM	
	and the velocity profile at the location reference K_7 in the (z) direction,	
	respectively	82
Figure 5.23	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM	
	and the velocity profile at the location reference K_8 in the (z) direction,	
	respectively	82
Figure 5.24	(a) , (b) , (c) and (d) are the Concentration profile of NO_2 , CO , PM	
	and the velocity profile at the location reference K_9 in the (z) direction,	
	respectively	83

Figure 5.25	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM and the velocity profile at the location reference K_{10} in the (z) direction, respectively	83
Figure 5.26	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{11} in the (z) direction, respectively	84
Figure 5.27	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{12} in the (z) direction, respectively	84
Figure 5.28	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{13} in the (z) direction, respectively	85
Figure 5.29	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{14} in the (z) direction,	85
Figure 5.30	respectively $(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM and the velocity profile at the location reference K_{15} in the (z) direction,	
Figure 5.31	respectively (a),(b),(c) and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{16} in the (z) direction,	86
Figure 5.32	respectively (a),(b),(c) and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{17} in the (z) direction,	86
Figure 5.33	respectively (a),(b),(c) and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{18} in the (z) direction,	87
Figure 5.34	respectively (a),(b),(c) and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{19} in the (z) direction,	87
Figure 5.35	respectively (a),(b),(c) and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{20} in the (z) direction,	88
Figure 5.36	respectively (a),(b),(c) and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{21} in the (z) direction,	88
Figure 5.37	respectively (a),(b),(c) and (d) are the Concentration profile of NO_2 , CO , PM and the velocity profile at the location reference K_{22} in the (z) direction,	89
	respectively	89

Figure 5.38	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM and	
	the velocity profile at the location reference K_{23} in the (z) direction,	
	respectively	90
Figure 5.39	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM and	
	the velocity profile at the location reference K_{24} in the (z) direction,	
	respectively	90
Figure 5.40	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM and	
	the velocity profile at the location reference K_{25} in the (z) direction,	
	respectively	91
Figure 5.41	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM and	
	the velocity profile at the location reference K_{26} in the (z) direction,	
	respectively	91
Figure 5.42	$(a),(b),(c)$ and (d) are the Concentration profile of NO_2, CO, PM and	
	the velocity profile at the location reference K_{27} in the (z) direction,	
	respectively	92

LIST OF TABLES

TableDescription

Page

Table 3.1	Descriptions of the survey data of the Vehicle types in the Kandy Urban	
	Area	22
Table 3.2	Emission factors of NO_2 with vehicle speed based on COPERT-11 model	23
Table 3.3	Emission factors of CO with vehicle speed based on COPERT-11 model	24
Table 3.4	Emission factors of PM with vehicle speed based on COPERT-11 model	24
Table 3.5	The total number of vehicle flow in study area road segments in both	
	directions	26
Table 3.6	Counted fraction (%) of vehicles in the Kandy urban area	26
Table 3.7	The estimated total emission of NO_2 in the KMC road segments $(gkm^{-1}h)$	(-1) 28
Table 3.8	The estimated total emission of CO in the KMC road segments $(gkm^{-1}h^{-1})$	⁻¹) 28
Table 3.9	The estimated total emission of PM in the KMC road segments $(gkm^{-1}h)$	⁻¹) 28
Table 3.10	The estimated total emission of NO_2 , CO , and PM in By-Road sec-	
	tions BR_1 , BR_2 , and BR_3 $(gkm^{-1}h^{-1})$	29
Table 3.11	The average emission rates $(gkm^{-1}h^{-1})$ of pollutants in CBD	30
Table 3.12	Estimated emission rates during the peak and off-peak time in KMC	
	$(gkm^{-1}h^{-1})$	30
Table 4.1	Constants for realizable $k - \epsilon$ Model	35
Table 4.2	OpenFOAM boundary conditions at inlet patch	37
Table 4.3	OpenFOAM boundary conditions at bottom wall	38
Table 4.4	The flow variables for neutral case	42
Table 4.5	Statistical analysis of CFD experimental results for the neutral condi-	
	tion	48
Table 4.6	The flow variables for stable case	49
Table 4.7	Stastical analysis of CFD experimental results for the stable condition	53
Table 5.1	Parameters assigned in the SnappyHexMesh dictionary	69
Table 5.2	Name of the locations and the coordinates	77
Table 5.3	Deviation of model results with the experimental studies	77

LIST OF ABBREVIATIONS

Abbreviation Description

3D	three dimensional
CO_x	carbon oxides
Ca	Calcium
Cr	Chromium
Cu	Copper
DEM	Digital Elevation Model
Fe	Iron
IDW	Inverse Distance Weighting
Mn	Manganese
NO_2	Nitrogen dioxide
NO_x	nitrogen oxides
Na	Sodium
O_3	Ozone
PAH	Poly-cyclic Aromatic Hydrocarbons
PM	particulate matters
PPM	Parts per million
Pb	Lead
R_e	Reynolds numbers
SO_2	Sulfur dioxide
VOC	volatile organic compounds
Zn	Zinc
g	gravitational acceleration
ABL	Atmosphric Boundary Layer
CBD	Center Business District
CFD	computational fluid dynamics
COPERT	Computer Program to Calculate Emissions from
	Road Transport
DEM	Digital Elevations Model
FVM	Finite Volume Method
GAMG	Geometric-algebraic multi-grid
HPC	High-Performance Computing
IC	Internal Combustion Engines
IVE	International Vehicle Emissions

Abbreviation Description

KMC	Kandy Municipal Council
LES	Large Eddy Simulation
MOVES	Motor Vehicle Emission Simulator
MUST	mock urban setting test experiment
PDE	Partial Differential Equations
PID	photo ionization detectors
RANS	The Reynolds Average Naiver-Stokes Equation
STL	StereoLithography
TMC	Turning Movements Counts
UTM	Universal Transverse Mercator
WHO	World Health Organization

LIST OF APPENDICES

Appendix	Description	Page
Appendix -A	Mesh generation of the computational domain	106
Appendix -B	Development of the OpenFOAM solver	110
Appendix -C	Solving the dispersion model	119