DROUGHT ASSESSMENT OF KIRINDI OYA AND KELANI RIVER BASINS IN SRI LANKA UNDER CLIMATE CHANGE IMPACTS

Farhana Azmi

208346G

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2022

DROUGHT ASSESSMENT OF KIRINDI OYA AND KELANI RIVER BASINS IN SRI LANKA UNDER CLIMATE CHANGE IMPACTS

Farhana Azmi

208346G

Supervised by Dr R. M. J. Bamunawala

and

Dr T. M. N. Wijayaratna

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Civil Engineering

UNESCO Madanjeet Singh Centre for

South Asia Water Management (UMCSAWM)

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2022

DECLARATION OF THE CANDIDATE AND SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text".

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

UOM Verified Signature

2022-02-06

Farhana Azmi

Date

The above candidate has carried out research for the Masters thesis under my supervision

._____

UOM Verified Signature	2022-02-06
Dr R. M. J. Bamunawala	Date
UOM Verified Signature	2022-02-06
Dr T. M. N. Wijayaratna	Date

ABSTRACT

Drought Assessment of Kirindi Oya and Kelani River Basins in Sri Lanka under Climate Change Impacts

Drought is a natural phenomenon that occurs because of climate change. Droughts are localized events influenced by climatic variables such as precipitation, evapotranspiration, and temperature. As a result, the characteristics and implications of drought differ depending on the climatic administrations in various regions around the world. Drought is one of the maximum significant intervals in Sri Lanka. Sri Lanka is very sensitive to the effects of climate change. Drought is an extremely considerable interval in Sri Lanka in terms of people concerned and helps provided, and the country also serves as a recent example for drought interval and risk assessment in tropical regions.

This research investigates the probable use of drought indices at Kirindi Oya and Kelani River assessment basins and provides drought for future climatic scenarios. This research was directed to perceive the changes in drought, their consistencies according to seasonal analysis in the Kirindi Oya and Kelani River basin in Sri Lanka using normalized difference vegetation index (NDVI), standardized precipitation index (SPI), and streamflow drought index (SDI) for future climate change RCP 8.5 which is one of the worst scenarios according to 5th assessment report of the intergovernmental panel on climate change (IPCC). The drought assessment has been divided into three-time intervals such as observed period (1985-2015), mid-century (2040-2059), and end-century (2080-2099). Further, future climate rainfall data has been forecasted by bias correction monthly factor of historical climate rainfall and observed rainfall data using linear scaling.

The NDVI has been calculated by using Landsat images near-infrared (NIR) and RED bands in GIS 10.3. Initially, SPI and SDI have been calculated for observed rainfall and streamflow data respectively. Hydrological model HEC-HMS was set up and calibrated (2002-2006) with a root mean square error standard deviation ratio (RMSE std dev) value of 0.6, nash sutcliffe (NSE) value of 0.59, and percent bias (PBIAS) of 7.63%. The model was validated from 2010 to 2014 with an RMSE std dev value of 0.7, NSE value of 0.51, and PBIAS of 3.22% for Kirindi Oya basin. Further, for the Kelani basin. the HEC-HMS was set up and calibrated (1990-1995) with an RMSE std dev value of 0.6, NSE value of 0.64, and PBIAS of 0.64% and validated (2007-2011) with RMSE std dev value of 0.7, NSE value of 0.56 and Percent Bias of -3.27% for Kelani basin. Thereafter, mid and end-century SPI and SDI have been calculated for future bias-corrected rainfall data and future simulated streamflow, respectively.

To achieve the objectives of this research work, The rate of recurrence of drought occurrences was determined using a combined SPI and SDI evaluation which identified 1989, 1990, 1992, 2001, and 2004 as a severe drought-affected year in the Kirindi Oya river basin in this observed interval. For the Kelani River basin, severe drought has been identified during 1990, 2001, 2012, 2013, and 2014 in the observed interval.

According to seasonal analysis, the probability of occurrence of extreme drought according to SPI values in Kirindi Oya basin is decreasing 25% for mid and 50% end-century, in the Kelani basin 93.75% for mid and 68.75% in end-century. According to SDI values in the Kirindi Oya basin is decreasing 25% for mid and 25% end-century, in the Kelani basin 93.75% for mid and 50% in end-century. First inter monsoon has been found more severe to drought for both SPI and SDI combination in Kirindi Oya river basin, the northeast monsoon period is the driest season for the Kelani River basin which is situated in wet zone in Sri Lanka.

Keywords: Drought indices, Normalized difference vegetation index (NDVI), Standardized precipitation index (SPI), Streamflow drought index (SDI)

DEDICATION

By the grace of Almighty Allah.

ACKNOWLEDGEMENT

I would want to convey my genuine and heartfelt gratitude to Dr. Janaka Bamunawala, my research supervisor, for his constant support for my work, as well as his patience, drive, and vast expertise. This thesis would not have been completed on time without his supervision and ongoing mentoring. Throughout my time with him, he continuously allowed this research to be my responsibility while steering me on the proper path when he felt I needed it. He is a fantastic educator.

I owe a debt of gratitude to Prof. R.L.H. Lalith Rajapakse, Centre Chairman, and program coordinator, for providing me all the essential assistance, guidance, and encouragement, as well as counseling when needed, despite his hectic schedule.

I would also like to express my gratitude to Late. Shri Madanjeet Singh, the University of Moratuwa, and the UNESCO Madanjeet Singh Centre for South Asia Water Management, Department of Civil Engineering, University of Moratuwa, Sri Lanka, for providing me with the opportunity to pursue a master's degree in Water Resource Engineering and Management at the UNESCO Madanjeet Singh Centre for South Asia Water Management, Department of Civil Engineering, University of Moratuwa.

Also, I must thank Irrigation Department for approvals to collect necessary data.

Finally, I must express my very profound gratitude to my SAF friends, especially Virendra Kumar and Utsab Phuyal for all those supports that help me to focus on this research and have provided me with the encouragement to continue my work when I was having a hard time.

TABLE OF CONTENTS

Declaration of the candidate and supervisor	V
Abstract	VII
Dedication	IX
Acknowledgement	xi
Table of contents	XIII
List of figures	XVII
List of tables	XXV
List of abbreviations	XXVII
Chapter 1	1
1 Introduction	1
1.1 Drought Types	2
1.2 Problem Identification	5
1.3 Problem Statement	5
1.4 Objectives of the study	6
1.4.1 Main objective	6
1.4.2 Specific Objectives	6
Chapter 2	7
2 Literature Review	7
2.1 Droughts	7
2.2 Drought Indices	8
2.2.1 Normalized Difference Vegetation Index (NDVI)	8
2.2.2 Standardized Precipitation Index (SPI)	10
2.2.5 Streamilow Drought index (SDI)	11
2.3 Remote sensing in drought	13
2.4 Use of HEC-HMS in Drought Analysis	14
2.5 Pros and Cons of different models	15
2.6 HEC-HMS Model	16
2.6.1 Simple canopy method-	16
2.0.2 Surface Storage	16
2.0.5 Hallstoffin 2.6.4 Baseflow	1/
2.6.5 Routing	18

	2.7	Clim	nate Change	19
C	hapte	r 3		21
3	N	lateri	als and Methods	21
	3.1	Stud	y Area Selection	21
	3.2 3. 3.	Metł 2.1 2.2	nodology Methodology for indices – reference conditions Methodology for future indices	25 26 27
	3.3	Data	collection	29
	3.4 3. 3.	Land 4.1 4.2	l use map Land-use map in Kirindi Oya River Basin Land-use map in Kirindi Oya River Basin	30 31 32
	3.5	Miss	ing data filling	34
	3.6 3. 3. 3. 3. 3.	Data 6.1 6.2 6.3 6.4 6.5	Analysis of Kirindi Oya River Basin Thanamalwila Streamflow Gauging Station Wellawewa Rainfall station Bandarawela Rainfall Station Bandaraeliya Rainfall Station Lunugamwehera Rainfall Station	37 38 39 41 42 44
	3.7 3. 3. 3. 3. 3.	Data 7.1 7.2 7.3 7.4 7.5	Analysis of Kelani River Basin Hanwella Streamflow Station Hanwella Rainfall Station Waharaka Rainfall Station Kenilworth Rainfall Station Laxapana Rainfall Station	46 46 48 49 51 53
	3.8	Sing	le Mass Curve	55
	3.9	Doul	ble Mass curve	56
	3.10 3. 3. 3. 3.11 3.	Ir 10.1 10.2 10.3 H 11.1	ndices calculation Normalized Difference Vegetation Index (NDVI) Standardized Precipitation Index (SPI) Streamflow Drought Index (SDI) EC-HMS Model Development Kirindi Oya	56 56 57 58 59 59
	3.	11.2	Kelani River	68
C	hapte	r 4		75
4	R	esults	and Discussions	75
	4.1	Intro	duction	75
	4.2	Bias	Correction	75
	4.3 4.	Stud 3.1	y Area 1 (Kirindi Oya) Normalized Difference Vegetation Index (NDVI)	77 77

4.3.2	Standardized Precipitation Index (SPI)	79
4.3.3	HEC-HMS Results	86
4.3.4	Streamflow Drought Index (SDI)	93
4.3.5	Seasonal Analysis (Kirindi Oya)	99
4.4 Stu	dy Area 2 (Kelani River)	115
4.4.1	Normalized Difference Vegetation Index (NDVI)	115
4.4.2	Standardized Precipitation Index (SPI)	117
4.4.3	HEC-HMS Results	124
4.4.4	Streamflow Drought Index (SDI)	131
4.4.5	Seasonal Analysis (Kelani River)	137
4.5 Dis	cussion	155
4.5.1	Bias Correction	155
4.5.2	Drought Condition	155
4.5.3	Model Calibration and Validation	158
4.5.4	Drought Assessment	160
Chapter 5		171
5 Conclu	usions and recommendations	171
5.1 Cor	nclusions	171
5.2 Rec	commendations	172
Bibliograph	У	175
Annexure 1		181
Seasonal an	alysis of Kirindi Oya	181

LIST OF FIGURES

Figure 1-1: Relationship between meteorological, hydrological, and agricultural drought3
Figure 3-1: Kirindi Oya river basin from the dry zone and Kelani River basin from the wet zone 22
Figure 3-2: Study area of Kirindi Oya River basin including streamflow station and rainfall stations 23
Figure 3-3: Study area of Kelani River basin including streamflow station and rainfall station 24
Figure 3-4: Methodology flow chart 26
Figure 3-5: Methodology flow chart for indices calculation 27
Figure 3-6: Methodology flow chart for future scenario 28
Figure 3-7 Land-use of Thanamalwila catchment in Kirindi Oya River basin 31
Figure 3-8 Land-use of Hanwella catchment in Kelani River basin 33
Figure 3-9 Linear regression equation for Wellawewa rainfall station 35
Figure 3-10 Linear regression equation for Bandarawela rainfall station 35
Figure 3-11 Linear regression equation for Bandaraeliya rainfall station 36
Figure 3-12 Linear regression equation for Lunugamwehara rainfall station 36
Figure 3-13 Streamflow seasonal variation of Thanamalwila streamflow gauging stations including
four monsoon seasons in Sri Lanka 38
Figure 3-14 Streamflow variation of Thanamalwila streamflow gauging stations according to
hydrological year (1987/88 - 2014/15) 39
Figure 3-15 Rainfall seasonal variation of Wellawewa rainfall stations including four monsoon
seasons in Sri Lanka 39
Figure 3-16 Rainfall variation of Wellawewa rainfall station according to hydrological year (1985/86
- 2014/15) 40
Figure 3-17 Yearly streamflow vs yearly rainfall of wellawewa station in the Kirindi Oya River basin
40
Figure 3-18 Rainfall seasonal variation of Bandarawela rainfall stations including four monsoon
seasons in Sri Lanka 41
Figure 3-19 Streamflow variation of Bandarawela rainfall station according to hydrological year
(1985/86 – 2014/15) 41
Figure 3-20 Yearly streamflow vs yearly rainfall of Bandarawela station in the Kirindi Oya River
basin 42
Figure 3-21 Rainfall seasonal variation of Bandaraeliya rainfall stations including four monsoon
seasons in Sri Lanka 43
Figure 3-22 Rainfall variation of Bandaraeliya rainfall station according to hydrological year (1985/86
- 2014/15) 43
Figure 3-23 Yearly streamflow vs yearly rainfall of Bandaraeliya station in the Kirindi Oya River
basin 44

Figure 3-24 Rainfall seasonal variation of Lunugamwehera rainfall stations including four monsoon
Seasons in Sit Lanka45
(1005/06 - 2014/15)
(1985/86 – 2014/15)45
Figure 3-26 Yearly streamflow vs yearly rainfall of Lunugamwehera station in the Kirindi Oya River
basin46
Figure 3-27 Streamflow seasonal variation of Hanwella streamflow gauging stations including four
monsoon seasons in Sri Lanka47
Figure 3-28 Streamflow variation of Hanwella streamflow gauging stations according to hydrological
year (1987/88 – 2014/15)47
Figure 3-29 Rainfall seasonal variation of Hanwella rainfall stations including four monsoon seasons
in Sri Lanka48
Figure 3-30 Streamflow variation of Hanwella rainfall station according to hydrological year (1985/86
- 2014/15)49
Figure 3-31 Yearly streamflow vs yearly rainfall of Hanwella station in the Kelani River basin 49
Figure 3-32 Rainfall seasonal variation of Waharaka rainfall stations including four monsoon seasons
in Sri Lanka 50
Figure 3-33 Rainfall variation of Waharaka rainfall station according to hydrological year (1985/86 -
2014/15)50
Figure 3-34 Yearly streamflow vs yearly rainfall of Waharaka station in the Kelani River basin 51
Figure 3-35 Rainfall seasonal variation of Kenilworth rainfall stations including four monsoon
seasons in Sri Lanka51
Figure 3-36 Rainfall variation of Kenilworth rainfall station according to hydrological year (1985/86 -
2014/15)52
Figure 3-37 Yearly streamflow vs yearly rainfall of Kenilworth station in the Kelani River basin52
Figure 3-38 Rainfall seasonal variation of Laxapana rainfall stations including four monsoon seasons
in Sri Lanka53
Figure 3-39 Rainfall variation of Laxapana rainfall station according to hydrological year (1985/86 –
2014/15)54
Figure 3-40 Yearly streamflow vs yearly rainfall of Laxapana station in the Kelani River basin54
Figure 3-41 Single mass curve including four rainfall stations of Kirindi Ova River basin55
Figure 3-42 Single mass curve including four rainfall stations of Kelani River basin55
Figure 3-43 Double mass curve including four rainfall Stations of Kirindi Ova River basin56
Figure 3-44 Catchment, sub-catchments, reaches, and streams delineated in HEC-HMS development
60
Figure 3-45 Canopy interception in Thanamalwila catchment62
Figure 3-46 Thiessen rainfall distribution in Thanamalwila catchment67
<i>σ</i> - · · · · · · · · · · · · · · · · · ·

Figure 3-47 Catchment, sub catchments, reaches, and streams delineated in HEC-HMS development
68
Figure 3-48 Thiessen rainfall distribution in Hanwella catchment72
Figure 4-1 Bias corrected rainfall (mm) for WAS_22 MPI-M-MPI-ESM-MR 77
Figure 4-2 NDVI for (A) 1986 and (B) 1995 in the Thanamalwila basin, which is a sub-basin of the
Kirindi Oya River basin 78
Figure 4-3 NDVI for (C) 2006 and (B) 2015 in the Thanamalwila basin which is sub basin of the
Kirindi Oya River basin 79
Figure 4-4 SPI variation in the Kirindi Oya river basin based on 3, 6, and 12 months for the observed
period (1986-2015) 80
Figure 4-5 SPI variation in the Kirindi Oya river basin based on 3-month for the observed period
(1986-2015) 81
Figure 4-6 SPI variation in the Kirindi Oya river basin based on 6-month for the observed period
(1986-2015) 81
Figure 4-7 SPI variation in the Kirindi Oya river basin based on 12-month for the observed period
(1986-2015) 82
Figure 4-8 SPI variation in the Kirindi Oya river basin based on 3-month for mid-century (2040-2059)
in RCP 8.5 83
Figure 4-9 SPI variation in the Kirindi Oya river basin based on 6-month for mid-century (2040-2059)
considering RCP 8.5 83
Figure 4-10 SPI variation in the Kirindi Oya river basin based on 12-month for mid-century (2040-
2059) considering RCP 8.5 84
Figure 4-11 SPI variation in the Kirindi Oya river basin based on 3-month for End-century (2080-
2099) 85
Figure 4-12 SPI variation in the Kirindi Oya river basin based on 6-month for End-century (2080-
2099) considering RCP 8.5 85
Figure 4-13 SPI variation in the Kirindi Oya river basin based on 12-month for End-century (2080-
2099) considering RCP 8.5 86
Figure 4-14 Observed and simulated streamflow hydrograph along thissen rainfall of Kirindi Oya
river basin calibration period (2002/03-2006/07) 88
Figure 4-15 Observed and simulated streamflow hydrograph along thissen rainfall of Kirindi Oya
river basin calibration period (2002/03-2006/07) in log scale 88
Figure 4-16 Observed and simulated streamflow Flow Duration Curve (FDC) of Kirindi Oya river
basin calibration period (2002/03-2006/07) 89
Figure 4-17 Observed and simulated streamflow thresholds of Kirindi Oya river basin calibration
period (2002/03-2006/07) 89
Figure 4-18 Observed and simulated streamflow hydrograph along thissen rainfall of Kirindi Oya
river basin validation period (2010/11-20014/15) 90

Figure 4-19 Observed and simulated streamflow hydrograph along thissen rainfall of Kirindi Ova
river basin validation period (2010/11-2014/15) in log scale90
Figure 4-20 Observed and simulated streamflow Flow Duration Curve (FDC) of Kirindi Ova river
basin validation period (2010/11-2014/15)91
Figure 4-21 Observed and simulated streamflow thresholds of Kirindi Ova river basin validation
period (2010/11-2014/15)
Figure 4-22 Simulated streamflow hydrograph along thissen rainfall of Kirindi Ova river basin Mid-
century period (2040-2059) in validate HEC-HMS92
Figure 4-23 Simulated streamflow hydrograph along thissen rainfall of Kirindi Oya river basin End-
century period (2080-2099) in validate HEC-HMS92
Figure 4-24 SDI variation in the Kirindi Ova river basin based on 3, 6, and 12 months for the observed
period (1986-2015)93
Figure 4-25 SDI variation in the Kirindi Oya river basin based on 3-month for the observed period
(1986-2015)94
Figure 4-26 SDI variation in the Kirindi Oya river basin based on 6-month for the observed period
(1986-2015)94
Figure 4-27 SDI variation in the Kirindi Oya river basin based on 12 months for the observed period
(1986-2015)95
Figure 4-28 SDI variation in the Kirindi Oya river basin based on 3-month for mid-century (2040-
2059) in RCP 8.596
Figure 4-29 SDI variation in the Kirindi Oya river basin based on 6-month for mid-century (2040-
2059) considering RCP 8.596
Figure 4-30 SDI variation in the Kirindi Oya river basin based on 12-month for mid-century (2040-
2059) considering RCP 8.597
Figure 4-31 SDI variation in the Kirindi Oya river basin based on 3-month for mid-century (2080-
2099) considering RCP 8.598
Figure 4-32 SDI variation in the Kirindi Oya river basin based on 6-month for mid-century (2080-
2099)98
Figure 4-33 SDI variation in the Kirindi Oya river basin based on 12-month for mid-century (2080-
2099) considering RCP 8.599
Figure 4-34 Standardized Precipitation Index in Second Inter Monsoon for (a) observed period, (b)
mid-Century period, and (c) end-Century period in Kirindi Oya River basin 100
Figure 4-35 Streamflow Drought Index in Second Inter Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kirindi Oya River basin 102
Figure 4-36 Standardized Precipitation Index in Northeast Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kirindi Oya River basin 104
Figure 4-37 Streamflow Drought Index in Northeast Monsoon for (a) observed period, (b) mid-
Century period, and (c) end-Century period in Kirindi Oya River basin 106

Figure 4-38 Standardized Precipitation Index in First Inter Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kirindi Oya River basin108
Figure 4-39 Streamflow Drought Index in First Inter Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kirindi Oya River basin110
Figure 4-40 Standardized Precipitation Index in Southwest Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kirindi Oya River basin112
Figure 4-41 Streamflow Drought Index in Southwest Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kirindi Oya River basin114
Figure 4-42 NDVI for A. 1986 and B. 1995 in the Hanwella basin which is sub basin of the Kelani
River basin116
Figure 4-43 NDVI for C. 2006 and B. 2015 in the Hanwella basin which is sub basin of the Kelani
River basin 117
Figure 4-44 SPI variation in the Kelani River basin based on 3, 6, and 12 months for the observed
period (1986-2015)118
Figure 4-45 SPI variation in the Kelani River basin based on 3-month for the observed period (1986-
2015)119
Figure 4-46 SPI variation in the Kelani River basin based on 6-month for the observed period (1986-
2015)119
Figure 4-47 SPI variation in the Kelani River basin based on 12-month for the observed period (1986-
2015)120
Figure 4-48 SPI variation in the Kelani River basin based on 3-month for mid-century (2040-2059)
considering RCP 8.5121
Figure 4-49 SPI variation in the Kelani River basin based on 6-month for mid-century (2040-2059)
considering RCP 8.5121
Figure 4-50 SPI variation in the Kelani River basin based on 12-month for mid-century (2040-2059)
considering RCP 8.5122
Figure 4-51 SPI variation in the Kelani River basin based on 3-month for mid-century (2080-2099)
considering RCP 8.5123
Figure 4-52 SPI variation in the Kelani River basin based on 6-month for mid-century (2080-2099)
considering RCP 8.5123
Figure 4-53 SPI variation in the Kelani River basin based on 12-month for mid-century (2080-2099)
considering RCP 8.5124
Figure 4-54 Observed and simulated streamflow hydrograph along thissen rainfall of Kelani River
hasin calibration period (1990/91-1994/95)
Figure 4-55 Observed and simulated streamflow hydrograph along thissen rainfall of Kelani River
hasin calibration period (1990/91-1994/95) in log scale
Figure 4-56 Observed and simulated streamflow Flow Duration Curve (FDC) of Kelani Diver basin
calibration period (1900/01-1004/05)
vanoration period (1770/71-1774/75)127

Figure 4-57 Observed and simulated streamflow thresholds of Kelani River basin calibration period
(1990/91-1994/95)127
Figure 4-58 Observed and simulated streamflow hydrograph along thissen rainfall of Kelani River
basin validation period (2007/08 - 2011/12) 128
Figure 4-59 Observed and simulated streamflow hydrograph along thissen rainfall of Kelani River
basin validation period (2007/08 - 2011/12) in log scale 128
Figure 4-60 Observed and simulated streamflow Flow Duration Curve (FDC) of Kelani River basin
validation period (2007/08 - 2011/12) 129
Figure 4-61 Observed and simulated streamflow thresholds of Kelani River basin validation period
(2007/08 - 2011/12) 129
Figure 4-62 Simulated streamflow hydrograph along thissen rainfall of Kelani River basin mid-
century period (2040-2059) in validate HEC-HMS model 130
Figure 4-63 Simulated streamflow hydrograph along thissen rainfall of Kelani River basin end-
century period (2080-2099) in validate HEC-HMS 130
Figure 4-64 SDI variation in the Kelani River basin based on 3, 6, and 12 months for the observed
period (1986-2015) 131
Figure 4-65 SDI variation in the Kelani River basin based on 3-month for the observed period (1986-
2015) 132
Figure 4-66 SDI variation in the Kelani River basin based on 6-month for the observed period (1986-
2015) 132
Figure 4-67 SDI variation in the Kelani River basin based on 12-month for the observed period (1986-
2015) 133
Figure 4-68 SDI variation in the Kelani River basin based on 3-month for mid-century (2040-2059) in
RCP 8.5 134
Figure 4-69 SDI variation in the Kelani River basin based on 6-month for mid-century (2040-2059)
considering RCP 8.5 134
Figure 4-70 SDI variation in the Kelani River basin based on 12-month for mid-century (2040-2059)
considering RCP 8.5 135
Figure 4-71 SDI variation in the Kelani River basin based on 3-month for mid-century (2080-2099)
considering RCP 8.5 136
Figure 4-72 SDI variation in the Kirindi Ova river basin based on 6-month for mid-century (2080-
2099) considering RCP 8.5
Figure 4-73 SDI variation in the Kirindi Ova river basin based on 12-month for mid-century (2080-
2099) considering RCP 8.5
Figure 4-74 Standardized Precipitation Index in Second Inter Monsoon for (a) observed period (b)
mid-century period and (c) end-century period in Kelani River hasin 138
Figure 4-75 Streamflow Drought Index in Second Inter Monsoon for (a) observed period. (b) mid-
century neriod and (c) end-century period in Kalani River basin
tentury period, and (c) end-century period in Kelani Kivel basin

Figure 4-76 Standardized Precipitation Index in Northeast Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kelani River basin142
Figure 4-77 Streamflow Drought Index in Northeast Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kelani River basin144
Figure 4-78 Standardized Precipitation Index in First Inter Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kelani River basin146
Figure 4-79 Streamflow Drought Index in First Inter Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kelani River basin148
Figure 4-80 Standardized Precipitation Index in Southwest Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kelani River basin150
Figure 4-81 Streamflow Drought Index in Southwest Monsoon for (a) observed period, (b) mid-
century period, and (c) end-century period in Kelani River basin152
Figure 4-82 Variation of SPI and SDI in the 12-month interval of Kirindi Oya basin over the observed
period 156
Figure 4-83 Variation of SPI and SDI in the 12-month interval of Kelani River basin over the
observed period157
Figure 4-84 Variation of SPI and SDI in Kirindi Oya basin over the observed period where is (a)
Second Inter Monsoon, (b) Northeast Monsoon, (c) First Inter Monsoon, and (d) Southwest
Monsoon160
Figure 4-85 Variation of SPI and SDI in Kirindi Oya basin over the mid-century period where is (a)
Second Inter Monsoon, (b) Northeast Monsoon, (c) First Inter Monsoon, and (d) Southwest
Monsoon161
Figure 4-86 Variation of SPI and SDI in Kirindi Oya basin over the End-Century period where is (a)
Second Inter Monsoon, (b) Northeast Monsoon, (c) First Inter Monsoon, and (d) Southwest
Monsoon162
Figure 4-87 Variation of SPI and SDI in Kelani River basin over the observed period where is (a)
Second Inter Monsoon, (b) Northeast Monsoon, (c) First Inter Monsoon, and (d) Southwest
Monsoon163
Figure 4-88 Variation of SPI and SDI in Kelani River basin over the mid-century period where is (a)
Second Inter Monsoon, (b) Northeast Monsoon, (c) First Inter Monsoon and (d) Southwest
Monsoon164
Figure 4-89 Variation of SPI and SDI in Kelani River basin over the end-century period where is (a)
Second Inter Monsoon, (b) Northeast Monsoon, (c) First Inter Monsoon and (d) Southwest
Monsoon165

Figure A1- 2 Streamflow Seasonal Variation of Thanamalwila Streamflow gauging stations Northeast
monsoon seasons in Sri Lanka 181
Figure A1- 3 Streamflow Seasonal Variation of Thanamalwila Streamflow gauging stations First Inter
monsoon seasons in Sri Lanka 182
Figure A1- 4 Streamflow Seasonal Variation of Thanamalwila Streamflow gauging stations Southwest
monsoon seasons in Sri Lanka 182
Figure A1- 5 Monthly Mean, Maximum and Minimum of Streamflow in Thanamalwila gauging
station in Kirindi Oya river basin 183
Figure A1- 6 Yearly total of Thanamalwila Streamflow Gauging Station in Kirindi Oya River Basin
183
Figure A1- 7 Monthly total of Tanamalwila Streamflow Gauging Station in Kirindi Oya River Basin
184
Figure A1- 8 Double Mass Curve of Wellawaya rainfall station in the Kirindi Oya River Basin 184
Figure A1- 9 Double Mass Curve of Bandarawela rainfall station in the Kirindi Oya River Basin 185
Figure A1- 10 Double Mass Curve of Lunugamwehera rainfall station in the Kirindi Oya River Basin
185
Figure A1- 11 Double Mass Curve of Hanwella rainfall station in the Kelani River Basin 186
Figure A1- 12 Double Mass Curve of Kenilworth rainfall station in the Kelani River Basin 186
Figure A1- 13 Double Mass Curve of Laxapana rainfall station in the Kelani River Basin 187
Figure A1- 14 Bias corrected rainfall (mm) for WAS_22_MIROC-MIROC5 187
Figure A1- 15 Bias corrected rainfall (mm) for WAS_44i MPI-M-MPI-ESM-LR 188

LIST OF TABLES

Table 2-1 Performance rating of the objective functions (Gunathilake et al., 2019)
Table 3-1 Data type, resolution, and data sources for this research both river basin
Table 3-2: Streamflow and Rainfall data of Kirindi Oya river basin with the station's coordinate 30
Table 3-3: Streamflow and rainfall data with their station's coordinate in Kelani River basin
Table 3-4 Land use distribution of Kirindi Oya River basin at Thanamalwila catchment
Table 3-5 Land use distribution of Kelani River basin at Hanwella catchment
Table 3-6 NDVI value ranges for the high, moderate, and severe situation (Taufik et al., 2019) 57
Table 3-7 Metrological Drought Index SPI value ranges according to McKee et al., 1993 58
Table 3-8 Model Parameters and selected methods for calculating these methods
Table 3-9 Vegetation type and canopy interception
Table 3-10 Canopy interception in Thanamalwila each sub-catchment
Table 3-11 Maximum storage and deficit calculation for HEC-HMS for Kirindi Oya River basin 64
Table 3-12 Preparation data in HEC-HMS 64
Table 3-13 Calculation of Time of Concentration 65
Table 3-14 Thiessen weights for the Kirindi Oya River basin at Thanamalwila catchment
Table 3-15 Model Parameters and selected methods for calculating these methods
Table 3-16 Preparation data in HEC-HMS in Kelani River basin
Table 3-17 Maximum storage and deficit calculation for HEC-HMS for Kelani River basin
Table 3-18 Calculation of time of concentration
Table 3-19 Thiessen weights for the Kirindi Oya River basin at Thanamalwila catchment
Table 4-1 Initial parameters and optimized parameters of HEC-HMS model in the Kirindi Oya river
basin
basin
Table 4-3 Event identification of SPI values in Second Inter Monsoon and the percentage variation of
the mid and end-century based on the observed period 101
Table 4-4 Event identification of SDI values in Second Inter Monsoon and the percentage variation of
the Mid and End-century based on the observed period
Table 4-5 Event identification of SPI values in Northeast Monsoon and the percentage variation of the
mid and end-century based on the observed period 105
Table 4-6 Event identification of SDI values in Northeast Monsoon and the percentage variation of the
mid and end-century based on the observed period 107
Table 4-7 Event identification of SPI values in First Inter Monsoon and the percentage variation of the
mid and end-century based on the observed period 109
Table 4-8 Event identification of SDI values in First Inter Monsoon and the percentage variation of
the mid and end-century based on the observed period

Table 4-9 Event identification of SPI values in Southwest Monsoon and the percentage variation of the mid and end-century based on the observed period
Table 4-10 Event identification of SDI values in Northwest Monsoon and the percentage variation of the mid and end-century based on the observed period
Table 4-11 Initial parameters and optimized parameters of HEC-HMS model in the Kelani River basin
Table 4-12 Objective function's performance rating of calibration and validation in Kelani River basin
Table 4-13 Event identification of SPI values in Second Inter Monsoon and the percentage variation
of the mid and end-century based on the observed period
Table 4-14 Event identification of SDI values in Second Inter Monsoon and the percentage variation
of the mid and end-century based on the observed period141
Table 4-15 Event identification of SPI values in Northeast Monsoon and the percentage variation of
the mid and end-century based on the observed period143
Table 4-16 Event identification of SDI values in Northeast Monsoon and the percentage variation of
the mid and end-century based on the observed period
Table 4-17 Event identification of SPI values in First Inter Monsoon and the percentage variation of
the mid and end-century based on the observed period147
Table 4-18 Event identification of SDI values in First Inter Monsoon and the percentage variation of
the mid and end-century based on the observed period
Table 4-19 Event identification of SPI values in Southwest Monsoon and the percentage variation of
the mid and end-century based on the observed period151
Table 4-20 Event identification of SDI values in Southwest Monsoon and the percentage variation of
the Mid and End-century based on the observed period153
Table 4-21 Event identification of SPI values in 12 months period and the percentage variation of the
mid and end-century based on the observed period in Kirindi Oya river basin
Table 4-22 Event identification of SDI values in 12 months period and the percentage variation of the
mid and end-century based on the observed period in Kirindi Oya river basin
Table 4-24 Event identification of SPI values in 12 months period and the percentage variation of the
mid and end-century based on the observed period in the Kelani River basin
Table 4-25 Event identification of SDI values in 12 months period and the percentage variation of the
mid and end-century based on the observed period in the Kelani River basin
Table 4-27 Percentage variation in SPI according to seasonal analysis in both Kirindi Oya and Kelani
River basin in mid-century Period166
Table 4-28 Percentage variation in SPI according to seasonal analysis in both Kirindi Ova and Kelani
River basin in end-century Period
Table 4-29 Percentage variation in SDI according to seasonal analysis in both Kirindi Ova and Kelani
River basin in mid-century Period
Table 4-30 Percentage variation in SDI according to seasonal analysis in both Kirindi Oya and Kelani
River basin in end-century Period

LIST OF ABBREVIATIONS

CMIP5	-	Coupled Model Intercomparison Project Phase 5
DEM	-	Digital Elevation Model
FDC	-	Flow Duration Curve
FIM	-	First Inter Monsoon
HEC	-	Hydrologic Engineering Center
HMS	-	Hydrologic Modeling System
IPCC	-	Intergovernmental Panel on Climate Change
LULC	-	Land-use Landcover
MIT	-	Minimum Inter-event Time
NEM	-	Northeast Monsoon
NSE	-	Nash Sutcliffe Efficiency
PBIAS	-	Percentage Bias
PVE	-	Percentage Streamflow Volume Error
R10	-	Heavy precipitation days
R20	-	Very heavy precipitation days
RAS	-	River Analysis System
RCP	-	Representative Concentration Pathways
RMSE	-	Root Mean Square Error
RMSE std dev	-	RMSE Observed Standard Deviation Ratio
SCS	-	Soil conservation service
SDI	-	Streamflow Drought Index
SEM	-	Second Inter Monsoon
SM	-	Soil Moisture
SMA	-	Soil Moisture Accounting
SPI	-	Standardized Precipitation Index
SWM	-	Southwest Monsoon