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ABSTRACT 
 
 
There are several applications when comes to spoken language understanding such as 
topic modeling and intent detection. One of the primary underlying components used 
in spoken language understanding studies is automatic speech-recognition models. In 
recent years we have seen a major improvement in the automatic speech recognition 
system to recognize spoken utterances. But it is still a challenging task for low-
resource languages as it requires hundreds of hours of audio input to train an automatic 
speech recognition model.  

To overcome this issue recent studies have used transfer learning techniques. 
However, the errors produced by the automatic speech recognition models 
significantly affect the downstream natural language understanding models used for 
intent or topic identification. In this work, we have proposed a multi-automatic speech 
recognition set up to overcome this issue. We have shown that combining outputs from 
multiple automatic speech recognition models can significantly increase the accuracy 
of low-resource speech-command transfer-learning tasks than using the output from a 
single automatic speech recognition model.  

We have come up with convolution neural network-based setups that can utilize 
outputs from pre-trained automatic speech recognition models such as DeepSpeech2 
and Wav2Vec 2.0. The experiment result shows a 7% increase in accuracy over the 
current state-of-the-art low resource speech-command phoneme-based speech intent 
classification methodology.  
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