EFFECTIVE ARCHITECTURE FOR CLINICAL DECISION SUPPORT SYSTEM

Kalutharage Chamlini Vidyarthi Dayathilake

199315B

Master of Science in Computer Science

Department of Computer Science and Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > July 2022

EFFECTIVE ARCHITECTURE FOR CLINICAL DECISION SUPPORT SYSTEM

Kalutharage Chamlini Vidyarthi Dayathilake

199315B

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Computer Science.

Department of Computer Science and Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > July 2022

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

K.C.V. Dayathilake

Data

Date

The above candidate has carried out research for the Masters thesis/ dissertation under my supervision.

.....

.....

Prof. Indika Perera

Date

ABSTRACT

The Healthcare domain is a very sensitive domain where the direct stakeholders are patients in the public, which makes a healthcare system directly dealing with patients' lives. There could be heard of several cases in a year where it leads to critical damage or even loss of life, because of misdiagnosis or delays in the diagnosis process or the delay or ignorance of new treatment methods. A clinical decision support system facilitating support for diagnosis and therapeutic decisions could greatly help healthcare professionals when identifying diseases by going through patients' biometrics, life cycle, and symptoms, and when deciding on necessary clinical tests to arrive at confirmation of the diagnosis and decide on treatment methods. The main focus of this study is mapping the real-world diagnosis process to a digitalized system. Senior clinicians use their own experience to derive medical diagnoses accurately. This study proposes an architecture for an evidence-based clinical decision support system, where the system infers knowledge from past knowledge, using machine learning algorithms, and use for future predictions, which could infer and use the medical incidents of the past for future diagnosis, just like experienced doctors. In a practical scenario, diagnosis of disease happens step by step, going through several stages starting from an initial level and digging deeper. To incorporate this behavior, a layered knowledge modeling system is proposed with an ensemble classifier of Random Forest classifier, Support Vector Machine, and Naïve Bayes classifier, and organized into a tree structure based on disease classification hierarchy. Additionally, the proposed system provides feedback and suggestions for clinical tests using feature selection, and a rationale for the diagnosis derived by incorporating explainable machine learning concepts.

Keywords: Clinical decision support system architecture, CDSS architecture, Machine learning, Layered architecture for CDSS, Digital medicine, Disease classification

ACKNOWLEDGEMENTS

My sincere gratitude is extended to Prof. Indika Perera, my supervisor, Head of the Department of Computer Science and Engineering, Faculty of Engineering, University of Moratuwa, for the valuable guidance and support throughout this journey.

I would like to thank my family members and friends for the motivation and continuous support provided throughout this period of my life.

My appreciation goes to all my batch mates in the MSc batch and colleagues at my workplace for the assistance extended in managing work.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGMENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	ix
LIST OF APPENDICES	ix
INTRODUCTION	1
1.1 Background	1
1.2 Problem	3
1.3 Objectives	4
1.4 Scope	5
1.5 Proposed solution	5
1.6 Outline	8
LITERATURE REVIEW	9
2.1 Research carried out under architecture for CDSS	9
2.2 Research carried out under knowledge engineering	11
2.3 Machine learning approaches	16
METHODOLOGY	20
3.1 Dataset	21
3.2 Knowledge engine	21
3.2.1 Layered Knowledge Models	22

3.2.2 Train knowledge model by machine learning algorithms	26
3.2.3 Generate result in an ensemble classifier	27
3.2.4 Deriving rationale for the decision	31
3.3 CDSS interfaces	33
IMPLEMENTATION	35
4.1 Modeling layered knowledge engine	35
4.2 Implementation of Training Process of CDSS	37
4.3 Implementation of diagnosis support/ Single instance classification	46
4.4 Implemented Prototype – User Interfaces and Sample Scenarios	56
EVALUATION	62
5.1 Clinical-diagnosis-result-based evaluation	62
5.2 Performance-based evaluation	66
CONCLUSION	74
6.1 Research contribution	74
6.2 Limitations and future work	76
REFERENCES	79

Appendix A : CD/DVD

LIST OF FIGURES

Figure 2.3.1	Equation of posterior probability in Naïve Bayes	16
Figure 2.3.2	Support Vector Machine	17
Figure 2.3.3	Decision Tree	18
Figure 3.2.1	Service architecture of the CDSS	22
Figure 3.2.1.1	Disease hierarchy of circulatory system according to ICD-11 (not the full hierarchy)	24
Figure 3.2.1.2	Graphical representation of the disease hierarchy and traversing through the tree structure	25
Figure 3.2.2.1	High-level architecture of the knowledge model training	26
Figure 3.2.3.1	Generate result in an ensemble classifier	30
Figure 4.1.1	Code snippet of Node object	35
Figure 4.1.2	Snippet of node hierarchy JSON	36
Figure 4.2.1	Rest API for training classifier for a single node	38
Figure 4.2.2	Rest API for training classifier for multiple nodes	38
Figure 4.2.3	Base folder for a node	38
Figure 4.2.4	TrainingInputDTO	39
Figure 4.2.5	TrainingResultDTO	39
Figure 4.2.6	Implementation of training classifier for a single node	44-45
Figure 4.2.7	Implementation of comparing the evaluation summaries of old and new models before saving new model	46
Figure 4.3.1	REST API for classifying a single instance	47
Figure 4.3.2	ClassifierInputDTO	47

Figure 4.3.3	CollectiveClassifierResultDTO	48
Figure 4.3.4	Implementation of single instance classification	50-51
Figure 4.3.5	Implementation of the calculation of ensemble classifier result	54-55
Figure 4.4.1	CDSS (Prototype implementation) - Home Page	56
Figure 4.4.2	CDSS (Prototype implementation) – Diagnosis Support Window	57
Figure 4.4.3	CDSS (Prototype implementation) – Training Window	57
Figure 4.4.4	CDSS (Prototype implementation) – System Evaluation Window	58
Figure 4.4.5	CDSS (Prototype implementation) – Single Node Evaluation Window	58
Figure 4.4.6	Sample scenario 1 – Heart Attack Negative	59
Figure 4.4.7	Sample scenario 2 – Heart Attack Negative	59
Figure 4.4.8	Sample scenario 3 – Heart Attack Positive	60
Figure 4.4.9	Sample scenario 4 – Heart Attack Positive	60
Figure 4.4.10	Sample scenario 5 – Missing mandatory information	61
Figure 5.1.1	Graphical visualization of result comparison of classifiers	64
Figure 5.2.1	Graphical representation of response time values for the training of a given node	69
Figure 5.2.2	Server resource usage by training process by each classifier – Root Node	69

classifier – Node Heart Diseases	
Graphical representation of response time values for classifying a given instance	71
Server resource usage by the process for classifying instances given by each classifier	72
	Graphical representation of response time values for classifying a given instance Server resource usage by the process for classifying instances given by each classifier

LIST OF TABLES

Table 5.1.1	Result comparison of classifiers for heart disease	64
	classification	
Table 5.2.1	Response time values for the training of a given node	68
Table 5.2.2	Response time values for classifying a given instance	71

LIST OF APPENDICES

Appendix A CD/DVD